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Abstract—Single-event transients (SETs) threaten modern
reliability-demanding SoCs equipped with error correction codes
(ECC) for single event upset (SEU) mitigation. However, conven-
tional gate-level SET fault injection (FI) remains prohibitively
slow for practical reliability evaluation. This work presents
FIawase, a high-throughput SET injection framework that en-
ables comprehensive system-level evaluation of SET-induced soft
errors. FIawase consists of two phases: a netlist-level inject-
and-capture simulation, which systematically flips the output of
every gate–cycle pair during program execution to record flip-
flop changes one cycle later, and a scan-chain-based replay-and-
measure emulation, which replays these patterns at hardware
speed to quantify system-level impact. Implemented on an open-
source RISC-V system, FIawase reduces a comprehensive SET
injection campaign from decades of pure simulation to nearly
a day, achieving over four orders of magnitude end-to-end
speedup. FIawase takes a critical first step toward exhaustive,
cycle-accurate SET analysis, enabling architectural and reliability
research at previously infeasible scales.

Index Terms—Reliability, fault injection, soft errors, single
event transients

I. INTRODUCTION

Every second, invisible cosmic-ray particles slice through
the chips in our cars and satellites. When just one of these
particles flips a single bit, software can crash and safety-critical
systems can make life-threatening decisions [1]. Radiation-
induced faults are typically classified into two types: bitflips
on storage elements, known as Single-Event Upsets (SEUs),
and voltage glitches on logic gates, known as Single-Event
Transients (SETs) [2]. If an SET propagates through combi-
national logic and is captured by one or multiple flip-flops
(FFs), it can flip the stored values—a phenomenon referred to
as SET-induced SEU [3]. While SEUs have been extensively
studied and mitigated, SETs have received considerably less
attention as the probability of a single glitch being latched is
typically low [4]. However, their impact cannot be overlooked
in systems where all FFs are protected against conventional
SEUs [5], as these hardened FFs can still latch SET-induced
errors indistinguishably from valid data. As node capacitance
decreases and clock frequencies increase, susceptibility to
SET-induced faults continues to rise [6], [7], underscoring the
need to revisit SET analysis with renewed urgency.

Radiation testing provides accurate reliability assessment
but is often impractical due to high cost, limited facility
access, and long turnaround times [8]–[10]. This challenge
is further amplified in the case of SET evaluation, as their
low latching probability necessitates extensive irradiation to
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Fig. 1. Concept of Flawase: Bridging Single-Cycle SET Simulation with
Full-Program SEU Emulation.

observe sufficient fault events. As a result, fault injection
(FI) is expected to be an alternative, simulating radiation-
induced faults through controlled bitflips. It plays a vital
role in validating system behavior under faults and guiding
protection strategies in fault-tolerant design [11]. Among
various FI methods, finer granularity (from program-level to
flip-flop-level, and gate-level) yields more accurate modeling
of radiation effects [12]. While gate-level FI can reproduce
SET propagation in sequential circuits [13], its high runtime
overhead have constrained its use in large-scale designs.

Most existing SET studies focus only on the likelihood that
a glitch propagates through logic and is latched by FFs [14].
This process is referred to as SET-to-SEU transfer in this
work. Although Monte Carlo [15] and probabilistic error
propagation [16] methods can accelerate this process, they
typically assume independent input distributions rather than
realistic workloads. Moreover, their probabilistic outputs make
system-level impact evaluations less reliable due to a lack of
determinism. Simulation-based SET analysis remains the most
accurate, but is prohibitively slow for system-level designs
with realistic workloads. Consequently, system designers still
lack and eagerly demand a practical and scalable SET-aware
reliability analysis framework that satisfies two essential re-
quirements: 1) the ability to inject faults at arbitrary logic gates
and at any program cycle; and 2) the ability to exhaustively
explore gate-cycle combinations and evaluate their system-
level impact within a feasible runtime.

To address this gap, we propose FIawase: a high-throughput
SET Fault Injection frAmework toWards exhAustive System-
level fault impact Evaluation. As illustrated in Fig. 1, FIawase
connects single-cycle netlist-level simulation, which extracts
SET-induced SEU patterns, with high-speed emulation, which
evaluates system-level impact over long-cycle program execu-



tion under the same workload. To our knowledge, FIawase is
the first comprehensive SET FI framework capable of scaling
to SoC-level designs while maintaining realistic workload
contexts. Regarding the hardware emulation, we extend the
scan-chain-based SEU injection technique from HachiFI [17]
with our SET-aware control logic, and demonstrate the frame-
work on an open-source RISC-V core [18] as the device
under test (DUT). Compared to the HachiFI baseline, FIawase
incorporates targeted optimization and acceleration strategies,
achieving over 18× improvement in SET FI throughput. For
exhaustive FI campaigns, FIawase reduces the total runtime
from several decades of pure simulation to just tens of hours.

The key contributions of this work are as follows:
• We propose a unified FI framework that includes SET-

to-SEU transfer extraction and hardware-based SEU in-
jection, bridging them via a shared design and workload.

• We optimize both simulation and emulation stages to
enable fast, automatically-repeating FI execution.

• We demonstrate comprehensive SET FI on RISC-V sys-
tem under realistic, program-driven conditions.

II. RELATED WORK AND REQUIREMENTS FOR
COMPREHENSIVE SET ANALYSIS

Existing FI works typically focus on either SET analysis
or SEU impact evaluation, lacking an end-to-end understand-
ing of how SETs affect system behavior. We briefly review
representative techniques for each stage and outline the re-
quirements for bridging them within a unified framework.

A. SET analysis

Accurate SET modeling requires accounting for three mask-
ing effects: logic, electrical, and timing masking. Among
them, logic masking has the greatest impact on analysis
accuracy [19] and is the most computationally intensive, as
it depends on specific input vectors that activate propagation
paths. In contrast, electrical and timing masking can be par-
tially approximated as attenuation ratios with comparatively
smaller influence [20]. Recent works adopt signal-probability
propagation techniques [21], [22], but their accuracy is signifi-
cantly degraded by signal correlation, which frequently occurs
in large netlists synthesized by commercial tools [23]. Ad-
ditionally, these techniques often neglect logic dependencies
caused by multi-bit correlated inputs, further reducing their
effectiveness in large-scale designs with realistic workloads.

B. SEU evaluation

The second stage typically involves injecting faults into
FFs and running the full program to observe system-level
effects [24]. [25] perform SEU FI entirely in simulation, which
becomes prohibitively time-consuming for large system; [26]
use local simulations to estimate error rates but lack concrete
fault impact; [27] inject faults on real silicon to measure
persistent-SEUs but cannot capture run-time transient effects.

HachiFI [17] introduces a hardware-assisted SEU FI plat-
form to address these limitations. It inserts a lightweight scan-
chain control module to enable targeted bit flips during scan

shift operations. FI parameters, such as the target FF index,
are communicated via OpenOCD commands through the JTAG
interface. By leveraging hardware emulation, HachiFI achieves
speedups of several orders of magnitude over simulation-based
SEU evaluation. However, HachiFI is not directly applica-
ble to gate-level SET injection. Combinational logic gates
cannot be instrumented with scan chains, and even if such
instrumentation were possible, the required hardware overhead
and control complexity would be prohibitive. Furthermore,
HachiFI is designed for isolated, randomly injected SEUs,
which do not reflect realistic SET propagation behaviors.

C. Requirements for Bridging SET and SEU

As mentioned above, SET-to-SEU transfer analysis, typi-
cally performed in simulation, and system-level SEU impact
evaluation, often accelerated by hardware emulation, have
traditionally been studied separately. However, to accurately
assess the impact of SETs on system-level reliability, it is
essential to bridge these two domains and develop a unified
framework capable of comprehensively evaluating SET effects
across both stages, as illustrated in Fig. 1.

Such a framework must ensure consistency in design, work-
load, and the spatial and temporal locations of FI between sim-
ulation and emulation. Moreover, comprehensive SET FI must
cover a large number of gate-cycle combinations. Each logic
gate at each clock cycle is a potential SET site, and every such
event must be emulated to evaluate its system-level effect. As
shown later, SEU evaluation on the emulator takes significantly
more time than SET-to-SEU transfer analysis. To make this
tractable, both the number of SEU injections (NSEUFI ) and
the runtime per injection (TSEUFI ), which includes program
execution and FI latency, must be minimized.

The key requirements for an effective SET FI framework
are as follows:

• R1 Reduced SEU FI: NSEUFI must be reduced by
filtering SEU patterns from SET-to-SEU transfer analysis.

• R2 Precise FI Control: The hardware must support FI
at precise cycles and specific flip-flop indexes defined by
each SEU pattern.

• R3 Reliable FI Execution: The FI mechanism must be
robust against system crashes or JTAG errors to allow
fault injection to proceed without host intervention.

• R4 Low Injection Latency: Optimizing the FI process and
communication overhead can reduce TSEUFI by over 4×.

While HachiFI [17] provides a practical SEU FI interface,
it does not satisfy the above requirements, and a substantial
extension is needed. FIawase is designed to meet these require-
ments and enable fast, comprehensive SET fault injection, as
described in detail in Section III.

III. PROPOSED FI FRAMEWORK

A. Overall Framework

Fig. 2 illustrates the overall FIawase framework. Yellow
boxes represent user-defined inputs, including the target DUT,
test program, and SET model. Red boxes denote components
generated during the flow, and gray boxes are executed using
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Fig. 2. Overall FIawase framework: (a) HDL is enhanced with FI modules
(Section III-B); (b) SET simulation produces SEU patterns (Section III-C);
(c) SEU patterns are mapped for impact evaluation (Section III-D).

standard EDA tools such as DC and VCS. With the proposed
components highlighted in blue, spanning all three stages and
operating on the same design and test program, the framework
effectively addresses R1-R4.

Stage (a) extends the user’s HDL design with FIawase logic
blocks that enable FI functionality. The augmented design is
then processed through standard front-end and back-end flows
with scan-chain insertion, to generate the netlist and ultimately
an FI-enabled emulator or fabricated chip. During scan-chain
insertion, untargeted modules such as SRAM and the JTAG
debug interface must be marked with set_dont_touch and
protected by clock-gated logic driven by the scan enable signal
to avoid unintended functional disturbances caused by shift
activity.

Stage (b) simulates SET faults by flipping logic wires in the
netlist according to a user-defined SET fault model (e.g., pulse
width, polarity, and masking effects), and extracts the resulting
SEU patterns, including the injection cycle and affected FF
indexes. An SEU pattern filter is applied to discard logic
masked results or redundant identical FF bitflips, thereby
reducing the number of SET-induced SEUs to be evaluated
on hardware emulator, i.e., NSEUSI (R1).

In stage (c), the filtered NSEUSI SEU patterns are injected
into hardware via a dedicated FI interface (e.g., JTAG).
FIawase bridges simulation and hardware by ensuring that
stage (b) and stage (c) use the same test program and a
netlist that structurally match each other at RTL (R2). This
consistency ensures that fault sites are structurally aligned and
that program execution timing remains consistent across both
simulation and hardware phases.

B. Hardware Preparation and Operation with FIawase Logic

The original HachiFI operates in an interactive JTAG mode,
where each fault is injected via several host commands.
However, this setup is fragile as an injected fault may crash
the DUT or corrupt the communication link, halting the
FI campaign and necessitating the DUT reboot. The DUT
reboot significantly degrades the FI throughput. To improve
robustness for high-throughput FI (R3, R4), FIawase adds
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Fig. 3. FIawase HDL architecture enabling automatic fault injection and
decoupling from DUT execution after initial load.

an Auto Mode that requires host involvement only once for
initialization.

Fig. 3 illustrates the additional hardware modules introduced
by FIawase to support automatic and fault-isolated FI in Auto
Mode. The four main blocks—FI Controller, FI Timer, FI
Table, and FI Checker—are implemented outside the DUT,
with key components enclosed in blue boxes. Inside the
DUT, two lightly modified components (Clock Gater and
Multiplexer, also in blue) support FI operations. Gray arrows
indicate data/control flow to aid understanding.

1) FI initialization: During initialization, parameters shown
in green in Fig. 3, such as the scan chain length (Scan Len)
and timeout threshold (TO Thr) are latched into the FI Con-
troller and FI Timer, respectively. A batch of fault schedules,
including the target FF indexes (FI Index) and injection cycle
(FI Time), is loaded into an on-chip FI Table via JTAG. In
case of FPGA emulation, an affordable large FI table is recom-
mended since it reduced overall runtime. After initialization,
the system clock in the JTAG block is gated off during Auto
Mode and re-enabled only after the current batch finishes,
which prevents injected faults from disturbing the debug link.

2) FI operation: FI operation is controlled by two counters
that coordinate fault injection in both time and space. The
cycle counter in FI Timer advances with the DUT clock and
is responsible for triggering the FI operation at the specified
injection cycle (FI Time) and for detecting timeouts caused
by DUT hangs at TO Thr. The latter functionality will be
described in detail in the next section. The scan counter in
FI Controller increments during scan operations to locate the
target flip-flop before the fault is activated. Since both counters
operate independently of the DUT’s functional logic, they are
unaffected by injected faults, ensuring reliable FI scheduling
and timeout detection.

When the cycle counter reaches the scheduled injection
time (FI Time), the FI Controller asserts the Scan En signal
to activate the scan loop across all scan-chain-inserted FFs.
During this loop, Scan Out is routed through FI Controller
and fed into Scan In. If the scan counter matches FI Index,
the controller inverts Scan Out before feeding it back; other-
wise, the data is passed through unchanged. Considering that
SETs can result in spatially clustered multi-bit SEUs [16],



FIawase supports injecting multiple faults by specifying sev-
eral FI Index entries within a single scan loop. To maintain
program consistency, functional blocks not included in the
scan chain are clock-gated during the scan loop. Once the scan
completes, the original register state is restored except for the
injected fault, and program execution resumes seamlessly from
the same cycle.

3) FI result analysis and reporting: FIawase in this paper
assumes that the DUT program reports execution results via
UART, whereas other interfaces are also usable. To enable on-
chip fault classification, the DUT first runs the test program
once without FI and outside of Auto Mode. During this
run, FIawase monitors all UART FIFO input to capture the
expected output and stores it in a reference table (RefTable).
In each fault-injected run, the FI Checker compares the DUT’s
FIFO writes against this RefTable. Based on this comparison,
each FI is categorized as one of the following outcomes: Mask:
fault has no observable effect on program output; SDC (Silent
Data Corruption): program complete but produces incorrect
output; or DUE (Detected Unrecoverable Error): program
execution did not complete before the timeout threshold. Since
the classification is performed on-chip, there is no need to
wait for full UART transmission to the host, which reduces
FI runtime (TSEUFI ). In Auto Mode, UART TX outputs one
ASCII verdict character (M, S, or D) via a multiplexer.

Once the classification result transmission is complete, the
FI Checker asserts an internal reset signal. This acts as a stop-
and-restart mechanism, resetting only the DUT and counters
while preserving FI control state. It enables the next fault to be
loaded from FI Table and injected without host involvement.
Through this structure, FIawase ensures long FI campaigns
remain resilient and fully automatic, even if injected faults
crash the DUT or disrupt standard interfaces. Since FIawase
relies only on standard scan chains, JTAG, and UART output,
and requires only minimal modification to functional HDL, it
is broadly applicable to a wide range of system designs.

C. SET-to-SEU Transfer Analysis

Users are expected to provide application workloads that
capture representative system behavior and are reused in both
simulation and emulation. The same netlist with scan chains
inserted is also used in both domains. For FPGA emulation,
this netlist is treated as RTL by rewriting the standard-cell
library into equivalent Boolean logic compatible with LUT-
based synthesis. Although the FPGA implementation differs
physically, it preserves the same logic structure, flip-flop
count, and scan-chain configuration as in simulation, ensuring
functional and temporal alignment between the two platforms.

In this paper, we focus solely on the worst-case SET
scenario, where the SET pulse is assumed to be wide enough
to be latched by FFs unless logically masked. In other words,
we neglect electrical and temporal masking and consider
only logic masking. This assumption eliminates the need for
detailed timing or electrical-level information. Although SET
pulse width can be modeled in logic simulation, whether an
SET is captured follows a stochastic distribution, as both its
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timing and width vary randomly. Such probabilistic analysis
is therefore not well suited to the objective of exhaustive FI.

For SET-to-SEU transfer analysis, only one-cycle prop-
agation needs to be observed. Compared to conventional
approaches that independently and repeatedly feed input vec-
tors to evaluate bit propagation along the same logic paths,
we adopt a time-sliced simulation strategy that minimizes
input-handling overhead while fully leveraging commercial
EDA tools. During simulation, a sliced clock (sliced clk)
is generated in the testbench to divide each system clock
(sys clk) cycle into Nslice finer-grained segments, enabling
sub-cycle SET injection. Fig. 4 illustrates a configuration with
Nslice = 100 time slices per sys clk cycle. Within each
time segment, one output wire of a logic gate is toggled to
simulate the effect of a transient fault, while all FF inputs
(FF din) are monitored to detect SET-to-SEU propagation.
To preserve correct program behavior, the first and last seg-
ments near the rising edge of sys clk are left untouched.
This ensures that FFs latch only unmodified data, and the
FF output (FF qout) remains unchanged throughout the fault
evaluation. By maintaining natural timing at latching points,
this approach achieves accurate observation of SET effects
without disrupting program execution.

In this setup, each program run can evaluate Nslice wires per
cycle across all program cycles Ncycle . Given Nwire total wires
and a simulation time of Tprog per run, the total simulation
cost is reduced to approximately (Nwire/Nslice)×Tprog . This
strategy achieves over 6000× speedup compared to a Python-
based one-cycle propagation analyzer, and reduces naive sim-
ulation runs by a factor proportional to the program’s cycle
count, eliminating simulation as a performance bottleneck.

The SET-induced bitflips in FF din and the corresponding
sys clk cycle are recorded during simulation, and a Python
script filters them by removing logically masked faults (i.e.,
those not captured by any flip-flop) and redundant patterns
(i.e., different gates that induce the same SEU pattern in
the same clock cycle). This filtering effectively reduces the
number of SEU patterns while preserving the overall coverage
of distinct SET behaviors.

D. SEU Impact Evaluation

The final output of Stage (b) is a refined set of SEU
injection patterns P , each pattern consisting of an injection



cycle and corresponding FF indexes. These patterns reproduce
meaningful SET-to-SEU propagation effects and guide FI on
hardware during Stage (c). In this stage, the host commu-
nicates with the emulator via JTAG using OpenOCD [28]
commands issued through Tcl scripts, enabling DUT halt,
program loading, and FI configuration. The injection campaign
starts with a golden run that collects a reference output, which
is stored in RefTable for later comparison. Subsequently, FI
proceeds in batches, each autonomously initiated by enabling
Auto Mode. In every batch B, the host selects a subset of
SEU patterns B ⊂ P and loads them into the on-chip FI
Table. Each pattern defines a fault configuration, consisting
of FI Index and FI Time, where FI Index specifies one or
more fault locations. These configurations enable injection of
SET-induced multi-bit SEUs at the specified FI Time. During
this process, batch-level parameters such as Scan Len and
TO Thr are also configured and kept consistent across batches.
While the DUT executes the batch in Auto Mode, the host
remains passive, only monitoring UART messages sent by the
on-chip FI Checker. For each injected pattern, a single verdict
is returned: M, S, or D. Once the FI schedule in the FI Table
has been fully read out and all verdicts for the current batch
have been received, the system exits Auto Mode and returns
to interactive mode. The host then halts the DUT, loads the
next batch, and resumes execution.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Platform: Experiments are conducted on the open-source
tinyriscv SoC [18], used as the DUT and integrated with
FIawase logic for FI support. To accurately reflect physical
implementation effects, the DUT is synthesized and placed-
and-routed using the open-source SkyWater 130 nm PDK.
During synthesis, scan chains are inserted into all flip-flops
within the DUT, except those located in memory blocks,
within the JTAG or UART interfaces, or in the FIawase control
logic. These excluded modules are clock-gated during scan
operations to prevent unintended behavior caused by shift
activity. This configuration enables fault accessibility repre-
sentative of the DUT’s combinational logic while avoiding
disturbance to critical control paths. The resulting post-layout
netlist is mapped to a Digilent Genesys-2 FPGA board (Xilinx
Kintex-7 XC7K325T) operating at a 25 MHz system clock.

Workloads: We evaluate two representative work-
loads with contrasting execution characteristics: (i) Hash: a
compute-intensive FNV-1a hash function; (ii) BubbleSort: a
control-flow-heavy algorithm with frequent branching. Each
program outputs its final result via UART. In fault-free runs,
both workloads complete in approximately 60 k CPU cycles,
enabling exhaustive SET FI within practical time constraints.

Timing parameters: In this experiment, the inserted scan
chain includes 5,024 flip-flops, resulting in approximately
5,000 system clock cycles per scan operation. UART transmis-
sion introduces an additional latency of around 4,000 system
cycles per transmitted ASCII byte due to serial I/O overhead.
Furthermore, a basic JTAG command issued from the host
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requires approximately 3,000 system cycles to propagate and
take effect within the emulator.

B. System-level Fault Evaluation

Multi-bit Flip Statistics: SET-induced bitflips often result
in multiple simultaneous SEUs due to glitch propagation
along wide datapaths. Fig. 5 presents the average number
of flipped bits per SET across various microarchitectural
modules, aggregated over the Hash and Sort workloads. These
modules are actively exercised by the workloads and represent
typical hotspots in SoC execution. Notably, the EXU module
shows the widest SEU spread, with an average of 12.2 flipped
bits per event, likely due to its extensive connectivity and
central role in computation. In contrast, the SoC-wide average
is approximately 2.4 bits. This highlights the non-uniform
distribution of SET-induced multi-bit effects, with datapath-
intensive modules exhibiting significantly higher susceptibility.

Module-level vulnerability: Fig. 6 shows the SET fault
evaluation outcomes across different microarchitectural mod-
ules under the Hash workload. The left plot (a) presents the
raw SET FI results, where all gate–cycle pairs are considered.
It includes both logic-masked and redundant patterns, which
together account for approximately 80% of all injected faults,
demonstrating the effectiveness of the pre-filtering process.
The right plot (b) shows the FI outcomes of the remaining
SET-induced SEU patterns after filtering. Although redundant
patterns are not re-injected, their counts are proportionally
reflected once the corresponding injected pattern produces an
outcome.

Notably, the IFU exhibits the lowest masking rate but the
highest portion of identical SEU patterns, likely due to its
relatively simple combinational logic. At the same time, it
contributes to a higher-than-average rate of DUEs, as faults
in this module can quickly affect control flow. In contrast,
datapath-heavy modules such as EXU and ALU exhibit higher
masking rates, but faults that escape masking in these modules
have a greater likelihood of causing harmful outcomes (SDC



TABLE I
PER-OPTIMIZATION SPEEDUP COMPARED TO HACHIFI

# Technique Baseline Speed-up Gain

1 Pattern Filter Inject all fault patterns 4.5–5.3×
2 1-Byte UART Full output 3.2–3.4×
3 Fault Batching One setup per injection 1.4–1.5×
4 Crash Recovery Manual global reset > 60.6×a

Total (w/o Crash) ∼ 4.4ms per injection ∼ 18×
Total (w/ Crash) > 0.34s per injectiona > 655×a

a Manual crash recovery leads to unpredictable and unbounded delays.

or DUE). However, this trend does not align directly with the
bit-flip magnitude shown in Fig. 5, suggesting that the system-
level impact of SETs cannot be inferred from low-level metrics
alone. This underscores the necessity of performing system-
level FI rather than relying solely on gate-level glitch mod-
eling. FIawase enables such end-to-end analysis efficiently,
allowing rapid identification of vulnerable modules under
realistic fault conditions and providing concrete guidance for
targeted resilience strategies.

C. Throughput and Robustness

Baseline specify: While the core contribution of FIawase
is bridging netlist-level SET-to-SEU transfer and hardware
emulation for exhaustive system-level fault evaluation, several
optimisations have also been introduced to improve both speed
and reliability compared to the HachiFI baseline [17]. In this
experiment, HachiFI runs 60 k-cycle test programs and issues
ten OpenOCD commands to configure the fault site (10 ×
3k cycles per FI). Each SET induces 2.4 SEUs on average
as observed in our experiments, resulting in 19k cycles of
overhead for JTAG writes and scan loops (2.4 × (3k + 5k)).
As a result, each injection consumes about 109 k cycles, or
4.36 ms on a 25 MHz emulator. Furthermore, injected faults
crash the system in 15% of runs as shown in Fig. 6. Assuming
a 2-second manual global reset, constant supervision, and no
idle time, the reset overhead increases the average injection
time by roughly 69× (i.e., 15% × 2 s ÷ 4.36 ms).

Speed Improvements over Baseline: FIawase addresses
these issues through the following optimisations: (i) An SEU
filter in the simulation stage discards 80% of fault patterns
that are logic-masked or redundant, avoiding unnecessary
emulation; (ii) By skipping full program output over UART
and using a single-byte result flag, the test program length is
reduced from 60 k to 18 k cycles; (iii) Faults are loaded in
batches of 256, amortizing the 30 k-cycle setup overhead to
approximately 0.1 k cycles per injection; (iv) Finally, a crash
recovery timer resets the core automatically after 218 k cycles,
which is twice the baseline injection time. This replaces the
manual global reset and reduces the reset overhead from 69×
down to just 0.3× (15% × 2). Together, these optimisations
significantly improve overall FI throughput, as shown in
Table I, achieving a speedup of approximately 18× in non-
crashing cases, and over 655× when accounting for crash-
induced reset overhead.

TABLE II
TIME NECESSARY FOR EXHAUSTIVE SET INJECTION (HASH).

Method Time and Speed-up

SET-to-SEU Transfer FIawase 1h (VCS) + 6h (script)

1 Program Run
with SET FI

Pure Sim. 2.12 s
FIawase 1.19 ms (1782x)

Exhaustive SET FI
Pure Sim. ∼61.5 years
FIawase 35.66 h (15106x)

Note: DUT has 15219 wires and 60035 cycles for Hash workload.

Realtime for Exhaustive Evaluation: Table II summarizes
the end-to-end speedup achieved by FIawase on the Hash
workload. Specifically, 15,219 logic wires in the DUT are
involved in the injection campaign, and the Hash program
spans 60,035 cycles.

In the SET-to-SEU transfer stage, one FIawase simulation
run processes 100 wires over a full program execution in 19
seconds using Synopsys VCS, with an additional 2 minutes for
post-processing and SEU pattern filtering. Given this setup, the
complete SET-to-SEU transfer across all wires completes in
approximately 7 hours. As a result, simulation is no longer
the performance bottleneck. In comparison, a Python-based
SET propagation analyzer takes approximately 0.02 seconds
per gate-cycle pair, leading to a total estimated runtime of over
two years. This translates to a 6,316× speedup with FIawase
when excluding script processing time.

In the emulation stage, a single program run with one
injected fault takes only 1.19ms on FPGA, providing a 1,782×
speedup compared to 2.12s in netlist-level simulation. To-
gether with the proposed optimization strategies, the total time
for an exhaustive SET FI campaign is reduced from more
than 61 years using pure simulation to just 36 hours. This
results in an overall speedup of 15,106×. In summary, FIawase
transforms exhaustive SET FI at the system level from an
impractical long-term task into a process that completes in just
36 hours. These results validate the practicality of FIawase for
exhaustive fault analysis on SoCs under realistic workloads.

V. CONCLUSION

In this work, we present FIawase, a high-throughput SET
fault injection framework that, to our knowledge, is the first
to enable scalable, practically exhaustive fault impact evalu-
ation by bridging simulation-based SET-to-SEU transfer with
emulation. By filtering unnecessary full-program runs on the
emulator and executing the FI campaign automatically and re-
liably at runtime, FIawase enables efficient and comprehensive
fault analysis at the system level. Our implementation achieves
over 15,000× speedup compared to traditional pure simulation,
reducing an otherwise 61-year exhaustive campaign to just 36
hours. FIawase establishes a practical foundation for future
SET FI research, enabling integration with advanced SET
modeling or acceleration techniques at the SoC scale.
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