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ABSTRACT
We propose a gate resizing method for delay and power optimiza-
tion that is based on statistical static timing analysis. Our method
focuses on the component of timing uncertainties due to local ran-
dom fluctuation. Utilizing our method, over-design of a circuit can
be eliminated and high-performance and high-reliability LSI de-
sign can be realized. The effectiveness of our method is examined
by 6 benchmark circuits. We verify that our method can reduce de-
lay and power dissipation from the circuits optimized without the
consideration of fluctuation.

1. INTRODUCTION
There are several sources that cause the uncertainties of circuit de-
lay time, such as manufacturing fluctuation, supply voltage and
temperature change, estimation error of wire capacitance and re-
sistance, uncertainties of wire capacitance during physical design,
diversity in signal waveforms, and so on. These sources can be
classified into two categories. The first category is a global change
that applies to all gates and wires similarly in a certain region. The
second category is a random change that indicates a certain statisti-
cal distribution. As for the global change, there is a traditional and
widely-used method to consider the delay time uncertainties. In
this method, three values(bestltypical/worst-case values) are pre-
pared for the delay time of each gate and wire. Then the circuit
delay time is calculated using each-case value for purpose by pur-
pose. This is a reasonable approach for the global change.
On the other hand, the random change is not well considered in LSI
design. Due to the random change, the delay time of each gate and
wire has a certain probability distribution. In one case, a certain
amount of design margin is set to avoid the effect of the delay time
uncertainties by the random change. In this method, the decision
of the design margin is difficult, which results in excessive design
margin and over-design of the circuits. In another case, the delay
time of each gate and wire is defined as the worst-case value, for
example, mean+3o. In this case, the estimated delay time of a criti-
cal path is pessimistic, and the delay of the shortest path can not be
considered. Therefore, in order to design a circuit with high confi-
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dence and eliminate over-design, a statistical static timing analysis
method and a circuit optimization method considering the random
change are necessary.
We propose a performance optimization method considering the
random change based on statistical timing analysis. As for statisti-
cal timing analysis, there are several proposals [l-5].  The methods
proposed in Refs. [l-3]  are Monte Calro simulation-based tech-
niques, so these methods are not suitable for large circuits from
the point of computation time. The method proposed by Berk-
erlaar in Ref. [4, 51 is based on a static timing analysis method.
This method does not require any simulations, and the complexity
of the timing analysis is linear to the circuit scale. So the timing
analysis can be done in a realistic computation time. Although this
method works well for the estimation of the mean delay, it underes-
timates the worst delay(eg., mean+3o)[4]. In a statistical analysis,
it is important to estimate a worst case value. We therefore device
a technique for accuracy improvement and utilize this method for
performance optimization.
In the case of the performance optimization based on statistical
static timing analysis, slack[6], which represents the timing criti-
cality at each gate and is widely used for performance optimization
under deterministic delay model, can no longer be a useful mea-
sure under statistical environment. We therefore propose a new
measure “criticality” that represents the timing criticality at each
gate, and device performance optimization algorithms utilizing the
“criticality”. In Ref. [5],  the gate sizing problem is formulated as a
nonlinear programming problem, where the objective function and
the constrains are expressed as analytic forms. In this method, the
delay should be represented in a simple analytical equation, which
degrades the accuracy of the delay calculation. On the other hand,
our method can utilize any gate/wire delay calculation methods.
Our performance optimization method has various applications,
such as uncertainties of wire capacitance during physical design,
local fluctuation in transistor characteristics, local variation of sup-
ply vol tage and temperature,  and so on.  The proposed performance
optimization method can eliminate over-design of a circuit and con-
tribute high-performance and high-reliability LSI design.
This paper is organized as follows. Section 2 discusses the statis-
tical static timing analysis method. Section 3 explains the perfor-
mance optimization algorithms of gate sizing. Section 4 discusses
some applications of our performance optimization method. Sec-
tion 5 demonstrates some experimental results. Finally, Section 6
concludes the discussion.
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2. STATISTICAL STATIC TIMING ANALY-
SIS

In this section, a statistical timing analysis method is discussed. We
first explain the basic concept of the statistical static timing analysis
proposed in Ref. [4]. Next, we discuss an approximation method of
the delay distribution used in the statistical static timing analysis.
We then propose a new measure “criticality“ that represents the
timing criticality at each gate.

2.1 Static Timing Analysis
We first explain a conventional(not statistical) static timing analy-
sis method briefly. Suppose a gate that has n-input and 1-output
ports(Fig. 1). Ti is the latest arrival time of signals at the i-th input.
ti is the gate delay time from the i-th input to the output. Ti and
ti have different values for rise and fall transitions. In Section 2,
we do not distinguish rise/fall transitions for simplifying the ex-
planation. But the real implementation in Section 5 considers the
delay difference for rise/fall transitions. The latest arrival time of
the signal transitions at the output, Tout, is represented as follows.

Tout =
n

max
i=1

(Ti + ti): (1)

Using Eq. 1, the latest arrival time at each gate can be calculated
incrementally without tracing all paths.
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Figure 1: Gate Delay Model

2.2 Statistical Static Timing Analysis
In a conventional static timing analysis, each delay time of gates
and wires is a constant value. On the other hand, under the exis-
tence of uncertainties in circuit delay time, each delay time is not a
constant and it has a statistical distribution, which is considered for
delay calculation in the statistical static timing analysis. The basic
concept of the statistical static timing analysis has been proposed
in Ref. [4]. We first explain this method briefly. Next, we discuss a
technique that improves the accuracy of the timing analysis.
We model the distribution of the latest signal arrival time at the i-th
input as a normal distribution of a stochastic variable T with mean
�Ti and standard deviation �Ti . We also assume that the gate delay
time from the i-th input to the output is distributed with a stochastic
variable t, mean �ti and standard deviation �ti .
Here, Eq. 1 is converted for the statistical timing analysis. We de-
fine the probability density function fi that corresponds to the dis-
tribution of Ti+ti. The mean and standard deviation of Ti+ti are
represented as �Ti + �ti and

q
�2Ti

+ �2ti
respectively. The prob-

ability density function Fi is defined as follows.

Fi(x) =

Z x

�1

fi(�)d�: (2)

As an example of statistical max operation, we take up C =

max(A;B), with stochastic variables A, B and C. In this case,

the following relation holds at any x.

P (C � x) = P ((A � x) \ (B � x)); (3)

where P (Condition) represents the probability that Condition is
satisfied. When the statistical correlation between A and B is ig-
nored, Eq. 3 can be transformed as follows.

P (C � x) = P (A � x) � P (B � x): (4)

We define the probability density functions of A;B and C as
fA; fB and fC . Eq. 4 can be expressed as follows.Z x

�1

fCd� =

Z x

�1

fAd� �

Z x

�1

fBd�: (5)

Differentiating Eq. 5, the following equation can be obtained.

fC = fA(x) �

Z x

�1

fBd�+ fB(x) �

Z x

�1

fAd�: (6)

Eq. 6 can be rewritten as follows.

P (C = x) = P (A = x) � P (B � x) + P (B = x) � P (A � x):

(7)

Extending Eq. 6 for n stochastic variables, the probability function
fout, which corresponds to the distribution of the latest arrival time
Tout, can be represented as follows.

fout(x) =

nX
i

2
4fi(x) �

nY
j 6=i

Fj(x)

3
5 : (8)

The probability density function of the overall circuit delay time
can be obtained by applying the probability density function at each
primary output to fi.
The distribution of the latest arrival time, fout, is different from
a normal distribution, though assumed to be normal. In Ref. [4],
the distribution shape of fout is discussed under some conditions
with the result that the distribution of fout is approximated to a
normal distribution. From now, we discuss the extraction method
of mean and standard deviation. Figs. 2 and 3 show an example of
the approximation to the normal distribution. fout represents Eq. 8
under the following conditions. The mean and standard deviation
of f1, the mean and standard deviation of f2 and n are 0, 1, 0.6, 0.6
and 2 respectively. The curve falls slower than it rises. We take up
two approximation method of fout to a normal distribution.

Method 1 Using Monte Carlo technique, extract the values of the
mean m and the standard deviation �.

Method 2 Find the values of x0 and x1 that satisfy Eqs. 9 and 10.
The mean m is calculated as (x0 + x1)=2 and the standard
deviation � is (x1 � x0)=6.

0:013499 =

Z x0

�1

fout(x)dx: (9)

0:013499 =

Z
1

x1

fout(x)dx: (10)

Method 1 is adopted in Ref. [4]. Method 2 adjusts the value of the
integral of fout from m+ 3� to infinity and the integral from neg-
ative infinity to m � 3� using numerical integration. At a glance,
Method 1 approximates fout to a normal distribution better than
Method2(Fig. 2). In the case that we estimate the circuit delay
around the point of m + �, Method1 is surely suitable for the
approximation. But, when the circuit delay is defined as x1 in



Eq. 10, where x1 corresponds to m + 3� of the normal distribu-
tion, Method1 underestimates the delay time(Fig. 3). Though the
delay time x1 derived from fout is 3.00, x1 of Method 1 is 2.64.
This underestimation is caused by the distribution shape difference
between fout and Method 1 in the region of x > 3(Fig. 3). From
the definition, Method 2 can calculate x1 accurately.
In order to calculate x1 accurately, the approximation of fi where
x is larger than x1 is important. The value x1 is nearby or larger
than m+3� of each fi. In Method 2, the distribution shape of fout
where x is larger than m+3� is well approximated(Fig. 3), which
contributes the accurate calculation of x1 at the fan-out gates that
the gate drives.
From above discussion, in the case that the circuit delay is defined
as x1 of Eq. 10, i.e. m+3� of the normal distribution, Method2 is
good for the approximation. Hereafter, we define the circuit delay
as the above definition. When the delay time is evaluated at the
other point, such as m+2� and m+4�, we change the value of the
left term in Eqs. 9, 10 into 0.022750 and 0.000031671 respectively.
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Figure 2: Approximation to Normal Distribution
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Figure 3: Approximation to Normal Distribution(Magnified)

2.3 Criticality
In the case of a conventional(not statistical) static timing analysis
method, slack is a useful measure that represents the timing criti-
cality at each gate[6]. Many optimization algorithms using slack
have been proposed[7–9], and slack helps to reduce the computa-
tion time required for the optimization considerably. But in the
statistical static timing analysis, slack can not be used as a measure
of timing criticality. Since slack is defined as the time difference
between the required arrival time and the latest arrival time, the re-
quired arrival time at each gate is computed from the primary out-
puts. In statistical static timing analysis, the required arrival time
at each input can not be calculated independent of the arrival times
at the other inputs. It is because the arrival time at the output is
affected by all the inputs’ arrival time(Eq. 8). Thus, the required
arrival time can not be propagated. Also the combination of the
mean m and the standard deviation � at each gate, which satisfies

the delay constraint, is not determined uniquely. So, the required
arrival time can not be defined. We therefore introduce a new mea-
sure “criticality“ that represents the timing criticality at each gate.
The term in the bracket of Eq. 8 represents the following probabil-
ity.

fi(x) �

nY
j 6=i

Fj(x) = P (Ti + ti = x) �

nY
j 6=i

P (Tj + tj � x): (11)

The input with the high probability of Eq. 11 affects the distribu-
tion of Tout at x strongly. The probability of Eq. 11 expresses the
magnitude of the influence that the i-th input gives to fout at x. We
define “influencei” that represents the influence proportion of the
i-th input in the range of x � x1 as follows.

influencei = C1 �

Z
1

x1

fi(x) �

nY
j 6=i

Fj(x) � exp(C2 � x) dx;

(12)

where C1 is a normalization coefficient to satisfyPn

i
influencei = 1 and C2 is a constant. A term exp(C2 �

x) is multiplied in order to emphasize the region of large arrival
time. When influencei is 1, fout in x � x1 is determined by
the i-th input and the other inputs do not affect fout. Conversely,
when influencei is 0, the i-th input does not influence on fout in
x � x1 at all. “Influence” at each primary output on the overall
circuit delay time can be similarly obtained by applying the proba-
bility density function at each primary output to fi.
We now explain how to calculate “criticality“ that represents the
timing criticality at each gate. “Criticality“ at each gate is de-
fined as the amount of the contribution to the circuit delay by
the paths that go through the gate. We propagate “criticality“
from primary outputs to primary inputs. Suppose Fig. 4 given for
an example. i(G) is defined such that the i(G)-th input is con-
nected with gate G. A term influencei(G)(Gj) means how much
the i(G)-th input affects the timing at gate Gj in x � x1. In
other words, influencei(G)(Gj) represents how easily the tim-
ing criticality propagates from gate Gj to gate G. Therefore
“criticality“ propagated from gate Gj to gate G is represented as
influencei(G)(Gj) � criticality(Gj).

criticality(G) =

mX
j

influencei(G)(Gj) � criticality(Gj);

(13)

where m is the number of fan-outs for gate G. At primary out-
puts, “influence” means the timing criticality itself. It is because
the primary output with large “influence” affects the circuit delay
strongly, i.e. the timing criticality is high. So, “criticality“ at pri-
mary outputs is set to 1, which enables that Eq. 13 is hold even
when Gj is a primary output. We can calculate “criticality“ by the
breadth-first trace from the primary outputs.
The complexity of this statistical timing analysis method and the
calculation of “criticality“ is linear to the circuit scale. This prop-
erty of the complexity make it possible to estimate and optimize the
circuit delay of a large circuit.

3. OPTIMIZATION ALGORITHM
In this section, we explain a performance optimization algorithm
based on statistical static timing analysis by gate resizing. We show
two algorithms, one is for delay optimization and the other is for
power(area) optimization. These algorithms utilizes “criticality“
explained in the previous section.
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3.1 Delay Optimization
The delay optimization algorithm is shown below.

Step 1: put all gates into list L.
Step 2: if L is empty or delay constraint is satisfied,

finish optimization.
Step 3: find the gate with maximum criticality in L.
Step 4: resize the gate.
Step 5: if delay does not decrease, cancel Step 4

and remove the gate from list L and
go back to Step 2.

Step 6: go back to Step 1.

We first put all gates into the list L of the resizing candidate. When
the candidate list L is empty or the delay constraint is satisfied,
the optimization process finishes. We find the gate with maximum
criticality in L. It is because the gate with large criticality affects
the circuit delay time strongly. The found gate is resized. If the
circuit delay does not decrease, we cancel the resize operation and
remove the gate from L and go back to Step 2. Otherwise, we go
back to Step 1.

3.2 Power(Area) Optimization under Delay
Constraint

We explain the gate resizing algorithm for power(area) reduction.

Step 1: put all gates into list L.
Step 2: if L is empty, finish optimization.
Step 3: find the gate with minimum criticality in L.
Step 4: resize the gate down.
Step 5: if delay violates, cancel Step 4 and

remove the gate from list L and go back
to Step 2.

Step 6: go back to Step 1.

We first put all gates into the list L of the resizing candidate. When
the candidate list L is empty, the optimization process finishes. We
find the gate with minimum criticality in L, because the gate with
small criticality scarcely influence on the circuit delay. The found

gate is down-sized. If the delay constraint is violated, we cancel the
resize operation and remove the gate from L and go back to Step
2. Otherwise, we go back to Step 1.
The optimization algorithm explained above has the possibility of
falling into a local minimum solution. In order to escape from a
local minimum solution, we optimize the circuit delay a little bit.
After that, we apply the above algorithm again. We repeat this loop
for several times.

4. APPLICATIONS
In this section, we show some applications of the statistical timing
analysis method and the optimization algorithm explained in pre-
vious sections. Performance optimization based on the statistical
timing analysis has a considerable possibility to contribute high-
performance and high-reliability LSI design.

4.1 Uncertainties of Wire Capacitance during
Physical Design and Uncertainties in Sig-
nal Waveforms

As the influence of wire on the circuit delay increases, timing clo-
sure has become a serious problem. This problem is caused by the
uncertainties of wire capacitance during physical design. Also, the
wire capacitance estimated from a final layout has a certain amount
of errors. Because of the simple definition of the transition time,
there are many different waveforms that have the same transition
time, which causes the gate delay uncertainty.
When the gate delay is derived from the two dimensional look-up
table with capacitive load and transition time as parameters, the
gate delay is represented as follows.

delay = a0 + a1 � ttran + a2 � cload + a3 � ttran � cload; (14)

where a0; a1; a2 and a3 are the constants decided by the look-up
table, cload is the load capacitance and ttran is the transition time
of the input signal. If the uncertainties of cload at each design phase
and ttran can be modeled properly, the distribution of the gate de-
lay can be derived. Then, the proposed performance optimization
method can eliminate the excessive design iteration and the over-
design.

4.2 Local Fluctuations in Transistor Charac-
teristics, Supply Voltage and Temperature

The local variation of the transistor characteristics is represented
as the fluctuation of the device parameters(vt, �, ...) and the pro-
cess parameters(tox, W , L, ...). The operating parameters(VDD,
Temp) also fluctuate locally. The gate delay time delay can be
represented as a function of pi, where pi corresponds to each de-
vice, process, or operating parameters. When the local changes
are not so large, the change of the gate delay time Ædelay can be
represented as follows.

Ædelay =

X
i

di � Æpi; (15)

where di is a constant. In the case of the local fluctuation, Æpi
varies according to a certain statistical distribution. The distribu-
tion of the gate delay time can be obtained. With the derived delay
distribution, we can optimize the circuits considering the local fluc-
tuations.

5. EXPERIMENTAL RESULTS
In this section, we show some experimental results. We first verify
the accuracy of the statistical static timing analysis method. Next,
we demonstrate the delay and power optimization results under the
condition that the wire capacitance fluctuates.



The circuits used for the experiments are taken from ISCAS85 and
LGSynth93 benchmark sets. These circuits are synthesized and
mapped by a commercial logic synthesis tool[10] such that the
power dissipation is minimized under some delay constraints. The
minimum delay constraint given to each circuit is the reachable
minimum delay time of its circuit. The ratio of the total gate ca-
pacitance and the total wire capacitance is about 1:1. The target
library is a standard cell library used for actual fabrication in a 0.35
�m process with three metal layers. The library includes basic and
complex gates. Buffer and Inverter have eleven varieties in the driv-
ing strength and other gates have six varieties. A typical delay time
at each gate is calculated based on two dimensional look-up tables
with capacitive load and slew as parameters. We consider the de-
lay difference between rise/fall transitions. The energy dissipated
at each gate, which includes capacitive and short-circuit power dis-
sipation, is derived from a look-up table with capacitive load and
slew as parameters. The look-up tables of the gate delay, the tran-
sition time of the output signal and the power dissipation are char-
acterized by circuit simulation. As for the power evaluation, we
assume that all gates have the same switching probability of 0.2
and the cycle time of the input patterns is 100ns.

5.1 Accuracy of Statistical Static Timing
Analysis

We verify the accuracy of the statistical static timing analysis. We
assume that each gate delay time fluctuates according to normal
distribution. The mean is the typical gate delay time and the stan-
dard deviation is 20% of its gate delay time. We evaluate the de-
lay time as x1 in Eq. 10. The evaluated delay time corresponds
to mean+3� in a normal distribution. We compare three methods,
Monte Carlo simulation, the statistical static timing analysis with
Method1(Section 2.2) which is equivalent to Ref. [4], and the pro-
posed statistical static timing analysis with Method2(Section 2.2).
In Monte Carlo simulation, the number of evaluation is 100,000.
The comparison of the accuracy is shown in Table 1. The col-
umn under “Typ. Delay” is the circuit delay time with no delay
fluctuation. The columns “Monte Carlo”, “SSTA[4]”, “Proposed
SSTA“ correspond to the result of Monte Carlo simulation, the
statistical static timing analysis in Ref. [4] and the proposed sta-
tistical static timing analysis respectively. The columns “Delay“
are the circuit delay time with delay fluctuation. “Increase” means
the proportion of the delay time increase caused by delay fluctua-
tion. “Error” represents the estimation error compared with Monte
Carlo simulation. The estimation error range of our method is
�0:8 � 2:9%, and the average error is 1.4%. As for SSTA[4],
the range is �6:7 � �2:7%, and the average is 4.3%. The im-
provement of the approximation to normal distribution contributes
to reduce the estimation error.

5.2 Delay and Power Optimization under
Wire Capacitance Uncertainties

We demonstrate the delay and power optimization results under
wire capacitance uncertainties(Section 4.1). We assume that the
wire capacitance fluctuates according to a normal distribution. The
mean is the value used in the logic synthesis. The standard de-
viation is 50% of its mean value, which corresponds to the delay
uncertainties of 20% or less.
First, we show the delay optimization results. We optimize the cir-
cuits to minimize the delay time. The initial circuits used for this
experiment is generated under the constraint of the reachable min-
imum delay time. Table 2 shows the delay optimization results.
“Initial” and “Optimized“ correspond to the initial circuit before
the optimization and the circuit optimized for delay minimization

respectively. The column “CPU Time” represents the CPU Time
for optimization on Alpha Station. Our method reduces the delay
time by 8.4% on average. This result shows that the circuit opti-
mized without the consideration of fluctuations is not optimal. The
optimization method considering statistical variation is effective for
getting better circuits.
Next, we show the power optimization results(Table 3). We opti-
mize the power dissipation under the delay constraints of the initial
delay time. Our method reduces power dissipation by 9.3% on av-
erage and area by 5.1% without the increase of delay time.

6. CONCLUSION
We propose a performance optimization method based on statisti-
cal static timing analysis. We develop a technique that improves the
accuracy of the worst delay analysis. We device a new measure that
represents the timing criticality at each gate and show the optimiza-
tion algorithm utilizing the measure. Applications of our optimiza-
tion method are discussed. The accuracy of statistical static timing
analysis is verified experimentally. The maximum estimation error
is within 3%. We also demonstrate that our method can reduce de-
lay and power dissipation from the circuits optimized without the
consideration of fluctuation. Future work includes implementation
and evaluation of the applications discussed in Section 4.
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C7552 C 5.99 7.39 23.4 7.07 -4.3 7.48 1.2
C7552 D 6.95 8.53 22.7 8.18 -4.1 8.68 1.8
alu4 A 3.31 4.25 28.4 4.00 -5.9 4.23 -0.5
alu4 B 3.99 5.10 27.8 4.76 -6.7 5.10 0.0
alu4 C 4.95 6.18 24.8 5.82 -5.8 6.14 -0.6
alu4 D 5.83 7.26 24.5 6.80 -6.3 7.20 -0.8
des A 3.60 4.73 31.4 4.52 -4.4 4.78 1.1
des B 3.98 5.26 32.2 5.00 -4.9 5.26 0.0
des C 4.96 6.50 31.0 6.12 -5.8 6.46 -0.6
des D 5.91 7.52 27.2 7.17 -4.7 7.59 0.9

- - 24.9 - 4.3 - 1.4

Table 2: Delay Optimization
Initial Optimized CPU

Circuit Delay Area Power Delay Delay Area Power Time #Gates
(ns) (mm

2) (mW) (ns) Reduction(%) (mm
2) (mW) (s)

C432 A 5.22 0.017 33 4.86 6.9 0.018 34 12 178
C3540 A 7.60 0.083 147 7.00 7.9 0.088 159 462 871
C5315 A 7.17 0.089 138 6.39 10.9 0.093 147 260 1001
C7552 A 5.58 0.134 234 5.19 7.0 0.138 243 695 1339
alu4 A 3.96 0.122 244 3.65 7.8 0.126 254 224 1386
des A 4.56 0.214 383 4.11 9.9 0.214 389 2836 2252

Average - - - - 8.4 - - - -

Table 3: Power Optimization
Initial Optimized CPU

Circuit Delay Area Power Area Area Power Power Time
(ns) (mm2) (mW) (mm2) Reduction(%) (mW) Reduction(%) (s)

C432 A 5.22 0.017 33 0.016 5.9 29 12.1 3
C3540 A 7.60 0.083 147 0.079 4.8 135 8.2 100
C5315 A 7.17 0.089 138 0.087 2.2 131 5.1 79
C7552 A 5.58 0.134 234 0.126 6.0 209 10.7 409
alu4 A 3.96 0.122 244 0.116 4.9 220 9.8 290
des A 4.56 0.214 383 0.199 7.0 346 9.7 5447

Average - - - - 5.1 - 9.3 -


