
Gundam: A Generalized Unified Design and
Analysis Model for Matrix Multiplication on Edge

Quan Cheng1,2, Haoyuan Li1, Weirong Dong1, Mingqiang Huang2, Longyang Lin2, Masanori Hashimoto1∗

1Department of Informatics, Kyoto University, Kyoto, Japan
2School of Microelectronics, Southern University of Science and Technology, Shenzhen, China

*{hashimoto@i.kyoto-u.ac.jp}

Abstract—Matrix multiplication is the core operation in many
edge-AI applications, yet its efficient implementation requires
balancing compute throughput with strict area and resource
constraints. To address this, we propose Gundam, a gener-
alized unified design and analysis model that enables agile
and structured estimation and configuration of AI accelerator
architectures. Gundam provides analytical modeling of matrix
operations, supporting rapid evaluation of processing element
size, data reuse pattern, buffer size, and computation latency
under diverse hardware constraints. Unlike conventional models,
Gundam jointly captures both hardware mapping and resource
allocation within a unified model, facilitating fast and resource-
aware design space exploration. To validate its accuracy and
utility, we apply Gundam to guide accelerator generation across
16nm, 22nm, and 28nm process nodes. Results show that Gun-
dam’s estimated configurations differ by less than 6% from post-
layout implementations, while automatically identifying optimal
AI accelerator configurations under fixed resource constraints.
Gundam offers a lightweight yet powerful tool for early-stage
deployment and optimization of matrix processors on edge.

Index Terms—Matrix multiplication, resource analysis, PE
array modeling, AI accelerator configuration

I. INTRODUCTION

Matrix multiplication lies at the main operation of modern
artificial intelligence (AI) workloads, underpinning key op-
erations in neural networks (NNs) such as fully connected
layers, and attention mechanisms. Due to its regular structure
and high computational density, it is often the primary target
for hardware acceleration in AI systems [1], [2]. However,
matrix multiplication also constitutes one of the most resource-
intensive operations in AI inference and training, accounting
for the majority of computational cost and energy consumption
[3], [4]. This challenge becomes especially critical in edge-AI
platforms, where resource budgets are significantly constrained
in terms of area, power, and memory bandwidth. Efficiently
deploying AI workloads on such platforms requires not only
fast computation, but also careful planning of data movement,
memory usage, and process element (PE) size.

Despite the extensive research on matrix engines and AI
accelerators, many existing designs focus predominantly on
maximizing raw compute throughput (e.g., peak PE utilization
or array-level energy efficiency) while often neglecting the
actual mapping behavior of AI models and the deployment
constraints specific to edge scenarios [5]. In particular, chal-
lenges such as suboptimal data flow scheduling, inefficient use
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Fig. 1. Gundam: Conceptual Flow for Agile AI Accelerator Deployment.

of chips’ resources, and inflexible logic strategies are often
overlooked in the early stages of the design [6]–[9].

To address these challenges, we propose Gundam: a
Generalized Unified Design and Analysis Model. Gundam
presents a structural design and analysis model that system-
atically supports the decomposition and mapping of matrix
multiplication for AI accelerators. This unified model (Fig. 1)
bridges the gap between high-level AI model requirements
and low-level hardware implementation constraints, offering
a lightweight and scalable design methodology. By capturing
both the spatial and temporal structure of matrix execution,
Gundam supports fast design-space exploration and enables
hardware-aware mapping and configuration tailored to edge-
AI deployment. The main contributions are as follows:

• Matrix Decomposition Modeling and Hardware Map-
ping: A structured analysis is introduced to transform
matrix dimensions into analytically tractable patterns
of computation and data movement. This representation
enables systematic decomposition strategies that enhance
data reuse, computation parallelism, and architectural
efficiency, while also reducing the need for data reshaping
between adjacent layers.

• Rapid Resource Estimation and Allocation for AI Ac-
celerator: An efficient search algorithm is delveloped for
rapid estimation of optimal AI accelerator configurations
(e.g., PE array size, memory size, and buffer partitioning)
under chip area and design constraints. Gundam enables
fast exploration across different NN models and process
nodes (16/22/28nm), achieving less than 6% deviation
from post-layout hardware results and matching the per-
formance of state-of-the-art (SOTA) designs.

II. RELATED WORK

Recent years have witnessed a surge in research on op-
timizing matrix multiplication for edge-AI deployment, with
a particular focus on hardware-aware resource allocation and
rapid, adaptable configuration under strict constraints. Early



work such as ViTA [10] introduced a configurable accelerator
for Vision Transformer inference, leveraging pipelined heads
and MLP optimizations to achieve high PE utilization and sub-
watt power on edge platforms. However, while ViTA delivers
impressive efficiency for specific workloads, it lacks a unified
analytical model capable of generalizing to arbitrary matrix
dimensions or technology nodes.

Other efforts, such as EdgeLLM [11], present CPU–FPGA
heterogeneous architectures targeting LLM inference with
custom compute engines and structured sparsity. These ap-
proaches automate compilation and support high energy effi-
ciency, but are often tied to FPGA-specific features and do not
offer a universal methodology for early-stage ASIC resource
estimation or rapid design space exploration.

Analytical modeling tools such as MAESTRO [12] and
TIMELoop [13] formalize dataflow and tiling strategies, pro-
viding reuse-aware analysis for AI accelerators. While they
are effective at analyzing and mapping conventional dataflow
patterns, these tools do not address the problem of optimal AI
configuration search under explicit resource constraints. More
recent efforts, such as Stream-HLS [14], propose automation
frameworks with global optimization and streaming capabil-
ities, but primarily target FPGA HLS and focus on dataflow
scheduling rather than early-stage architectural resource plan-
ning. Therefore, the applicability of these approaches is limited
when holistic resource allocation and hardware-aware design-
space exploration are required for efficient edge-AI deploy-
ment. On the other hand, broader surveys have addressed
system-level optimization on edge, including data partitioning
and computation offloading strategies [15], [16], but tend to
focus on generic trends rather than providing hardware-level
resource allocation and analysis for AI accelerators.

Therefore, existing solutions are often constrained by
device-specific assumptions, static dataflow models, or an
inability to provide fast and accurate resource estimation
across different technology nodes and workload requirements.
To address these limitations, our work, Gundam, introduces a
unified modeling framework capable of rapid and precise anal-
ysis of PE allocation, memory partitioning, and computation
cycles for matrix multiplication accelerators under realistic
resource constraints and diverse deployment scenarios.

III. GUNDAM MODEL

Modern AI workloads often exhibit highly repetitive and
cyclic memory access patterns, particularly in matrix multipli-
cation and convolution operations. Frequently, the same input
data or weights are reused across multiple computation cycles.
After each round of multiply-accumulate (MAC) operations,
memory access typically returns to the initial address range,
resulting in a looped or periodic dataflow. This regularity
underpins the potential for efficient data reuse and resource
sharing in edge-AI accelerators. By modeling these patterns,
Gundam enables analytical estimation of processing efficiency,
buffer utilization, and computational throughput, providing a
foundation for systematic optimization of memory allocation
and parallel computation in resource-constrained designs.
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A. Matrix Multiplication Decomposition Analysis

Fig. 2 summarizes four representative matrix multiplication
decomposition strategies. Strategies (a) and (b) directly map
the computation to either row- or column-wise data access,
which eliminates the need for intermediate result storage and
aligns well with MAC-centric pipelines. However, for large-
scale models on edge devices, these approaches are rarely
feasible, as storing the entire activation and weight matrices
on-chip quickly exceeds memory constraints. Strategies (a)
and (c) also have a major drawback: their decomposition
style generates a substantial amount of intermediate results,
requiring significant on-chip temporary storage and introduc-
ing additional data movement. This is generally inefficient and
deviates from typical matrix computations.

Strategy (d), by contrast, provides the most practical de-
composition for edge accelerators. Here, the large matrix
multiplication is split into multiple independent n × m and
m × k submatrix blocks, allowing fine-grained scheduling
and maximizing local data reuse. However, in multi-layer NN
models, where the output of one layer directly feeds into the
next, it is highly desirable to maintain a consistent activation
format between layers. If the decomposition produces n×m
input blocks and n× k output blocks, the mismatch in block
dimensions introduces additional data reshaping and transfer
overhead. Thus, to ensure smooth layer-wise dataflow and
efficient hardware mapping, we prioritize configurations where
m = k, maintaining a unified activation format across all
layers and avoiding costly inter-layer data reshaping, which
will be discussed in detail in Section III-C.

B. Hardware View of AI Accelerator

In detail, Fig. 3 illustrates the hardware mapping of matrix
multiplication in Gundam. Following the matrix decomposi-



tion strategy established earlier, the architecture is organized
as a two-dimensional array of n × k MAC units. Each row
of the array is connected to a dedicated activation buffer
(A Buffer#1 to A Buffer#n), and each column is connected
to a dedicated weight buffer (W Buffer#1 to W Buffer#k),
resulting in a total of (n + k) buffers. Gundam partitions
large matrix multiplication tasks into a series of n × k and
k×k submatrices, mapping each submatrix onto the PE array.
Namely, we consistently set m = k during decomposition
to ensure that input and output data formats remain aligned
across all layers. Thus, the size of each activation buffer is a
multiple of (n × k), and the size of each weight buffer is a
multiple of (k × k), supporting batch processing of multiple
small submatrices. Besides, in ASICs, it may not be feasible to
implement so many distributed buffers. Therefore, in practical
designs, multiple buffers can be merged into a larger memory
block to facilitate implementation.

During execution, the activations are read from activation
buffers and distributed across the rows, while the weights are
supplied from weight buffers to each column. Each MAC unit
receives a corresponding activation and weight value per cycle,
performing a MAC operation and generating an output that
contributes to the final result matrix. This architecture allows
for parallel computation of n× k outputs per cycle, achieving
high throughput under appropriate resource allocation.

C. Resource Analysis for NN Deployment on Edge

Matrix partitioning is not only crucial for resource-
constrained scenarios, but also helps maintain regularity and
parallelism within practical hardware constraints. Algorithm 1
provides a systematic methodology for optimizing resource
allocation in edge-AI matrix accelerators under tight hard-
ware constraints. The procedure begins with the input matrix
dimensions (N,M,K) and hardware parameters, including
the available chip area (Achip), area per PE (APE), buffer
area per bit (ABUF), data width (Wdata), step size (Gstep),
and maximal PE array sizes (PEnmax, PEkmax). Besides, to
achieve a more accurate estimation of area overhead, ABUF

includes the amortized area of the memory read/write control
circuits. Similarly, APE accounts for the amortized area of the
DMA and control logic within the accelerator. Notably, only
75% of the chip core area is used for resource analysis, with
the remaining area reserved for place-and-route requirements
and additional backend resources such as dummy cells and
decap cells. Moreover, the PE array is typically limited to less
than 50% of Achip, reflecting the real-world case of resource
distribution. Besides, the step size is chosen as a multiple of
8, consistent with practical hardware block granularity.

The algorithm enumerates all feasible (n, k) configurations
(line#2) by stepping n and k from Gstep up to their respec-
tive maxima. For each candidate, the activation and weight
matrices are zero-padded so that M is a multiple of k, and
all submatrix boundaries are aligned. This ensures that data
size is the multiples of k (line#5, #6), facilitating smooth
computation at block boundaries. Mathematically, this means
each submatrix multiplication is [n × k] · [k × k], producing

Algorithm 1 Resource Analysis for Matrix Multiplication
Require: Matrix Parameters:

N,M,K: AN×M ·BM×K {Matrix dimensions}
Hardware Parameters:

Achip: Total chip core area budget × 0.75
APE: Area per PE (e.g., um2/PE)
ABUF: Area per memory buffer for activation/weight (e.g., um2/bit)
Wdata: Data bit width (e.g., 8-bit Integer)
Gstep: Step size (e.g., 8 or 16)
[PEnmax, PEkmax]: Maximum PE array sizes along the n- and k-

dimensions under the constraints of 0.5×Achip, aligned to Gstep
Ensure: Optimal configuration:

PE array structure (n,k), buffer allocation, and estimated throughput
1: Initialize Sconfig = [ ]
2: Enumerate Feasible Configurations:
3: for n = Gstep to PEnmax step Gstep do
4: for k = Gstep to PEkmax step Gstep do
5: AN′×M′ : Activation matrix after zero-padding, where N ′ = n×

⌈N/n⌉, M ′ = k × ⌈M/k⌉
6: BM′×K′ : Weight matrix after zero-padding, where M ′ = k ×

⌈M/k⌉, K′ = k × ⌈K/k⌉
7: NPE ← n× k {Total MAC units}
8: Calculate Minimum Storage Requirements:
9: Bufmin

A ← n×M ′ ×Wdata {Minimal activation buffer size}
10: Bufmin

W ← k ×M ′ ×Wdata {Minimal weight buffer size}
11: if

[
(Bufmin

A +Bufmin
W )×ABuf +NE ×APE

]
> Achip

then
12: break {No enough resource}
13: end if
14: Search for Optimal Execution Time:
15: Buftotal ← (Achip −NPE ·APE)/ABUF

16: Initialize Tbest =∞
17: Initialize BWmem = k ∗Wdata(bits/cycle) {Bandwidth}
18: Tcomp ← N ′ ×M ′ ×K′ ÷NPE {Computation time}
19: for s = 1 to ⌊Buftotal/Bufmin

A ⌋ step 1 do
20: Bufcurrent

A ← s×Bufmin
A

21: Bufremain ← (Buftotal −Bufcurrent
A )

22: Bufcurrent
W ← ⌊Bufremain/Bufmin

W ⌋ ·Bufmin
W

23: if Bufcurrent
W = 0 then

24: break {No available buffer, stop allocation}
25: end if
26: Ttrans,act ← N′×M′

BWmem
+

⌈
K′/k

Bufcurrent
W

/Bufmin
W

⌉
× N′/n

s
×

Bufcurrent
W

BWmem
{Transfer time with activation reuse}

27: Ttrans,wt ← M′×K′

BWmem
+ ⌈ K′/k

Bufcurrent
W

/Bufmin
W

⌉ × N′/n
s
×

Bufcurrent
A

BWmem
{Transfer time with weight reuse}

28: Ttrans,min ← min(Ttrans,act, Ttrans,wt) {Best strategy}
29: Ttotal ← Tcomp + Ttrans,min

30: if Tbest > Ttotal then
31: Tbest ← Ttotal

32: end if
33: end for
34: Append {n, k, Bufcurrent

A , Bufcurrent
W , Tbest} to Sconfig

35: end for
36: end for
37: Output: Sconfig {Optimal configuration set}

n×k outputs that directly feed into the next layer, eliminating
the need for data reshaping and reducing hardware overhead
as mentioned in Section III-A.

The next step (line#8) is to calculate the minimum buffer
sizes required for activation functions (Bufmin

A ) and weights
(Bufmin

W ). Here, we define that at least one complete n × k
output block can be generated in local storage to avoid the
need for buffer to store intermediate temporary data. If these
minimum buffers cannot fit within the chip area limit, this
configuration is not applicable.



The algorithm then searches all feasible splits of the remain-
ing buffer between activations and weights (line#19). First, it
computes the computation time (Tcomp) based on total MAC
units. Then, for each allocation, the data transfer time is eval-
uated for both activation-reuse (line#26) (where weights are
more frequently updated) and weight-reuse (line#27) (where
activations are more frequently updated) scenarios between
external memory and internal memory. For each, the total
transfer time is determined by the amount of data to be moved
and the available bandwidth. The minimal transfer time across
the two reuse strategies is selected, and combined with Tcomp to
yield the total expected execution time for that configuration.

Crucially, this evaluation enables the algorithm to select
the reuse strategy that minimizes data movement and latency
under resource constraints, which is particularly important for
edge deployment. All valid configurations, including the PE
array size (n, k), buffer allocation, and execution time, are
collected in a candidate set Sconfig (line#34). The final output
is the set of optimal resource allocations that best satisfy both
hardware and workload requirements.

Algorithm 2 NN-Level Resource Scheduling Across Layers
Require: L = {(Ni,Mi,Ki)}Li=1: Matrix shapes for all L layers in the

model
Hardware parameters: Same as Algorithm 1

Ensure: Optimal shared configuration (n∗, k∗) across layers
Layer-wise buffer allocations, and total execution time

1: Initialize Smodel ← [ ] {Store all S(i)
config}

2: for i = 1 to L do
3: Run Algorithm 1 on (Ni,Mi,Ki)

4: Obtain S
(i)
config ← {(n, k,BufA, BufW , T )

(i)
j }

5: Append S
(i)
config to Smodel

6: end for
7: Extract candidate shared (n, k) sets:
8: Scommon ←

⋂L
i=1

{
(n, k) ∈ S

(i)
config

}
9: Initialize Tmodel best ←∞

10: for each (n, k) ∈ Scommon do
11: Ttotal ← 0
12: for i = 1 to L do
13: Select config (n, k,BufA, BufW , T ) ∈ S

(i)
config with lowest T

under fixed (n, k)
14: Ttotal ← Ttotal + T
15: end for
16: if Ttotal < Tmodel best then
17: Tmodel best ← Ttotal

18: (n∗, k∗)← (n, k)
19: Store best config for each layer: S∗

i ← corresponding
(BufA, BufW ) for layer i

20: end if
21: end for
22: Output: (n∗, k∗), {S∗

i }Li=1, Tmodel best

Furthermore, Algorithm 2 extends the resource analysis
model to accommodate entire NN models consisting of mul-
tiple distinct layers, each characterized by its own matrix
dimensions. Since optimal hardware resource allocation for in-
dividual layers may differ significantly, Algorithm 2 performs
a global analysis to harmonize configurations across all layers
(line#2). It takes as input a set of matrix shapes (Ni,Mi,Ki)
for each of the L layers in the model, and individually executes
Algorithm 1 on each layer to produce respective candidate
configuration sets (S(i)

config).
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Subsequently, the algorithm identifies common configu-
rations (n, k) shared across all layers, ensuring consistent
hardware dimensions for efficient resource reuse (line#10).
For each candidate common configuration, the algorithm se-
lects the best-performing memory allocation from each layer-
specific candidate set to achieve minimum total NN execution
time. By summing these layer-wise optimal execution times
(line#13, #14), it estimates the total execution latency for
the entire model. After evaluating all common configurations,
the algorithm selects the globally optimal configuration that
minimizes the total model execution time (line#19). The final
output includes the selected optimal PE array sizes (n∗, k∗),
associated optimal buffer allocations for each layer, and the
expected overall execution latency, thus enabling efficient
hardware deployment for edge-AI applications.

IV. GUNDAM-GUIDED AI ACCELERATOR REALIZATION

A. Hardware Characterization and Baseline Setup

To evaluate the effectiveness of Gundam, we use the open-
source NVDLA as a baseline architecture. As shown in Fig. 4,
the PE array size and organization are determined by the
resource allocation results from Gundam. The bank pool
provides shared on-chip memory, where each bank can be
dynamically assigned to either activation or weight storage on
a per-layer basis, according to the optimal partitioning deter-
mined by configurations generated from the aforementioned
algorithms in Gundam. Moreover, dedicated DMA engines
manage data movement between external memory and the
bank pool for weights, activations, and outputs, while control
logic oversees all internal operations. Temporary results are
handled by a dedicated temporary result handler, ensuring
smooth accumulation and data flow.

On the other hand, we conduct detailed hardware charac-
terization to support accurate resource modeling and design-
space exploration. Key parameters, such as area per PE (APE),
and buffer area per bit (ABUF), are extracted based on logic
synthesis with standard-cell libraries and memory compilers.
To validate the scalability of Gundam, these parameters are
profiled under three CMOS technology nodes (16/22/28nm).

In addition, a set of representative transformer-based models
(i.e., ViT-Tiny/Small/Base) is selected as benchmark work-
loads. These models cover a wide spectrum of matrix mul-
tiplication shapes and memory access patterns, making them



TABLE I
DESIGN INPUTS AND CONSTRAINTS USED IN GUNDAM EVALUATION

Metric 16nm 22nm 28nm
Chip core area budget (mm2) 1.4 1.8 0.8
Power Supply (V) 0.8 0.8 0.8
Frequency (MHz) 700 600 500
Target model ViT-Tiny/Small/Base

: the optimal points across different NN models and technology nodes.

Fig. 5. Design Space Exploration of AI Accelerator Configurations.

suitable for evaluating both the configurability and analytical
accuracy of the proposed design and analysis model.

B. Hardware Implementation Guided by Gundam

Based on the NVDLA architecture, the target models and
the chip area budgets listed in Table I for each technology
node, we design AI accelerators in 16nm, 22nm and 28nm
CMOS processes. For each case, we perform an exhaustive
search for the optimal execution time by incrementing the
design parameters in steps of Gstep = 8. As illustrated in Fig. 5,
the search space covers a range of PE array sizes from 8×8 up
to 32× 24, ensuring comprehensive evaluation of all feasible
configurations for ViT-Tiny, ViT-Small, and ViT-Base models.
Through the Gundam design space exploration, we identify
that the optimal PE array size for both 16nm and 22nm nodes
is 24 × 24, while for the 28nm node, the best configuration
is 16 × 16, each accompanied by their respective memory
parameters. These optimal configurations are selected based on
minimum inference time across the full search range. Besides,
thanks to the lightweight and analytical nature of Gundam, the
entire search for optimal configurations on a standard GPU
platform completes within just a few seconds, enabling rapid
iteration and early-stage design exploration.

Then, we construct layouts for each technology node using
the selected array sizes and buffer specifications from Gun-
dam. The layouts of these designs are shown in Fig. 6. The
layouts of these designs are implemented via a standard digital
IC flow, with logic synthesis performed by Synopsys Design
Compiler and physical design completed in Cadence Innovus.
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TABLE II
VALIDATION OF GUNDAM ESTIMATES ACROSS TECHNOLOGY NODES

Metric 16nm 22nm 28nm
Optimal (n, k) (24, 24) (24, 24) (16, 16)
Total Buffer Size (KB) 540 456 180
Total Core Area (mm2) 1.360 1.701 0.755
Estimation Error (Area, %) 2.94 5.82 5.96
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Table II summarizes the estimation results of Gundam
model across three technology nodes. To validate its accuracy,
we implement the corresponding configurations using RTL
synthesis and back-end place-and-route, extracting post-layout
information. The Gundam-estimated values closely align with
actual post-layout results, with area size estimation errors
below 6%. This demonstrates that Gundam achieves high-
fidelity hardware-level estimation, making it well suited for
early-stage accelerator design across different process nodes.

V. PERFORMANCE ANALYSIS

A. Benchmark Setup

The benchmark setup is shown in Fig. 7. Post-layout
simulation is performed in Synopsys VCS using extracted
delay information (.sdf file, TT-corner) from the physical
layout. Three representative models, ViT-Tiny/Small/Base, are
used for evaluation. During initialization, the testbench loads
model data into a DDR behavioral model, and the controller
configures on-chip registers via the AXI-Lite bus to activate
the accelerator. Data exchange with DDR memory occurs
over the AXI-Full bus during execution. After simulation, a
waveform file (.vcd) is generated by VCS. The parasitic file
(.spef) extracted from layout and the waveform file are used



TABLE III
PERFORMANCE EVALUATION AMONG DIFFERENT NNS

Metric 16nm 22nm 28nm

ViT-T1
Inference Time (µs) 677.90 790.88 1387.13
Peak Perf. (TOPS/W) 11.86 9.13 7.34
Average Perf. (TOPS/W) 9.31 7.15 5.63

ViT-S2
Inference Time (µs) 1921.66 2241.93 5409.65
Peak Perf. (TOPS/W) 11.78 9.22 7.21
Average Perf. (TOPS/W) 9.18 7.22 5.70

ViT-B3
Inference Time (µs) 7200.30 8400.35 32697.70
Peak Perf. (TOPS/W) 11.90 9.08 7.18
Average Perf. (TOPS/W) 9.28 7.20 5.66

Peak Energy Efficiency4 (TOPS/W) 16.58 12.81 10.08
115.3%/57.4% sparsity for weight/activation, accuracy: 76.82%.
219.6%/64.9% sparsity for weight/activation, accuracy: 81.79%.
322.4%/79.2% sparsity for weight/activation, accuracy: 82.25%.
450% sparsity, 100% PE utilization.

as input to Synopsys PrimeTime PX for accurate post-layout
power analysis. This flow ensures realistic evaluation of both
performance and power characteristics for the designs.

B. Performance Evaluation

Table III presents the performance evaluation results
of the proposed accelerator under three technology nodes
(16/22/28nm) and three representative transformer models:
ViT-Tiny/Small/Base. Across all process nodes, inference time
increases with model size and older technology. For example,
ViT-Tiny achieves an inference time of 678 µs at 16nm,
while ViT-Base reaches 32697 µs at 28nm. Peak and average
performance metrics are highest at 16nm and decrease at larger
nodes, reflecting expected trade-offs between energy efficiency
and fabrication technology. Peak performance reaches up to
11.86 TOPS/W for ViT-Tiny at 16nm, with corresponding av-
erage performance of 9.31 TOPS/W. Even under larger models
and older nodes, the design sustains competitive efficiency
(e.g., 5.66 TOPS/W average for ViT-Base at 28nm).

Compared with SOTA accelerator designs in [17], which
achieve over 50 TOPS/W by employing aggressive quanti-
zation (e.g., binary precision) and compute-in-memory tech-
niques, our Gundam-guided designs adopt a more balanced
and versatile approach. While those ultra-efficient designs
excel in peak metrics, they typically require highly customized
hardware and offer limited flexibility for diverse AI workloads.
In contrast, Gundam focuses on model-aware resource alloca-
tion and structured matrix decomposition, enabling robust and
predictable performance across full NN execution rather than
isolated layers. Our designs, implemented in 16/22/28nm pro-
cesses, consistently achieve 10–20 TOPS/W energy efficiency
under standard operating conditions (0.8V) without voltage
or frequency scaling. Notably, further scaling to lower voltage
and frequency can increase energy efficiency by several times.
This demonstrates Gundam’s capability to bridge theoretical
optimization and practical deployment, providing a scalable
solution with strong performance-efficiency trade-offs on edge.

C. Comparison with Existing Models

Table IV compares representative accelerator modeling and
scheduling models. MAESTRO adopts a data-reuse-based

TABLE IV
COMPARISON WITH EXISTING ANALYTICAL COST MODEL

Statistics MAESTRO [12] Timeloop [13] CoSA [15] This work

Description Data-reuse-
based Model

Throughput-
based Model

Optimization-
based Model

Resource-
Latency-based

Model
Data Reuse Yes Yes Yes Yes

Latency Yes No1 Yes Yes
Throughput Yes Yes Yes Yes

NN
Mapping Yes Yes Yes Yes

PE Size
Search No No No Yes2

Memory Size
Search No No No Yes2

1Used exclusively for performance evaluation; not in analytical modeling.
2Automatically searches for the optimal AI accelerator configurations.

analytical model, providing fast estimation of latency and
energy for a given mapping, but lacks automated architecture
search capabilities. Timeloop uses a throughput-based model
with an iterative mapper, enabling flexible exploration of
mappings under fixed hardware, but its random or brute-force
search is often time-consuming and may miss global optima
in large design spaces. CoSA formulates DNN scheduling
as a mixed-integer programming problem, supporting one-
shot operator-level schedule optimization, yet its search space
is limited by the accuracy and completeness of constraint
modeling. In contrast, Gundam employs a resource-latency-
based model and supports unified, multi-granularity search
across PE size, memory size, and architectural parameters
under resource constraints. This enables Gundam to efficiently
and deterministically find optimal solutions for AI acclerator
configurations, covering a much wider design space.

VI. CONCLUSION

In this paper, we propose Gundam, a lightweight and unified
analytical model designed for agile and accurate resource esti-
mation and allocation in edge-AI matrix accelerators. Gundam
models matrix operations to enable structured estimation of
PE array dimensions, memory size, buffer partitioning, and
data reuse strategies. It supports rapid design space explo-
ration across various matrix shapes and technology nodes,
achieving less than 6% deviation between analytical estimates
and post-layout hardware results. Unlike existing models that
assume fixed architectures or focus only on peak performance,
Gundam can automatically search for optimal accelerator
configurations under chip area and bandwidth constraints.
This offers a practical and scalable solution for early-stage
design planning and efficient deployment of AI accelerators
on resource-limited edge platforms.
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