短距離ブロック内配線の自己発熱 Self-heating in Short Intra-block Wires

新開健一橋本昌宜尾上孝雄大阪大学情報科学研究科情報システム工学専攻

Kenichi SHINKAI Masanori HASHIMOTO Takao ONOYE Dept. Information Systems Engineering, Osaka University

概要

本論文では、短距離ブロック内配線における自己発熱効 果がプロセススケーリングに伴って顕在化するかを予測 する.短距離ブロック内配線は、基板に近いため優れた放 熱性を持ち、自己発熱は小さいと考えられてきた.しか し、クロック分配を想定した解析を行ったところ、ブロッ ク内配線の自己発熱がグローバル配線の場合よりも大き くなることを確認した.基板接合部温度からの配線の最 大温度上昇は、14 nm プロセスにおいて 40.5°C にも達す る.要因分析を行った結果、配線断面積の縮小が low-k 材 料の採用や消費電力増大と同程度自己発熱を悪化させる ことが分かった.また、自己発熱により、信頼性低下と性 能劣化が生じる.14 nm プロセスにおいて配線温度と接 合部温度を等しいと考えた場合、実際の故障時間は予想 より約3-10 倍短くなり、信号遅延は 2.8% 悪化する.

1 背景

近年,熱問題が主要な設計問題となってきている.エレクトロマイグレーション [1,2] などに代表される信頼性低下 要因やリーク電流は温度に強く依存し,温度上昇による リーク電力増大は発熱量をさらに増加させるためである. この問題を解決するために,チップ全体の熱解析やアー キテクチャレベル [3] から物理設計レベル [4] の熱指向設 計が産学界双方で注目されている.

微視的視点では. グローバル配線の自己発熱問題が集中 的に研究されてきた [5-11]. 配線抵抗によるエネルギー 消費が配線内部に熱を発生させ,それが温度上昇に繋が る現象が自己発熱効果である. 配線の過熱により,(1)配 線の電気抵抗の増大による信号伝達速度の低下,(2)エレ クトロマイグレーションなどによる信頼性低下,が生じ る. グローバル配線での自己発熱問題は以下の理由によ り集中的に研究されてきた:(1)グローバル配線は基板か ら離れて配置されるため,発生した熱が放熱されにくい, (2)グローバル配線では通常大電流が流れるため,大量の 熱が配線内で発生する.

一方,ローカル・中間層配線の自己発熱は深刻視され てこなかった.基板に近いため放熱性が良く,温度上昇 が軽微であったためである.しかし,プロセススケーリ ングにより,自己発熱を悪化させる以下の要因が発生す る:(1)ローカルクロック周波数の超高速化(グローバル クロックよりも非常に高速),(2)配線断面積の縮小によ る熱抵抗の増大,(3)層間絶縁材料として low-k 材料の採 用,などである.従って,短距離ブロック内配線で自己発 熱効果が無視できるか,または将来的に深刻な問題を生 じるか,は明らかではない.

本論文では、短距離ブロック内配線での自己発熱効果 の将来的動向を予測する.短距離ブロック内配線の温度 上昇を,今まで主に議論されてきたグローバル配線の温 度上昇と比較する.先行研究[11]では,自己発熱問題を 警鐘するために、グローバル配線を流れる電流の極大値 を仮定した.しかし、バッファ挿入された実用設計での自 己発熱の影響は明確ではない.実際の回路設計の観点か ら信号配線の自己発熱問題を評価するために、本検討で はスイッチング回数が最大となるクロック分配網の一部 を仮定する.また、グローバル配線では、過度に長い配 線構造を除去するためにバッファが挿入された配線を想 定する.本検討の主な成果は、グローバル配線だけでな く短距離ブロック内配線でも自己発熱問題が発生し、温 度上昇はむしろブロック内配線の方が深刻であると示し たことである.

本論文の構成は以下の通りである.2章で本検討の動 機を説明する.予測に使用する配線,チップモデルを3章 で示す.4章で温度上昇の予測結果を示す.また,温度 上昇に大きな影響を与えるパラメータの要因分析を行う. さらに,温度上昇による信頼性と性能の変化について議 論した後,リピータを最適に挿入したグローバル配線の 場合と比較する.最後に,5章で本論文をまとめる.

2 動機

本検討が短距離ブロック内配線の自己発熱問題に注目し た理由である,配線断面積縮小による熱問題悪化の簡単 な例を示す.図1に示す単純な二次元チップモデルを考 える.中心の長方形は銅配線を示し,上部の大きな長方 形は絶縁材料,下部の長方形はSi基板である.この例で

図 2: 基板接合部と配線の最大温度差 ΔT_{max}の予測結果 (二次元チップモデル)

図 3: 2020 年における ΔT 分布(二次元チップモデル). 点線で囲まれた部分は配線を表す. 軸は 図1に対応する

は断面積スケーリングの影響のみを見るために, 基板-配 線間の距離は 1 µm, 消費電力は 10 µW/µm, 絶縁材料は FSG (弗化珪酸塩ガラス) で固定とした. 配線断面積は ITRS 2005 [12] に従ってスケールした(詳細は次章で説明 する). 外気は 27℃ とした.

図2に配線の最大温度上昇予測結果を示す. ここで、 ΔT は配線中央直下の基板接合部温度からの温度上昇であり、 ΔT_{max} は最大の ΔT とする.他のパラメータは変化していないので、温度上昇は配線断面積減少から生じることになる.2020 (Tech. node: 14 nm)における ΔT 分布を図3に示す.この実験により、(1)配線断面積減少により放熱性が悪化する、(2)短距離ブロック内配線における温度上昇は配線近傍に非常に集中する、ということが分かった.

3 自己発熱問題予測に用いた配線・チップモデル

本章では自己発熱問題の将来予測に用いた配線・チップ モデルを概説する.

図 4: 自己発熱予測に用いた配線・チップモデル

3.1 将来プロセスのデバイスパラメータ

短距離ブロック内配線の評価に用いたパラメータセットを 付録の表1に示す.下3行の要素,つまり絶縁材料,絶縁 材料の熱伝導率,配線長L,以外はITRS 2005 [12] に準 拠している.これら3要素は以下の方針に従い決定した:

- 絶縁材料は ITRS の実効誘電率を満たし、熱伝導率ができるだけ高い材料を選択した.但し、Porous Silica の比誘電率と熱伝導率は空孔率に依存するので、実効誘電率から空孔率を求め、熱伝導率を求めた[13,14].
- 配線長 L はブロック内クロック分配を想定し求めた. L は短距離ブロック内配線として十分に小さい.
 詳細は 3.2 節 で説明する.

銅の電気抵抗率 ρ は、細い配線ではサイズ効果により 上昇する.本現象は[14-16]で議論されており、それらで 報告されている ρ は ITRS 予測と一致する.従って本検討 では ITRS の ρ を用いた.また、サイズ効果による抵抗上 昇の温度依存性は小さい [17] ため、バルク抵抗のみが温 度に依存するとして、配線の抵抗値を計算した.

3.2 配線・チップモデル

評価に使用した配線・チップモデルを図4に示す.1mm 角チップのブロック内クロック分配を想定した.本検討で は非常に狭い範囲の熱拡散を解析するため,1mm角は正 確な見積もりに十分な大きさである.上図が上部の立方 体の拡大図で,3本の配線が存在する.配線は6層配線の M5層に配置されている.今回の予測では、中央配線直下 の基板接合部温度からの温度上昇ΔTを評価する.

いずれのプロセスでも、中央配線は出力抵抗が 50Ω の 16x バッファで駆動し、64x バッファ(16x インバータ + 64x インバータ)をレシーバとした.その両側の配線は シールド配線で、配線幅と同じ間隔を空けて置いた.使用 するトランジスタは ITRS に基づいた予測モデル [18]を 用いた.ドライバ入力の周波数は ITRS のローカルクロッ ク周波数とし、ドライバ入力の遷移時間はクロック周期の

図 5: 熱拡散解析モデルの例

図 6: 配線の不均一な発熱

10% とした.また,配線長Lは、レシーバへの入力信号の遷移時間がクロック周期の1/7以下になる最大の長さとした.1/7は実際の設計で用いられる経験的な値である.

チップは high-performance を想定した. ITRS によると, high-performance では製造時チップサイズは 310 mm²,最 大消費電力は 198 W であり,将来も増加しないという予 測がされている. 従って,プロセスによらずパッケージ性 能は一定で,放熱性が 0.64 W/mm² のパッケージに実装 されているとした. 側面は断熱 ($\theta = 1$ [W/m²·K]),上面/下 面はそれぞれ $\theta = 2500$ [W/m²·K], $\theta = 7500$ [W/m²·K] の 境界条件を仮定した.外気は 27°C とした.

3.3 熱解析手法

本検討では、熱と電気のアナロジー [7] に基づいて熱拡 散方程式を解くために、有限差分的手法 [4,19] を用いた. 本解析では、まずチップを多数の直方体に分割し、各直 方体の中心をノードとする.そして、隣接ノードとの間 に熱抵抗を接続し、グラウンドから対応ノードに消費電 力を流入する.チップが縦横2方向に分割されたときの 解析モデルの例を図5に示す.求める精度に応じて、分 割する直方体の数・大きさを決める.本検討では注目する 配線近傍で分割を細かくした結果、ノード数34388,熱抵 抗数88694 となった.熱解析は、Opteron 2.4GHz,メモリ 16GB を搭載した計算機上で線形回路シミュレータ [20] を 用いて行った.解析に要した CPU 時間は 148 秒であった.

CMOS ゲートがスイッチングするとき,図6に示すようにドライバ側はレシーバ側より大量の電流が流れるため,発熱量がより大きい.よって,配線中では不均一に発熱することを考慮した解析を行った.消費電流は回路シ

図 8: 基板接合部と配線の最大温度差 ΔT_{max} の予測結果 (短距離ブロック内配線)

ミュレーションにより求め,それを3次元熱解析に用いた.また,温度と配線抵抗には相互依存性が存在し,独立ではない.従って,本検討では図7に示す解析フローを用いて温度解析,電力解析を繰り返し,定常状態の温度を得た.今回の解析では,2回の繰り返しでほぼ収束した.

4 予測結果

本章では予測結果について議論する.本検討の予測では, 3.2節でも触れた通り,配線中央直下の基板接合部からの 温度上昇を表す ΔT を評価する.これは,配線温度が接合 部温度と等しいと温度を過小評価することにより生じる, 信頼性と性能の予期せぬ低下を明らかにするためである.

4.1 節, 4.2 節 では, 短距離ブロック内配線の評価を示 す. 自己発熱の予測結果を 4.1 節 で示し, スケーリング パラメータに関する要因解析結果を 4.2 節 で述べる. 4.3 節 では, 温度上昇が信頼性と性能に与える影響を定量的 に評価する. また, 4.4 節 で, グローバル配線の予測結果 との比較を行う.

4.1 スケーリングに伴う温度上昇

図 8 にプロセススケーリングに伴う ΔT_{max} の上昇傾向を示す.ここで、 ΔT_{max} は配線の中央直下に位置する基板接合部と配線の最大温度差である.この予測結果より、短距離ブロック内配線の自己発熱は微細化技術の進歩に従って深刻になることが分かる. ΔT_{max} は 90 nm プロセスでは 1.02°C であり、これまで短距離ブロック内配線の自己

図 9: 2008 年における ΔT 分布(短距離ブロック内配線). 点線で囲まれた部分は配線を表す. 軸は 図4 に対応する

図 10: 2020 年における ΔT 分布(短距離ブロック内配線). 点線で囲まれた部分は配線を表す.軸は図4に対応する

発熱を考慮してこなかったことは妥当であった.しかし, 14 nm プロセスにおいて, ΔT_{max} は 40.5℃ にも達するた め,今後は信頼性,性能の観点からも考慮が必要となる.

2008 年, 2020 年 (Tech. node: 59 nm, 14 nm) における ΔT 分布をそれぞれ図 9, 10 に示す.本検討では,発熱す る中央配線が最も温度上昇が大きいため、 ΔT 分布図は中 央配線における x_Z 平面のみに注目する.図 6 で説明した ように、ドライバ側ではより大きな電流が流れるため、図 9 に示すようにドライバ側(図の左側)で配線の温度上昇 が大きい.図 10 では ΔT が対象的な分布になっているが, これは基板からの距離が配線長 L よりも長く,温度に支 配的な影響を与えているためである.

図 9,10 より,発生した熱は,ビア配線を通じて Si 基 板に逃げるだけでなく,絶縁体からも拡散していること が分かる.つまり,短距離配線では絶縁材料の放熱性が 重要になる.また,図2で例を挙げたように,配線断面 積縮小による熱抵抗の増加も温度上昇に大きな影響を与 えていると考えられるため,更なる解析を 4.2 節で行う.

4.2 温度上昇の要因分析

本章では、自己発熱効果に大きな影響を与えるプロセス パラメータを示す.調べる要因は、以下の4つである:

(a) 基板からの距離, (b) 絶縁材料, (c) 消費電力, (d) 配線断面積.

ここで,調べる対象のパラメータ以外は,14 nm プロセスの場合と等しいとした.

図 11 に Δ*T_{max}* の要因分析結果を示す. 縦軸は 式 (1) で 定義される,温度変化への貢献度 (*Contribution*) である.

Contribution [°C] = $\Delta T_{max} - \Delta T_{max}(90nm)$. (1)

スケーリングに伴って、ΔT_{max}は (a) 基板からの距離によ り減少し, (b) 絶縁材料, (c) 消費電力, (d) 配線断面積によ り増大することが分かる.全要素を同時に考慮すると温度 が上昇する効果の方が大きく,4.1節で示した温度上昇に なる.配線長Lでも同様の実験を行ったが,他パラメー タに比べて影響が小さかったのでここでは省略した.

興味深い結果として, 配線断面積は絶縁材料や消費電 力と同程度に自己発熱に影響を与えている. 文献 [11,14] では将来の絶縁材料の熱伝導が悪いことは議論されてい るが,本検討で注目した配線断面積縮小の影響には言及 していない.小さい配線断面形状は,電気伝導性だけで なく熱伝導性(基板への熱拡散)も低下させる.

4.3 温度上昇による影響

本節では信頼性と性能の劣化について議論する. 配線の自 己発熱を無視し,金属配線温度 *T_m* が基板接合部温度 *T_{ref}* と同じだと仮定した場合の予期せぬ信頼性,性能の低下 を定量的に評価する.

4.3.1 信頼性

EM (エレクトロマイグレーション) は配線不良の主な要 因と考えられる [1]. 金属配線の EM 耐用信頼性は 式 (2) に示す Black の等式でモデル化される:

$$TTF = A^* j^{-n} exp\left(\frac{Q}{k_B T_m}\right). \tag{2}$$

ここで,*TTF* は故障時間(普通,0.1% 累積故障率にお ける時間),A^{*} は配線の形状及び構造に依存する定数,j は DC または平均電流密度 [A/m²],n はモデルパラメー タで,通常動作環境では2である.活性化エネルギーQ は1μm 以下の細い銅配線においては surface transport に より支配され [21],約0.5eV である [22]. k_B はボルツマ ン定数,T_m は配線の絶対温度 [K] である.

ここでは、ブロック内配線の自己発熱を無視し、配線 温度 T_m [°C] をチップの基板接合部温度 T_{ref} [°C] とおいた 場合、TTF の見積もりがどの程度楽観的になるかを評価 する. T_{ref} で見積もった TTF は、実際の TTF の $\frac{TTF_{Tef}}{TTF_{Tm}}$ 倍大きい:

$$\frac{TTF_{T_{ref}}}{TTF_{T_m}} = \frac{A^* \cdot j^{-2} \cdot exp(\frac{Q}{(273 + T_{ref})k_B})}{A^* \cdot j^{-2} \cdot exp(\frac{Q}{(272 + T_{ref})k_B})}$$
(3)

$$= exp\left(\frac{Q}{K_B} \cdot \frac{T_m - T_{ref}}{(273 + T_m)(273 + T_{ref})}\right).$$
(4)

簡単のために、Q = 0.5eV、配線温度は一様に $T_m = T_{ref} + 40.5$ (40.5 は 4.1 節 の 14nm プロセスでの ΔT_{max}) とする. 通常の動作範囲を 0°C - 120°C とすると、3.37($@T_{ref} = 120$ °C) $\leq \frac{TTF_{T_{ref}}}{TTF_{T_m}} \leq 9.99(@T_{ref} = 0$ °C) と求められる. 従って、 $T_m \, \varepsilon \, T_{ref}$ とおいた場合、約 3 - 10 倍短い TTF となり、予期せぬ信頼性低下に繋がる.

4.3.2 性能

ドライバ, 配線遅延は以下の式で表される [23]:

 $T_{50\%} = R_{tr}(0.693C_{int} + 0.693C_L) + R_{int}(0.377C_{int} + 0.693C_L).$ (5)

ここで, R_{tr} はドライバ出力抵抗, R_{int} は配線抵抗, C_{int} は 配線容量, C_L は次段入力容量である.自己発熱による性 能変化のみを評価するために, Si 接合部温度は正しく見 積もられていると仮定すると, R_{tr} は固定値となる.また 容量は温度に依存しない.従って,自己発熱による遅延 見積もり誤差 $\Delta T_{50\%}$ は以下のように計算される:

 $\Delta T_{50\%} = \left(R_{int}(T_m) - R_{int}(T_{ref}) \right) (0.377C_{int} + 0.693C_L).$ (6)

14 nm プロセスでは、 $T_{50\%}$ は 21.1 fs、 $\Delta T_{50\%}$ は 0.589 fs となり、性能劣化は 2.8% である。14 nm プロセスでのク ロック周期は 13.7 ps であるため、 $\Delta T_{50\%}$ は無視できない。

4.4 グローバル配線における温度上昇との比較

本節ではグローバル配線の自己発熱効果を確認し,短距 離ブロック内配線の場合と比較する.実験に使用する配 線・チップモデルは図4と同じ構成である.配線は11層 配線のM11層に配置した.評価に用いるパラメータセッ トを付録の表2に示す.下2要素,つまりバッファサイ ズ,配線長L以外はITRS 2005に準拠している.これら 2要素は伝播遅延を最小化するリピータ挿入の最適解と する[24,25].短距離ブロック内配線の場合と比較して, Lは非常に大きい.配線幅は「最小グローバル配線ピッ チ」の1/2とした.ゲート入力抵抗,ゲート出力容量は ITRS 2005 から求めた.

大きな配線遅延により,グローバルクロックの高速化 は困難であるため,グローバルクロック周波数はローカ

図 12: 基板接合部と配線の最大温度差 ΔT_{max} の予測結果 (グローバル配線)

図 13: 2020 年における ΔT 分布(グローバル配線). 点 線で囲まれた部分は配線を表す. 軸は 図4 に対応する

ルクロックの 1/4 と仮定した.温度解析は線型回路で行 われるため、クロックが倍になると温度上昇も倍になる. 他のパラメータは 3.2 節 の場合と同様である.

図 12 に ΔT_{max} の傾向を,図 13 に 2020 年における ΔT 分布を示す. これらより,伝播遅延を最小化する設計で は、グローバル配線の自己発熱効果はとても微小である ことが分かる.一方,4.1 節 で示したように,短距離ブ ロック内配線の温度は急激に上昇していく.従って,今後 はグローバル配線よりもローカル配線の自己発熱により 注意を払うべきである.

5 結論

プロセス技術の進歩に伴う短距離ブロック内配線での自 己発熱効果を予測した.基板接合部温度からの配線の最大 温度上昇は、14 nm プロセスでは 40.5°C にも達する.配 線温度を接合部温度と等しいとした場合,信頼性低下や性 能劣化の過小評価を招く.また,配線断面積は絶縁材料や 消費電力と同程度自己発熱に大きな影響を与えることを 示した.将来的に、短距離ブロック内配線は、最適なバッ ファ挿入を行ったグローバル配線より温度上昇が著しい. 短距離ブロック内配線の自己発熱は、今後配線抵抗増大 や信頼性低下を招く恐れがあり、注意する必要がある.

6 謝辞

本研究の一部は NEDO の助成による.

表 1: ローカル配線解析におけるパラメータセット

	Year (Tech. node [nm])							
	2005	2008	2011	2014	2017	2020		
	(90)	(59)	(40)	(28)	(20)	(14)		
M1 層 A/R	1.7	1.8	1.9	1.9	2.0	2.0		
中間配線層	1.7	1.8	1.9	1.9	2.0	2.0		
(Wire) A/R								
中間配線層	1.5	1.6	1.6	1.7	1.8	1.8		
(Via) A/R								
電源電圧 V _{dd} [V]	1.1	1.0	1.0	0.9	0.7	0.7		
ローカルクロック	5.204	10.972	17.658	28.356	45.535	73.122		
周波数 [GHz]								
反転層厚 [Å]	7.3	2.9	2.5	4	4	4		
銅配線電気抵抗率	3.07	3.65	4.3	5.2	6.33	8.19		
$\rho \left[\mu\Omega\text{-cm}\right]$								
実効誘電率	3.1	2.7	2.5	2.4	1.9	1.6		
絶縁材料	FSG	SiOC	Porous Silica					
熱伝導率 [W/m·K]	0.89	0.39	0.231	0.207	0.162	0.115		
配線長 L [μm]	132	44.7	16.7	7.96	3.49	0.21		

表 2: グローバル配線解析におけるパラメータセット

	Year (Tech. node [nm])							
	2005	2008	2011	2014	2017	2020		
	(90)	(59)	(40)	(28)	(20)	(14)		
最小グローバル 配線ピッチ [nm]	300	177	120	84	60	42		
グローバル配線層 (Wire) A/R	2.2	2.3	2.4	2.5	2.6	2.8		
グローバル配線層 (Via) A/R	2	2.1	2.2	2.3	2.4	2.5		
銅配線電気抵抗率 $\rho [\mu\Omega-cm]$	2.53	2.87	3.22	3.73	4.39	5.38		
飽和電流 I _{d,sat} (NMOS) [µA/µm]	1020	1570	2490	2290	2533	2981		
飽和電流 I _{d,sat} (PMOS) [µA/µm]	408	628	996	916	1013.2	1192.4		
ゲート入力容量 <i>C_{g,total}</i> [fF/µm]	0.813	0.847	0.859	0.542	0.487	0.362		
バッファサイズ	7.19x	4.43x	3.29x	3.87x	2.91x	2.76x		
配線長 L [μm]	318.26	150.32	80.691	42.381	25.079	13.842		

参考文献

- James R. Black, "Electromigration A Brief Survey and Some Recent Results," *IEEE Transactions on Electron Devices*, vol. ED-16, no. 4, pp. 338 – 347, Apr. 1969.
- [2] Kaustav Banerjee, Massoud Pedram, and Amir H. Ajami, "Analysis and optimization of thermal issues in highperformance VLSI," *Proc. ISPD*, pp. 230 – 237, 2001.
- [3] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankaranarayanan, and David Tarjan, "Temperature-aware computer systems: Opportunities and challenges," *IEEE Micro*, vol. 23, no. 6, pp. 52 – 61, Nov. – Dec. 2003.
- [4] Yi-Kan Cheng, Ching-Han Tsai, Chin-Chi Teng, and Sung-Mo (Steve) Kang, "Electrothermal Analysis of VLSI Systems," Kluwer Academic Publishers, Inc., 2000.
- [5] Amir H. Ajami, Kaustav Banerjee, and Massoud Pedram, "Modeling and analysis of nonuniform substrate temperature effects on global ULSI interconnects," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 24, no. 6, pp. 849 – 861, Jun. 2005.
- [6] Sungjun Im, Kaustav Banerjee, and Kenneth E. Goodson, "Modeling and Analysis of Via Hot Spots and Implications for ULSI Interconnect Reliability," *Proc. IRPS*, pp. 336 – 345, Apr. 2002.
- [7] Ting-Yen Chiang, Kaustav Banerjee, and Krishna C. Saraswat, "Compact Modeling and SPICE-Based Simulation for Electrothermal Analysis of Multilevel ULSI Interconnects," *Proc. ICCAD*, pp. 165 – 172, 2001.

- [8] Ting-Yen Chiang, Kaustav Banerjee, and Krishna C. Saraswat, "Effect of Via Separation and Low-k Dielectric Materials on the Thermal Characteristics of Cu Interconnects," *IEDM*, pp. 261–264, Dec. 2000.
- [9] Kaustav Banerjee, Amit Mehrotra, Alberto Sangiovanni-Vincentelli, and Chenming Hu, "On Thermal Effects in Deep Sub-Micron VLSI Interconnects," *Proc. DAC*, pp. 885 – 891, Jun. 1999.
- [10] Sven Rzepka, Kaustav Banerjee, Ekkenhard Meusel, and Chenming Hu, "Characterization of self-heating in advanced VLSI interconnectlines based on thermal finite element simulation," *IEEE Transactions on Components, Packaging, and Manufacturing Technology*, Part A, vol. 21, no. 3, pp. 406 – 411, Sep. 1998.
- [11] Kaustav Banerjee and Amit Mehrotra, "Global (interconnect) warming," *IEEE Circuits and Devices Magazine*, vol. 17, no. 5, pp. 16 – 32, Sep. 2001.
- [12] ITRS 2005, http://www.itrs.net/
- [13] Bing-Yue Tsui, Chen-Chi Yang, and Kuo-Lung Fang, "Anisotropic Thermal Conductivity of Nanoporous Silica Film," *IEEE Transactions on Electron Devices*, pp. 20 – 27, 2004.
- [14] Sungjun Im, Navin Srivastava, Kaustav Banerjee, and Kenneth E. Goodson, "Scaling analysis of multilevel interconnect temperatures for high-performance ICs," *IEEE Transactions* on *Electron Devices*, vol. 52, no. 12, pp. 2710 – 2719, Dec. 2005.
- [15] Werner Steinghögl, Günther Schindler, Gernot Steinlesberger, and Manfred Engelhardt, "Size-dependent resistivity of metallic wires in the mesoscopic range," *Phys. Rev.*, vol. 66, no. 7, pp. 075414-1 – 075414-4, Aug. 2002.
- [16] W. Steinghögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, "Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller," *Journal of Applied Physics*, vol. 97, no. 2, pp. 023706-1 – 023706-7.
- [17] Werner Steinghögl, Günther Schindler, Gernot Steinlesberger, and Manfred Engelhardt, "Scaling Laws for the Resistivity Increase of sub-100 nm Interconnects," *Proc. SISPAD*, pp. 27 – 30, Sep. 2003.
- [18] Shinichiro Uemura, Akira Tsuchiya, and Hidetoshi Onodera, "A Predictive Transistor Model based on ITRS," http://www.tamaru.kuee.kyoto-u.ac.jp/~tsuchiya/ tr-model.html.en.
- [19] Ching-Han Tsai and Sung-Mo (Steve) Kang, "Cell-level placement for improving substrate thermal distribution," *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 19, no. 2, pp. 253 – 266, Feb. 2000.
- [20] (株) 数理システム, "LiCRSIM 線形回路解析シミュレータ 操作説明書."
- [21] C.-K. Hu, R. Rosenberg, and K.Y. Lee, "Electromigration path in Cu thin-film lines," *Applied Phys. Lett.*, vol. 74, no. 20, pp. 2945 – 2947, May 1999.
- [22] B.H. Jo and R.W. Vook, "In-situ ultra-high vacuum studies of electromigration in copper films," *Thin Solid Films*, vol. 262, no. 1 – 2, pp. 129 – 134, 1995.
- [23] Takayasu Sakurai, "Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs," *IEEE Transactions on Electron Devices*, vol. 40, no. 1, pp. 118 – 124, Jan. 1993.
- [24] Ralph H.J.M. Ottenand Robert K. Brayton, "Planning for performance," *Proc. DAC*, pp. 122 – 127, 1998.
- [25] H. B. Bakoglu, "Circuits, interconnections, and packaging for VLSI," Addison-Wesley Publishing Company, 1990.