
VECTOR QUANTIZATION PROCESSOR FOR MOBILE VIDEO
COMMUNICATION

Taku ya Iwahashi, Takehide Shi ba yama, Masanori Hashimoto,
Kaxutoshi Kobayashi, Hidetoshi Onodera

Graduate School of Informatics, Kyoto University, Japan

ABSTRACT

A vector quantization processor suitable for video com-
munication has been developed. It performs 10 frames/sec
of encoding and decoding QCIF with the FRMSHVQ al-
gorithm. It consumes 49mW at 25MHz. The chip is fabri-
cated in a 0.35pm CMOS technology.

I. INTRODUCTION

Today, rapid growth of communication on cellular
phones makes it possible to talk with anybody, anytime,
anywhere. On the other hand, videophones become popu-
lar by the progress of computer networks and image com-
pression technology. Compared with voice data, picture
data involves much more information. Both narrow band-
width and high power consumption for image compression
make it difficult to implement mobile videophones.

MPEG video compression technique is based on discrete
cosine transform(DCT). DCT requires many multiply and
accumulate(MAC) operations. Multiplier consumes large
area and much power.

We have proposed a video compression algorithm called
FRMSHVQ based on vector quantization(VQ) 111. Since
VQ needs no multiply operations, power and area must be
minimized. The FRMSHVQ algorithm contains two time-
consuming operations, VQ and motion estimation(ME).
They are similar operations. A vector nearest to an in-
put one is searched from a set of reference vectors. A lot
of distances between the input and reference vectors must
be computed. Since the distance computation accumulates
the distances of all elements, an SIMD parallel processor
adapted to VQ and ME can process the FRMSHVQ algo-
rithm efficiently. We designed a vector processor, VP-DSP,
suitable for such operation. Employing vector processor ar-
chitecture and specific operations, VP-DSP performs com-
pression and decompression under a low clock frequency
of 25MHz. We have implemented a VP-DSP LSI with a
0.35pm CMOS process. It works properly and consumes
49mW at 25MHz/1.6V. In this paper, features af VP-DSP
is described in detail.

11. FIXED-RATE MULTI-STAGE
HIERARCHICAL VECTOR

QUANTIZATION ALGORITHM

The Fixed-Rate Multi-Stage Hierarchical Vector Quanti-
zation (FRMSHVQ) algorithm[l] has proposed for mobile

E-mail:iwahashi@vlsi.kuee.kyoto-u.ac.jp

videophones. It consists of ME and VQ and reduces the
consuming power at the decoder side since the compressed
data is expanded by a simple table look-up method instead
of the complicated IDCT of MPEG. This section describes
the FRMSHVQ algorithm in detail.

A. Picture Compression by Vector Quantization
On compressing an image by vector quantization, orig-

inal image is divided into fixed size blocks. These blocks
are compared with code vectors in a codebook (a table of
typical patterns of images). All blocks of an image are
converted to indexes. Decoded image can be restored from
indexes by a simple table look-up method. Fig. 1 shows
how an image is encoded and decoded using vector quan-
tization.

U
oizoinz4n80480 fl

@
PI

-
index

origina image C d * reconstructed imaae
code book code book

Encoder Decoder

Fig. 1. Video compression by Vector Quantization.

B. Fixed-Rate Multi-Stage Hierarchical VQ Algo-

Fig. 2 shows the flow of the Fixed-Rate Multistage Hier-
archical Vector Quantization (FRMSHVQ) algorithm. Im-
ages are hierarchically partitioned into blocks in the four
stages. Here a group of pixels is called a block. The size of
the block is varied at each stage. At stage 1, a 8x8-pixel
block is compressed to the average value of these 64 pixels.
Average values are computed in every other block. The
pixels in the blocks with no average values are interpolated
from the adjacent blocks. at the subsequent frames, ME is
applied instead of Stage 1.

The multi-stage hierarchical VQ (MSHVQ) algorithm
[2], [3] is applied from Stage 2 to 4. A frame of image
is vector-quantized hierarchically in multiple stages. Al-
though lower stages deal with larger blocks, the dimension
of vector is fixed to 16. In Stage 2, which handles 16x16
pixels, shaded four pixels are decimated to one as shown in
Fig. 2. Pixels between shaded ones are interpolated. The
difference between the original image and the decoded im-
age is computed in every stages. The block where the dif-

rithm

0-7803-6598-4/00/$10.00 0 2000 IEEE 75

mailto:E-mail:iwahashi@vlsi.kuee.kyoto-u.ac.jp

interpolatelmag

scalar register width
memory word width
registers

s image I (decoded image)

20bit
6 bit
11 scalar + 4 vector

c I I

stage

a codebook is equivalent to keep the compression ratio,
while the number of effective code vectors become large to
obtain better quality. The proposed vector-pipeline DSP,
VP-DSP simultaneously computes 16 individual distances
between an input vector and 16 vectors generated from a
code vector in an SIMD manner.

ME requires huge computation resources when it is re-
alized by the exhaustive full-search block matching. In
the PC-based system in [I], the orthogonal search method
[4] is used to implement ME by the software on a PC. In
VP-DSP, the sub-sampling full-search block matching[5] is
adopted for ME to estimate motions efficiently in an SIMD
manner.

Simulations of the FRMSHVQ algorithm show that the
average PSNRs of standard video sequences such as Miss
America, Susie and Salesman are over 30dB, which are
about 3dB worse than an H.263 encoder[l].

111. FEATURES OF VP-DSP
We propose a vector quantization processor suitable for

VQ-based video compression algorithm. It performs 10
frames/sec of encoding and decoding of QCIF. This section
describes features of the processor called vector-pipeline
DSP abbreviated as VP-DSP.

A. Specifications of VP-DSP
VP-DSP is a vector-pipeline processor which can execute

vector operations. It has vector registers to operate vector
operations. Specifications of VP-DSP is shown in Table I.
block diagram of VP-DSP, which has 5 pipeline stages, is
shown in Fig. 3.

TABLE I
SPECIFICATIONS OF VP-DSP

architecture 1) DLX-based RISC processor
vector register width 11 10 bit x 16 (160bit)

Fig. 2. FRMSHVQ algorithm.

ference is smaller than a threshold value is marked and it is
not compressed in the subsequent stages. The FRMSHVQ
algorithm compresses a single frame to a fixed size. When
the compressed data reaches the limit, it stops compress-
ing the current frame and moves to the next frame. For
the video sequence including fast motions, the compres-
sion tends to stop lower stages, while it continues to higher
stages for those including almost still motions.

The number of code vectors in a codebook must care-
fully be chosen according to the quality of image, compres-
sion efficiency and computation complexity. As the size of
a codebook become larger, the quality is improved. But
the Compression becomes worse and the computation com-
plexity becomes heavier. In the FRMSHVQ algorithm a
codebook has 64 code vectors. A code vector is expanded
to 16 by rearranging elements. Thus, the nearest vector
is chosen from 64x16(=1024) code vectors. The size of

VQ and ME perform same operations to a group of pix-
els according an SIMD manner. In scalar RISC processors,
such SIMD operations are mapped to scalar instructions
like branch and address increment inside a loop, which may
stall pipeline stages. Such scalar instructions can be re-
placed with a vector instruction on vector processors. VP-
DSP has great advantages against scalar processors. In
the FRMSHVQ algorithm, dimensions of vectors are 16 on
both VQ and ME. Thus, vector registers in VP-DSP have
16 elements.

B. Specific Operations
VP-DSP has specific operations such as absolute dis-

tance, accumulation and addition with saturation. These
specific operations reduce clock cycles and consequently re-
duce power consumption. Table I1 shows vector instruc-
tions of VP-DSP.

76

TABLE I1
VECTOR SPECIFIC INSTRUCTIONS.

Mnemonic
suba(sub /w abs) '

adds(add /w saturation)
thin(thin down)

Assembly Semantics
suba rdv,rsvl,rsv2 rdv[i] t Irsvl[i]-rsv2[i]l

adds rdv,rsvl,rsv2
thin rdv,rsvl,rsv2,dir

' suba rdv,rsvl,rsv2,point rdv[i] t Irsvl[point]-rsv2[i](
rdv t rsvl + rsv2 or 0 or 63
rdvfdirx41 t rsv110,4,8,121, rdvfothersl t rsv2 . . . _

accuiaccumulate up) I accu rdv,rsvl,rsv2 i rdvii] t rkl[i+l]+rsv2[i]
accd(accumu1ate down) I accd rdv,rsvl ,rsv2 I rdv[i] t rsvl[i-l]+rsv2[i]

IF ID EX

Instruction-
Memory

Pipeline Stages
MEM WB

Fig. 3. Block diagram of VP-DSP.

rsv: source vector register
rdv: destination vector register

Register Filc Vector Registers

VP-DSP

VQ and ME operations require nearest neighbor search
(NNS). When operating NNS, a sum of absolute distance
(SAD) is calculated. An SAD consists of accumulation of
several absolute distances. Clock cycles needed for these
operations must be reduced. Absolute distance operation
(e.g. Y = 1 x 1 - X2l) usually needs two or three steps -
subtraction and inversion.

In the FRMSHVQ algorithm, a code vector g+ =
(yo, y1, .., 9 1 5) is expanded to rearranged 16 vectors, YO =

These 16 SADs between an input vector S = (x 0 , x 1 , .., x 1 5)

and a code vector y' = (yo, y 1 , .., ~ 1 5) are computed as fol-
lows. An input vector S and a code vector a are loaded to
two vector registers, V1 and V2. The combination of suba
V3,Vl,V2 and accd V4,V4,V3 instructions accumulates the
absolute distances of 16 elements to the vector register V4.
After the accumulation of the first element, V4 contains
(1x0 - yol, 1x0 - y 1 1 , ...;I xo - ~ 1 5 1) . Iterating these instruc-
tions 16 times, V4 contains 16 independent absolute dis-
tances between an input vector and 16 vectors generated
from a code vector, as described in Eq. (1). No load oper-
ation is required during computation of absolute dista.nce.

(y O > y 1 , . . , & 5) , f i = (y 1 , ! / 2 , . . , y O) , . . , y ; 5 = (Y15rY0, * . , y 1 4) -

rss: source scalar register
rds: destination scalar register

Fig. 4 illustrates suba and accd instructions for the second
attempt among 16 iterations.

y rc 2 .._..

...
z1.5

:r: 1 -

suba V3,VI.V2,1 accd V4,V4,V3

Fig. 4. suba and accd instructions.

IV. PERFORMANCE EVALUATION
VP-DSP is designed suitable for VQ and ME. For the

purpose of comparison, we designed a scalar processor
which has similar instruction sets (without vector related
instructions). In this section, performance of VP-DSP is
examined.

First, we estimate number of clocks for a single VQ op-
eration, where an input vector is compared with 64 code
vectors. Note that the FRMSHVQ algorithm expand 64
code vectors to 1024. To obtain the nearest vector among
1024 code vectors, 16384 (=1024x16) SADs are computed.
The scalar processor computes and accumulates these abso-
lute distances element by element and takes 138,243 clock
cycles. On the other hand, VP-DSP computes and accu-
mulates them in parallel a.nd takes only 4,872 clock cycles.

An ME opcra.tion for a reference block takes 1294 clock
cycles on VP-DSP. This is about 1/5 of that of the scalar
processor. 111 ME, load iiistfructioiis occupies 790 out of
1294. A load iiist,ruc't,ioii o11 VP-DSP loads four elements

77

simultaneously to a vector register, which is only four times
faster than the scalar processor. This is why VP-DSP is
only 5 times faster than the scalar processor. In VQ, VP-
DSP computes 16 absolute distances without any load op-
eration, while the scalar processor has to load code vectors
from data memory for each element. This is why VP-DSP
is 28 times faster, which is larger than 16, the number of
parallel operations.

From the simulation of the FRMHVQ algorithm, we es-
timate that the number of VQ per frame is about 200. The
number of ME for a QCIF frame is 396 (=176 x 144/8/8).
Other operations needed for encoding and decoding take
about 500k clock cycles. Thus, total clock cycles needed
for a frame is about 2.5M (21 4872x 200+1294~396+500k).
10 frames/sec QCIF is processed at 25MHz. Fig. 5 shows
the total clock cycles needed for the algorithm. VP-DSP is
15 times faster than the scalar processor.

Die Area
Process
Lib. A Area
(#I) #gates
Lib. B Area
(#2) #gates
SRAM Area
(512w x 24b) Access Time

Scalar
Processoi

VP-DSP

24.0mm2
0.35pm 3M 1P CMOS

4.26mm2(2.46 x 1.73)
31393

4.68mm2(2.6x 1.8)
28956

1.41”’
1.68ns

_ -

I 5 10 15 20 25 30
(M Clo& cycleMrame)

Fig. 5. Total clock cycles.

The area of VP-DSP synthesized for the 0.35 pm process
is 2.26mm2. This is only 4 times larger than that of the
scalar processor, which is 0.57mm2.

V. IMPLEMENTATIONS

In this section, we discuss a VP-DSP LSI. We first ex-
plain the low-power cell library used for VP-DSP design,
and the specifications of VP-DSP. Then we show the mea-
surement results of the fabricated VP-DSP LSI chip.

A. Specifications

VP-DSP is designed and fabricated in a 0.35pm tech-
nology with three metal layers. In order to reduce power
dissipation, we developed a low-power cell library(Lib. A)
specifically for VP-DSP design by a cell layout generation
system VARDS[6]. The features of Lib. A are:

Cell height is 9 interconnect pitches, whereas that of a

There are weak and intermediate driving-strength

As explained in Sec. IV, required clock frequency is only
25MHz. The cells included in the generic library are too
fast, i.e. too large for VP-DSP. We then generate smaller-
height cells that are low-power but enough fast for 25MHz.
The basic gate width of Lib. A is 3.4pm, which is 24%

lprovided by VLSI Design and Education Center for this
technology.

generic library(Lib. B)l is 11 pitches.

cells, such as x0.5, x0.75 and x1.5.

smaller than the width of the generic library. We also
generate weak driving-strength cells(x0.5, x0.75) and in-
termediate cells(xl.5, x3) to reduce the power dissipation
at the gates where slack is positive. In order to evaluate
the effectiveness of Lib. A, we designed another DSP core
using Lib. B. Fig. 6 shows the chip micrograph. Two DSP
cores are implemented on the same die of 4.9mm2 using
the above two cell libraries. The 512-word 24-bit SRAM
is generated by Alliance[7]. The detailed specifications of
this chip are shown in Table 111. The area of core #1 is 9%
smaller than the area of core #2.

Fig. 6. Chip micrograph.

TABLE 111
SPECIFICATIONS OF VP-DSP CHIP.

B. Measurement Results
We have measured the VP-DSP LSI by an LSI tester.

Fig. 7 shows a shmoo plot of the VP-DSP core #1 to sweep
supply voltage and clock cycle. Note that the constraint
at design time is 50MHz and 3.3V. Fig. 7 contains sev-
eral measured power consumption values. To complete the
FRMSHVQ algorithm in real time, the power consumption
is 49mW at 25MHz11.6V.

Table IV shows power dissipation of core #1 and
core #2. The power consumption is reduced by about
10% using Lib. A, when supply voltage is 3.3V. The power

78

3 2.6

- > 2.2
n 2 .

1.8
1.6

*-. - 8 2.4
n
3

Fig. 7. Shmoo plot and power dissipation of VP-DSP core #1

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx.

xxxxxxxxxxxxxxxxxxxxxxxxx
. xxxxxxxxxxxxxxxxxxxxxxxx~

xxxxxxxxxxxxxxxxxxxxxxxx - xxxxxxxxxxxxxxxxxxxxxxxx~

-

.
-

x xx

reduction is smaller than we expected, because D-FFs in
Lib. A are not well designed for low-power. When the re-
vised low-power D-FFs are used, we can expect that the
power dissipation is reduced by about 12% from the simu-
lation results.

25MHz, 3.3V
25MHz, 1.6V

TABLE IV
COMPARISON OF POWER DISSIPATION

213mW 234mW
49mW 50mW

Frequency & Voltage I Lib. A(#l) I Lib. B(#2) I
50MHz, 3.3V I 403mW I 4 3 9 m ~ I

VI. CONCLUSIONS

We propose a vector pipline processor (VP-DSP) suit-
able for mobile videophones. The chip was fabricated in a
0.35pm CMOS technology. By employing vector processor
architecture, VP-DSP performs 10 frames/sec of encoding
and decoding with QCIF at 25 MHz. Power consumption
is 49mW at 1.6V supply voltage.

ACKNOWLEDGMENT

The VLSI chip in this study has been fabricated in the
chip fabrication program of VLSI Design and Education
Center(VDEC), the University of Tokyo with the collabo-
ration by Rohm Corporation ‘and Toppan Printing Corpo-
ration.

REFERENCES
[l] K. Kobayashi, K. Terada, H. Onodera and K. Tamaru, “A Real-

Time Low-Rate Video Compression Algorithm Using Multi-Stage
Hierachical Vec tor Quantization.”, IEICE Thns. on findemen-
tals vol. E82-A 2 215-222 1999

[2] Y. ko and A. der)hy‘“Variabl&Rate Multi-Stage Vector Quan-
tization For !page Codin ” ICASSP, pp. 1156-1159 1988.

[3] A. Gersho, Hierarchicaf gector Quantization for Sbeech Cod-
in ” ICASSP p 10 9 1-10 9.4 1984.

[4] A$’uri, H.M. kpng and’D.L.‘Sch:lling, “An efficient block match-
ing algorithm for motion-compensated coding”, ICASSP, pp.
1063-1066, 1987.

[51 J.-S. Choi H.-K. Jung, C.-P. Hong and Y.-H. Ha, “A VLSI ar-
chitecture for the alternative subsampling-based block matching
algorithm”, IEEE h n s . Consum. Electron. (USA), vol. 41-2,

Y’Hashimbto and H. Onodera, “Layout Generation of Primitive
Cells with Variable Driving Strength”. Proc. of ,SASIMI2000. DD.

239-47 1995

- - . I _ _

122-129 2000
A. Greiher and F. Pecheux, “ALLIANCE: A Complete Set of
CAD Tools for Teaching VLSI Design”, EUROCHIP. Proceedings
of the Third Eurochip Workshop on ,yLSI, p
J.L. Henessy and D.A. Patterson, Compurer Architecture, A
Quantitative Approach”, Morgan Kaufmann, 1996.

230-7,. 1992.

79

