Tenpura: A General Transient Fault Evaluation and Scope
Narrowing Platform for Ultra-fast Reliability Analysis

Quan Cheng!?, Huizi Zhang?, Chien-Hsing Liang®, Mingtao Zhang!,
Jing-jia Liou®, Jinjun Xiong*, Longyang Lin%, Masanori Hashimoto*!

'Department of Communications and Computer Engineering, Kyoto University, Kyoto, Japan
2School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
3Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
“Department of Computer Science and Engineering, University at Buffalo, USA
*{hashimoto @i.kyoto-u.ac.jp}

Abstract—For reliability-critical silicon systems, transient er-
rors caused by cosmic rays necessitate comprehensive and
efficient reliability analysis before product deployment. Fault
injection (FI) serves as a cost-effective alternative to expensive
irradiation experiments for evaluating system robustness. How-
ever, simulation-based FI is constrained by the performance of
the underlying hardware platform, making it impractical for
large-scale designs, where achieving high fault coverage can
take months or even years. Furthermore, most transient errors
have no impact on system functionality, and filtering out these
insignificant errors in advance can significantly enhance the
efficiency of reliability analysis. To address these challenges,
we propose Tenpura, a fault evaluation platform designed for
ultra-fast reliability analysis. In Tenpura, a transient fault scope
narrowing method is introduced to narrow the FI scope via
the proposed scan-based activity tracing flow, further optimizing
fault analysis and improving overall efficiency. By leveraging
FPGA emulation and scan chain-based fault analysis at the pre-
silicon stage, Tenpura achieves high-efficiency fault reduction
(88.49-96.26% across three design under tests (DUTs) including
RISC-V cores and NVDLA-based AI accelerator) within one
month, delivering over an order of magnitude faster fault analysis
compared to SOTA methods.

Index Terms—fault injection, reliability analysis, scan chain,
scope narrowing

I. INTRODUCTION

In silicon-based systems, especially those deployed in
safety-critical environments (e.g., space tasks, autonomous
driving), cosmic rays present a significant challenge to system
reliability [1], [2]. These high-energy particles can induce tran-
sient faults, commonly known as soft errors, within the silicon
substrate [3]. Such errors manifest as momentary disruptions
in circuit behavior, potentially compromising system integrity
and functionality. These faults are particularly concerning for
reliability-demanding applications, where even brief disrup-
tions can lead to system failure or mission compromise [4],
[5]. Evaluating transient faults early in the product lifecycle
is critical for ensuring the reliability of silicon chips before
they reach production. Early-stage transient fault evaluation
not only helps mitigate potential failures, but also accelerates
product deployment by proactively identifying and addressing
vulnerabilities [6], [7]. Furthermore, with the growing demand
for edge computing and Al-enhanced platforms in fail-safe

fields, comprehensive fault analysis has become a cornerstone
of modern silicon systems [8], [9].

Fault injection (FI) has attracted considerable attention as
a powerful tool for analysis of system-level reliability [10]-
[13]. It allows the simulation of soft errors by deliberately
introducing faults into the system, enabling engineers to ob-
serve how the system reacts and whether error-handling mech-
anisms function as intended. However, traditional FI methods
encounter significant limitations. Hardware emulation-based
FI often struggles with insufficient coverage, limiting its ability
to comprehensively test system reliability across all potential
fault scenarios [12]. On the other hand, software simulation-
based FI suffers from severe inefficiency. This inefficiency
stems from two main causes. First, the sheer number of
possible fault locations and injection time points leads to
a combinatorial explosion in test cases, making exhaustive
simulation impractical. Second, many injected faults turn out
to be inconsequential. They do not propagate to the system
output or violate correctness, but still consume computational
resources during simulation [14]. This results in large portions
of the FI campaign contributing little to meaningful analysis,
wasting both time and compute cycles. Consequently, full-
coverage simulation-based FI can take months or even years
to complete for complex systems [10]. This inefficiency is
not just a matter of computational cost. It also hinders timely
reliability evaluation and rapid design iterations. By narrowing
the FI scope (i.e., identifying and filtering out faults that do
not affect the system), it is possible to reduce redundant injec-
tions, accelerate analysis, and achieve ultra-fast yet meaningful
reliability assessment.

To address the aforementioned issues, this paper introduces
Tenpura: A General Transient Fault Evaluation and Scope
Narrowing Platform for Ultra-fast Reliability Analysis. The
proposed framework incorporates three key points to address
the challenges of traditional FI methods for reliability analysis:

o Scan-based Activity Tracing Flow: A scan-based ac-

tivitiy tracing flow is implemented by reconfiguring the
scan chain (SC) to enhance the fault analysis capabilities.
In mode 1, the SC is utilized for FI and operational
correctness verification, allowing users to systematically

inject faults or detect defects into various flip-flops (FFs)
on the chip. Mode 2 switches to capturing the write state
of FFs, enabling the collection of detailed information
about how data propagates and changes.

o Fault Injection Scope Narrowing Flow: Leveraging
the SC’s ability of both modes to efficiently capture FF
write states, data flipping states, and the mapping of FF
interconnections, a C/C++-based program is developed
to implement FI scope narrowing (SN). This process
significantly reduces the number of faults that need to be
injected by filtering out faults that are unlikely to affect
the behavior of the system. By focusing on high-impact
faults, the proposed platform speeds up the reliability
analysis process without sacrificing coverage.

o FPGA Emulation for Fast Data Acquisition: To quickly
obtain the operating status of design under test (DUT), the
emulation platform is deployed to FPGA. On the FPGA,
the dual-mode SC realized in activity tracing flow is used
to obtain the write states and data of FFs and to perform
FIs to obtain the states of data flipping. Combining the
above data and analyzing it through a FI SN flow can
efficiently accelerate the fault reduction analysis.

In summary, Tenpura provides a comprehensive solution for
transient fault evaluation and FI scope narrowing, addressing
the limitations of traditional FI methods. Its contributions in
SC reconfiguration, FI SN and FPGA emluation enable ultra-
fast, efficient, and precise reliability analysis for silicon-based
systems operating in harsh environments such as space.

II. RELATED WORK

Fault injection is essential for assessing system reliability,
particularly for analyzing transient faults in silicon systems
under radiation or environmental disturbances. Traditional FI
methods can be broadly classified into hardware-based and
software-based approaches, each facing distinct limitations.

Software-based (simulation-based) FI offers flexibility with-
out hardware modifications but is often inefficient, with com-
prehensive campaigns taking months or even years for com-
plex systems with many FFs. The vast number of fault scenar-
ios further increases computational demands. Cheng et al. [5]
implemented software-based FI for an AI SoC using backdoor
access, but the long simulation times significantly impact
efficiency. Similarly, Eris [10], a C/C++ RTL simulation FI
framework, achieves high coverage at low cost but is limited to
instruction-level FI and suffers from long simulation times for
large designs. Hardware-based FI, such as FPGA emulation,
enables high-speed and high-fidelity testing but struggles with
comprehensive fault coverage due to the complexity of modern
ICs. Many FI techniques fail to account for all transient
fault scenarios, and their setup is often resource-intensive.
Fiji-FIN [12], for example, only injects faults into memory
cells, missing registers and limiting DUT resilience evaluation.
Similarly, an FPGA-based FI framework [15] introduces faults
at multiple levels (software, register, FF) but suffers from
high resource consumption and limited applicability to modern
processors due to its reliance on LEON3. Moreover, existing

frameworks often lack well-defined error patterns tailored to
specific DUT requirements. Another key issue with hardware
and software FI methods is the irrelevance of fault impact.
Not all faults will lead to serious system failures, resulting
in unnecessary overhead and wasted simulation or emulation
time. Current methods for screening irrelevant errors are
basically based on software extraction, which faces limitations.

FI scope narrowing techniques, such as filtering non-impact
single event upsets (SEUs) faults, have been introduced to
improve the efficiency of reliability analysis without com-
promising comprehensiveness. For example, Raasch et al.
[14] improved architecturally correct execution (ACE) analysis
accuracy by extracting circuit node trees from RTL designs.
However, their approach is inefficient and lacks netlist-level
simulation, leading to potential inaccuracies. Since ACE anal-
ysis determines whether a bit-flip could affect system behavior,
it is crucial to comprehensively evaluate errors only within the
ACE interval (i.e., the critical window between a write and the
final read before the next write). Yang et al. proposed ACE-
Pro, an RTL-based propagation graph method [6] up to 99.91%
fault reduction, but it relies on pure simulation. Also, due to
the low efficiency of simulation, the design takes several weeks
to simulate dozens of system cycles. Moreover, Huang et al.
proposed an FPGA-based acceleration method for transient
fault reduction analysis [16]. While it enhances efficiency
by accelerating certain steps, many time-consuming processes
such as ACE analysis still depend on software simulation,
limiting overall speed improvements. In addition, the above
research works do not improve and optimize FI and accelerate
fault reduction analysis from a circuit perspective.

To address these challenges, an FI platform that seamlessly
integrates the advantages of both software and hardware is
essential for efficient collaborative design and ultra-fast reli-
ability analysis. Additionally, an effective platform for fault
reduction analysis is essential to further accelerate system’s
reliability evaluation.

III. TENPURA FRAMEWORK

Tenpura is a comprehensive platform aimed at conducting
ultra-fast reliability analysis for digital systems, particularly
under transient fault conditions. Tenpura accelerates FI scope
narrowing by assisting ACE analysis [17] and Def/Use Prun-
ing (DUP) [18]-[20] with FPGA-based DUT tailored for
reliability analysis, whereas earlier studies performed both
ACE analysis and DUP entirely in software simulation [6],
[14]. The DUT is implemented on an FPGA with enhanced
scan chains that provide additional functionality required for
hardware-assisted FI scope narrowing, thereby drastically re-
ducing the otherwise time-consuming simulation effort.

Fig. 1 shows the original DUT design, followed by FPGA-
based implementation of DUT with reliability analysis func-
tionalities. The flow starts from the HDL design (Verilog
or SystemVerilog), which integrates standard cell and IP
libraries, design constraints (SDC), and technology files. The
first step involves traditional ASIC design flow (i.e., synthesis
and place-and-route (PR) with design-for-testability (DFT),

HDL Design L GDSII Layout SC-recon_figured FPGA-based Reliability
(Verilog / SV) Stepi#1: L (ASIC) Netlist - DUTs Analysis
Synthesis Tool f
(1.DFT floww/ | . v A
Standard Cell Scan Chain; |} Backend [| Scan Chain (1) F1& (2) FF (— Tables w/
& IP Libraries [7| 2 Gate_Clock | Netlist Reconfiguration Write Op. / Data Reduced Fault
Enabled) Tracing via SC _for SC-based FI
Design s Scan Def. | *
Constraints Place-and-Route [~ _J FF-Path-to- Write Op. & Fault Reduction
(SDC) Wi St-:r:r?l(:hain SC-Position eI Analysis
Mapping for Fl Scope
- Reorder) > Extracted —p A
Tech. Files Timing Paths a| Mapping File Narrowing

Fig. 1. Flow of Tenpura Platform for Ultra-fast Reliability Analysis.

Gated Clock Latch Cells and Scan Chain Cells are generated via built-
in flows (i.e., -gate_clock and -scan) in synthesis and PR tools.
Data Activity Tracing Logic

Combinatorial
Logic

From SC_IN

Previous FF(s)

SC_CK

Scan-based activity tracing logic | SYS_CK| sE Q | 1: Data Tracing
requires adding 2 MUXs, 1 scan- 1 0: Write Op.
FF, 1 AND gate for each scan ! SC_CK >CP : Tracing

1

chain cell, and a port (TM) for ' . . L ; -
mode switch. 1 Write Op. Activity Tracing Logic

Fig. 2. Scan-based Activity Tracing Logic of FFs.

enabling scan chains and clock gating). This process produces
a GDSII layout for ASIC fabrication, a back-end netlist for the
following scan-based activity tracing detailed in Section III-A,
SC definitions, and extracted register-to-register (R2R) logic
paths only with start points and end points necessary for
the following SC position mapping detailed in Section III-B.
Moreover, the design after reconfiguring the SC for improved
reliability analysis will be deployed to the FPGA as DUT
for FI and data extraction detailed in Section III-C. Then, the
data extracted by the SC on the FPGA will be analyzed and
the corresponding fault reduction tables will be generated to
achieve FI SN detailed in Section III-D.

A. Scan-based Activity Tracing

Fault reduction analysis, especially ACE analysis, relies
on tracking the read/write operations and the stored data of
FFs to determine whether a bit-flip can propagate and affect
system behavior. However, traditional DFT flows generate SCs
that only support FI and data extraction at each time step,
without capturing the specific read/write operations of FFs.
To address this limitation, this paper proposes a scan-based
activity tracing mechanism implemented using Tcl scripts to
restructure the SC(s), enabling the extraction of both write
enable signals and data for all FFs at every time step for fault
reduction analysis as shown in Fig. 2.

The synthesis and PR tools come with built-in flows capable
of generating the gated clock latch cells through the gate-
clock flow and the scan cells through the DFT flow as shown

in the upper part of Fig. 2. Based on the generated results
from the above steps, we used some commands of commercial
EDA tools (e.g., create_cell, connect_pin, disconnect_net,
report_timing) to realize the reconfiguration of SC. The SC
reconfiguration part is shown in the lower part of Fig. 2. The
AND gate in red serves to implement clock gating for the
upper scan cell for FF write operation tracing, preventing its
clock signal from contaminating data stored in the upper FF.
The newly added lower scan FF is designed for extracting
write operations to the upper scan FF (via the CK_EN
signal). When CK_EN = 1, it indicates the upper FF is
being updated with new data, while CK_FEN = 0 maintains
the current stored value without updates.

Basically, the reconfigured SC supports two modes: Data
tracing mode (TM=1): The system operates in normal func-
tional mode or SC mode, and the upper scan FF becomes
active to shift out the data of all FFs in the current clock cycle.
Write operation tracing mode (TM=0): The lower scan FF is
enabled to scan through the chain, specifically recording the
write operating state (C'K_EN) of the upper FF in the current
clock cycle. Once the write state is captured with TM=1, the
write state scan starts by setting TM=0. Thus, the data update
behavior can be observed through the SC output. This dual-
mode implementation enables data extraction and operational
status monitoring (via clock-gated enable signals) for sub-
sequent fault reduction analysis while maintaining backward
compatibility with legacy SC functionality. Additionally, the
scan-based activity tracing logic is merely an example. Users
can customize the reconfiguration process based on specific
requirements to enable additional functionality.

B. FF Connectivity to Scan Chain Mapping

Fault reduction analysis and reliability analysis are based
on the connectivity among FFs to extract the fault propagation
graph. In this design, both analyses rely on operations within
the SC. Therefore, it is crucial to map the FF connections to
specific locations of FFs within the SC for accurate analysis.

This process, implemented by Tcl scripts, focuses on ac-
curately mapping FF connections to specific SC locations
to enhance the precision of FI, fault reduction analysis, and
reliability analysis. Commercial EDA tools, for example, are
used to extract all R2R paths through commands such as

—Ip C5 Combinatorial

—sI Logic D> cp
—Ise Q

—PDerp D C21

Combinatorial
Logic

At row 5: C(5—9)=1, C(5—21)=1, and C(5—)=0 for all other j.
At row 8: C(8—88)=1, and C(8—,)=0 for all other j.

Fig. 3. Example of FF Connectivity to SC Mapping Logic.

report_timing. The start and endpoints of these R2R paths
correspond to FFs. Typically, each FF can serve as either
a starting or ending point in multiple R2R paths, resulting
in multiple connections. By mapping these extracted FFs to
their positions within the SC, a matrix representation of their
connectivity can be constructed. Based on this, we can express
the connection relationship more clearly using the notation
C(i — j), which represents a physical connection from start
point ¢ to end point j:

Cl—-1) C(1—2) C(1—m)
c2—1) C(2-—2) C(2—m)

o= : : - : M
C(m.—> 1) C(m.—> 2) C(m.—>m)

Where C(i — j) € {0,1}, C(i — j) = 1 indicates a logic
connection from start point ¢ to end point j expressed by R2R
path, while C'(i — j) = 0 means no connection exists. Each
row ¢ represents all the connections originating from scan cell
i. Assuming the SC length is m, C' is an m X m matrix that
captures the R2R dependencies between all scan cells. This
naming convention clearly reflects the start and end connection
relationships for each scan cell, making it more intuitive for
reliability analysis and FI applications. Besides, all scan chains
in a design can be organized into a single C' matrix.

The simple example shown in Fig. 3 depicts a mapping
of physical connections on a SC, where scan cells (e.g., C5,
C9, C21, C8, C88) are interconnected through combinatorial
logic blocks. Each scan cell includes FF components with
inputs (D, SI), control signal (SE), clock signal (CP), and an
output (Q). Connections between cells are defined by R2R
paths: for example, scan cell C5 at position 5 sends signals to
cells C9 and C21, while C8 connects to C88. These links are
represented in a binary matrix C' as illustrated above, where a
“1” at position C(i — j) indicates a physical connection from
cell 7 to j, and “0” denotes no logic connection.

C. FPGA Emulation for Fast Data Acquisition

To speed up the analysis of DUT, we use an FPGA-based
emulation platform. The SC-reconfigured netlist and some
behavior files will be deployed to Xilinx FPGA to build the
DUT as shown in Fig. 1. In addition, we need to rewrite the
behavior models (e.g., all standard cells). The behavior models

provided by the manufacturer usually contain some primitive
syntax and some declarations that Vivado does not support.
Therefore, we need to rewrite and match them with the netlist.
Also, the platform uses SC to efficiently capture the write
status and data of FF in each cycle and execute FI. The entire
data acquisition process mainly includes two steps:

In the first step, the system extracts only the write states of
the FFs through the SC’s write operation tracing mode. For
each system clock cycle to proceed, the write states of all the
FFs are captured simultaneously and then scanned out. This
process is repeated for the number of system clocks under
analysis. This write state data is essential for analyzing the
ACE intervals in the preliminary fault reduction analysis of
FI SN flow (Algorithm 1 in Section III-D). In the second
step, based on the DUP technique, FI is performed. The
DUP method selects the fault to be injected at the cycle just
before the last read cycle within an equivalent region, as any
faults injected earlier in the cycle would have the same faulty
effect until the read cycle occurs (Details will be explained in
Section III-D2 with an example). Following the FI, the system
captures both the write states of the FFs and the corresponding
data after the fault has been injected. The SC’s two modes
are employed during this step: one mode extracts the write
state, while the other captures the data post-fault injection.
This enables a detailed evaluation of the fault effects, including
identifying any masked faults (Algorithm 2 in Section III-D).

By combining FPGA emulation with SC-based FI and the
two-step data extraction process, Tenpura enables efficient
fault reduction analysis. The initial analysis of ACE intervals
and the subsequent analysis of DUP-based fault reduction,
significantly expediting the DUT’s reliability analysis.

D. Fault Injection Scope Narrowing Flow

The FI SN process consists of two main components: (1)
ACE analysis and (2) DUP-based fault reduction. ACE analy-
sis relies on the data extracted in step 1 of the aforementioned
FPGA emulation process, referred to as scan write states W C.
The implementation of DUP-based fault reduction depends on
the data obtained after FIs in step 2, referred to as scan FF
write states WC'y; and scan data DC'y;. Also, a matrix DC
with the same dimension as W' is defined to represent the
actual data stored in each scan FF, which is used as a golden
reference to compare the fault injected scan data DCY;.

1) ACE Interval Analysis for Fault Reduction: Algorithm 1
depicts the ACE analysis procedure, aiming to optimize FI
by identifying time intervals where injected faults have no
impact on system behavior. Algorithm 1 analyzes FF write
states extracted by SC and searches non-impact intervals for
every startpoint FF based on its endpoints’ behavior.

Initially, a matrix ACFE,, with all ones (i.e., no unACE
intervals) is constructed, where each row corresponds to a
scan FF in the design, and each column corresponds to a
specific clock cycle during application execution in sequential
order. Then, the algorithm iterates through each scan FF as
the startpoint and retrieves its corresponding endpoints from
the connection matrix C' as mentioned in Section III-B. These

Algorithm 1 ACE Analysis for FI Scope Narrowing

Require: Connection matrix C, scan chain states W C' (i, t), number of scan
FFs m, total cycles T'

Ensure: Searching ACE intervals for fault reduction

1: Initialize ACE matrix AC E,, of the same size as W C to all ones

2: for each FF ¢ from 1 to m do

3 Find endpoints Endpoints(i) < {j | C(i — j) =1}

4 if Endpoints(i) # () then

5 Initialize list ZeroIntervals <]

6: start = —1 > Track start of global zero interval
7.

8

9

for each cycle t from 1 to 7" do

if Vj € Endpoints(i), WC(j,t) = 0 then

: if start = —1 then
10: start <t

> Start of zero interval
11: end if
12: else
13: if start # —1 then
14: Add (start,t — 1) to ZeroIntervals
15: start < —1
16: end if
17: end if
18: end for
19: if start # —1 then
20: Add (start,T) to Zerolntervals
21: end if
22: for each zero interval (n,n + k) € ZeroIntervals do
23: Find last WC'(,t) = 1 in range (1,n — 1), set t45¢
24: if ¢;45¢ exists then
25: Mark interval (¢;4s¢ + 1,7 + k) as unACE intervals
26: ACEm(iytigse +1:n+ k)« 0
27: end if
28: end for
29: end if
30: end for

31: return ACE matrix ACE,,, and Endpoints array.

endpoints represent the FFs can be influenced by the current
FF (i.e., startpoint) in the SC. If an FF has no endpoints, it is
skipped. Otherwise, for each scan FF with valid endpoints, the
algorithm scans all time cycles using the FF write states W (C'
to identify contiguous time intervals. The notation WC'(i,t)
for scan write state, can be expressed as follows:

WC(1,00 WC(2,0) WC(m, 0)
WC(l1) we(2 1) WC(m, 1)

We = : : : 6))
WC(1,n) WC(2,n) WC(m,n)

WC(p,t) € {0,1} becomes 0 when all endpoint FFs
starting from the p-th scan cell are in hold operation at time ¢.
Conversely, if at least one of those endpoint FFs is in the write
state at time ¢, WC(p,t) is 1. The first dimension p represents
the SC index, with 1 < ¢ < m. The second dimension ¢
represents time (i.e., system cycle), ranging from 0 to n. This
notation expresses the state transitions of the SC over time.

In the search process, the algorithm searches for all endpoint
FFs that remain in a zero state. These zero intervals indicate
periods when no write operations occur at the endpoints,
meaning a fault injected in the originating FF (i.e., startpoint)
may be masked. The algorithm records each detected zero
interval as (n,n + k). Once all zero intervals are determined,
the algorithm examines each interval (n,n + k) and searches
for the last occurrence of a write operation in the originating
FF before n. This timestamp (;,s;) marks the last meaningful

C(50—54)=1, C(50—88)=1, C(50—95)=1
startpoint endpoints (three paths)
WC (50, t) * WC (54,) WC (88, f) WC (95, 1)

(]] [0 [

No data update for all
endpoints for 4 cycles

4-cycle window of {C (50, t) | t € [3, 6]} can
be reduced for Fl scope narrowing

Fig. 4. Example of FI Scope Narrowing for ACE Analysis.

operation before the zero interval. If such an operation exists,
the interval (¢;45¢+1,n+k) is classified as an unACE interval,
meaning that FIs during this period do not propagate and can
be excluded from FI analysis. By systematically detecting and
marking unACE intervals into matrix ACE,,, the algorithm
refines the FI process, significantly reducing unnecessary FIs
while preserving accuracy in fault coverage analysis.

A simple example is shown in Fig. 4 for better under-
standing, W C'(50, t) is the startpoint, with timing connections
to three endpoints: WC(54,t), WC(88,t), and WC(95,t).
The connection matrix indicates that C(50 — 54) = 1,
C(50 — 88) = 1, and C'(50 — 95) = 1, meaning that any
transition at W C'(50,t) should propagate to these endpoints.
However, in the highlighted window from t =4 to t = 7, all
endpoint states remain at zero and the last write operation of
the startpoint is found at ¢ = 7 . This indicates that during
the period (¢ € [3,6]), the state transitions at WC'(50,¢) do
not propagate to any of its connected endpoints. Following
the algorithm, this forms an unACE interval where no data
updates occur at the endpoints, making it a candidate for FI
scope reduction. By identifying such intervals, the FI scope
can be refined to avoid non-impact FIs into scan cells that
do not affect the design, thereby improving FI efficiency and
accuracy in reliability analysis.

2) DUP Reduction Analysis for Fault Reduction: To further
reduce the faults, Algorithm 2 is designed to analyze fault
propagation by systematically identifying DUP faults. The
essence of DUP lies in the observation that faults injected
before the last use (read) cycle often produce the same effect.
Therefore, instead of injecting faults at every possible cycle,
DUP identifies the last cycle before the value is used, and
injects only one representative fault at the beginning point,
significantly pruning redundant FIs while virtually preserving
the accuracy and comprehensiveness of fault analysis.

Algorithm 2 operates by iterating over all scan FFs and
injecting errors at specific timing points, referring to matrix
WC obtained by Algorithm 1, to evaluate their impact on
system behavior. If these errors have no impact on the system
and do not propagate along the R2R path, then it can be
determined that these errors can be removed. In the analysis

Algorithm 2 DUP Reduction for FI Scope Narrowing

Require: Connection matrix C, scan chain write states W C'(4, t), scan chain
data DC'(3,t), number of scan FFs m, total cycles T, ACE matrix
ACE,, and Endpoints array from Algorithm 1

Require: InjectError() > Function for FI via SC

Require: GetWriteStateAndData() ©> Function to fetch FF write state
and data via SC

Ensure: Analyzing DUP faults after fault injection

1: Initialize final fault matrix Total_Faults < ACE,,
2: DUP_Reduced_Faults < ()
3: for i =1 to m do

> Iterate over all startpoints

4 ts < First occurrence of WC(3,¢) =1 > ts<T
5 while t5 # () do

6: te < Next occurrence of WC(i,t) = 1 after ¢

7: if tc = () then

8: te =T > Next write point is 7’
9: end if

10: Define interval (s, te)

> Check if all Endpoints(i) in (ts + 1,te) are O
11: if 35 such that WC(j,t) # 0 for some ¢ € (ts + 1,tc) then
12: InjectError(i,ts) > Bit-flip at (4, ts)
13: Data acquisition (scan write states WC'p; and scan data
DCY%;) < GetWriteStateAndData(ts, te)
14: if No changes (WCy; == WC && DCy; == DC) then
15: DUP_Reduced_Faults(z) “—
DU P_Reduced_Faults(i) U (ts,te — 1)

16: Total_Faults(i, (ts,te — 1)) - 0

17: end if

18: end if

19: ts < te > Move to the next write point
20: end while
21: end for

22: return DU P_Reduced_Faults for DUP statistics, and fault matrix
Total_Faults with reduced faults.

process, for each scan cell ¢, the algorithm identifies the first
occurrence of WC(i,t) = 1, denoted as t;, which marks a
write operation. It then searches for the next occurrence of
WC(i,t) = 1, defining an interval (¢5,t.) where t. represents
the next write occurrence. If no subsequent write is found, ¢,
is set to the final time step 7. Within each identified interval
(ts,te), the algorithm examines whether some endpoint scan
cells remain at one throughout the interval. If any endpoint has
a non-zero state in (¢; + 1,t.), an error is injected into scan
cell ¢ at ¢5. It should be noted that the FI here is to change the
data of scan FF, that is, bit-flip, without changing the write
state of scan FF. Then, the system runs, and the write state
(WC'Y;) and data (DC';) from 4 to ¢, are collected via SC(s).

If the injected error leads to a change in write state or
output data, the interval (¢, t.—1) is classified as an impactful
interval, indicating that faults in this range are architecturally
significant. Otherwise, the interval is categorized as a masked
fault interval and can be removed, meaning that faults in
this range are masked and do not propagate to affect system
behavior. These masked faults are fused with the ACE,,
matrix in Algorithm 1 to generate the final fault reduction
matrix. By iterating through all scan cells and analyzing these
intervals, the algorithm effectively differentiates between fault-
masking and unACE scenarios, optimizing FI analysis and
improving fault characterization in scan-based testing.

A simple example (Fig. 5) illustrates the DUP fault reduc-
tion process for FI using SC. It shows how a FI (bit-flip)
affects data propagation and endpoint updates. The process

C(21—44)=1, C(21—46)=1, C(21—47)=1

startpoint endpoints (three paths)
wc (21) ' WC (44, 1) WC (46, 1) WC (47, 1)
t=1 [o] IEI [o]
t=2 'El'\,El___ - Dol
t=3 '
t=4 'm| 'm data update exists .
t=5 in some endpoints |
- '\-l - - - -
t=6 IEI o "G

FI (bit-flip) is performed in DC (21, 2) to
analyze DUP Fault Reduction

Fig. 5. Example of FI Scope Narrowing for DUP Reduction.

TABLE I
TyPICAL COMMANDS IN TENPURA.
Tenpura Command Description
Init Setting up parameters
MapFFToSCPos Mapping FFs to SCs’ positions
GetFFConnect Retrieving FF connectivity details
SCofFFConnect SC-represented FF connectivity details
ScanReconfiguration Reconfiguring the SC cells
ACEAnalysis Searching ACE intervals
DUPAnalysis Evaluting DUP reduction

begins by identifying a starpoint where two consecutive states
are one, in this case, from ¢t = 2 to t = 5. Next, we check
whether any endpoint registers a non-zero value (i.e., a write
operation) within the interval ({ = 3 to ¢ = 5). As shown in
the figure, W ('(44,4) and W ('(46,3) contain write operations,
indicating that an FI is necessary. To perform FI, we flip the
bit at DC(21,2) at t = 2 and allow the system to continue
running, capturing the resulting values WC'y; and DCYy; till
t = 5. Finally, we compare the outputs. if W' is equal to
WCy; and DC is equal to DCy; from (t = 3 to t = 5),
the entire starpoint interval from ¢t = 2 to £ = 5 can be
considered a removable fault, as it does not affect system
behavior. This approach optimizes fault analysis by filtering
out inconsequential faults, improving efficiency.

E. Main Commands of Tenpura Platform

To implement the functionalities described above, we have
developed a set of dedicated commands using Tcl and C++,
as summarized in Table I. These commands facilitate system
initialization, FF connectivity analysis, SC reconfiguration,
and FI reduction. The Init command initializes system param-
eters and configurations, ensuring that all necessary variables
and data structures are correctly configured for subsequent
operations. The MapF FToSCPos command establishes the
mapping between scan FFs and SC positions, ensuring proper
alignment of FFs within the SC for FI testing, and structural
analysis. The GetFFConnect command retrieves connec-
tivity details between FFs expressed by specific R2R paths,
providing insights into their interconnections within the sys-
tem, which is essential for FF-to-SC-position mapping. The
SCofFFConnect command further refines the connectivity
analysis by representing FF connections in SC-based format,
making FI and fault propagation dependencies more explicit.
The ScanRecon figuration command is used to reconfigure
the SC structure to enable extraction of write status and data

TABLE II
DUT SUMMARY.
Humming Tiny NVDLA-based
Bird E203 RISC-V Accelerator
FF number 11775 5025 61393
Application Dhrystone ~ CoreMark LeNet5 (MNIST)
ppiicatio (10 runs) (1 run) (1 run)
Execution Cycle 19,408 529,513 83,506
Fl and Data
ZYNQ AXI __|Acquisition
(PS Side) | Controller
(PL side)
7'y
AXI sc
\ 4 v
DUTs (PL side)
bR |f 1.E203
(PL Side) 2. Tiny RISC-V
3. Al Accel.

Fig. 6. Experimental Setup for Tenpura Evaluation.

of FFs. The AC' E Analysis command identifies ACE intervals
that represent critical time windows where faults affect system
behavior, thereby improving the accuracy of FI scenarios.
The DU P Analysis command evaluates DUP reduction and
further analyzes the errors that can be reduced. Overall, these
commands establish a systematic framework for FI analysis,
improving fault localization, reliability analysis efficiency.

IV. EVALUATION OF TENPURA
A. Experimental Setup

To evaluate the effectiveness of Tenpura, we conduct exper-
iments on three DUTs: Hummingbird E203 [21], TinyRISC-
V [22] and a downsized NVDLA-based Al accelerator [23]
featuring a 16x16 INT8 processing element array. These DUTSs
cover a broad spectrum, from lightweight RISC-V processors
to complex Al accelerators, ensuring a comprehensive assess-
ment of Tenpura’s FI and fault reduction analysis capabilities.

The experimental setup for Tenpura is implemented on
an FPGA board (Xilinx ZCU102) as shown in the Fig. 6,
integrating multiple components to facilitate FI and analysis.
The system consists of a ZYNQ SoC, where the Processing
System (PS) side communicates with the Programmable Logic
(PL) side via AXI interfaces. The DUTs are synthesized and
routed using the DFT, gate-clock, and the proposed scan-
based activity tracing flow, where the reconfigured SCs are
automatically inserted to facilitate FI and fault reduction
analysis. Table II summarizes the DUTs in terms of scan FF
count, benchmark applications, and execution cycles. E203
includes 11,775 FFs and runs Dhrystone (10 runs) in 19,408
cycles. Tiny RISC-V has 5,025 FFs, executing CoreMark
(1 run) in 529,513 cycles. The NVDLA-based accelerator
contains 61,393 FFs and runs LeNet5 on MNIST (1 run) in
83,506 cycles. Also, these three DUTs (Back-end netlists with
SC reconfiguration) are implemented on the PL side running
at 50MHz. We construct only one SC for a fair evaluation.
Besides, a simple FI and data acquisition controller, developed
by Verilog, is responsible for injecting faults, collecting WC'
and DC information as mentioned in Section III-D2, and
enabling cycle-by-cycle monitoring of system behavior.

TABLE III
TIME OVERHEAD FOR TENPURA FRAMEWORK STEPS.

Tenpura Humming Tiny NVDLA-based
Step (unit: minute) Bird E203 RISC-V Accelerator
FF-SC mapping* 319.76 304.12 337.94
SC reconfiguration™ 326.71 122.95 14937.40
ACE Acquisition 0.08 0.89 1.71
Analysis 92.29 552.58 4864.14
Fault Injection 47.87 205.33 5466.58
DUP | Acquisition 151.74 581.08 13393.13
Analysis 105.41 597.52 4050.30
Total 1043.86 2364.47 43051.2
(~1 day) (~2 days) (~1 month)

*Only executed once during the ASIC design process.

To support pruned FI, the ACE analysis and DUP reduction,
discussed in Section III-D, are employed. The entire system is
controlled via a host computer, which interacts with the ZYNQ
SoC through JTAG & UART interfaces to configure the FI and
data acquisition controller. The fault analysis results are stored
in SD card by PS. Additionally, the DDR memory module on
the PL side is used to store intermediate computation results
in the Al accelerator. This hardware-based experimental setup
allows for a comprehensive assessment of Tenpura’s FI and
fault analysis capabilities, validating its efficiency in handling
SEUs across different DUT architectures.

B. Runtime Analysis in Tenpura

Table III shows the time overhead for each step in the
Tenpura framework across three different DUTs. The workflow
consists of several stages: FF-SC mapping, SC reconfiguration,
ACE analysis, and DUP analysis. For a fair evaluation, all
steps requiring desktop CPU computation are executed on
an Intel 19-10850K processor. The FF-SC mapping and SC
reconfiguration steps are preliminary processes that establish
the relationship between FFs and scan chains. These steps are
essential to enable accurate FI and analysis later on. However,
they are only required once during the ASIC design process,
which means their cost is amortized over the entire lifetime of
the design. For instance, SC reconfiguration for the NVDLA-
based accelerator takes significantly longer than for the other
DUTs due to its large scale and more complex scan structure.

The ACE phase consists of two parts: acquisition and
analysis. Acquisition is performed using FPGA platforms to
collect runtime execution data under normal operation. This
step is relatively fast, taking less than 2 minutes for all
DUTs. The analysis phase, however, is conducted on a desktop
workstation and consumes most of the time (552.58 minutes
for Tiny RISC-V, 92.29 minutes for HummingBird E203, and
4864.16 minutes for NVDLA-based accelerator). The DUP
step requires FI, data acquisition and analysis. The analysis
phase of DUP includes both the analysis of FI locations and
timing and the examination of the collected data. This stage
identifies and eliminates masked faults by injecting faults into
the system and observing whether they have distinct effects.
DUP introduces a substantial execution time, especially for
larger designs. For instance, FI for the NVDLA-based accel-
erator takes 5466.58 minutes, with acquisition and analysis
times of 13393.13 and 4050.30 minutes, respectively.

TABLE IV
FAULT RATIO WITH FAULT REDUCTION ANALYSIS.

Humming Tiny NVDLA-based

Bird E203 RISC-V Accelerator

Total Fault 25,498,784 222,394,107 625,737,938

unACE 12,347,810 78,444,347 286,614,371
(48.43%) (35.27%) (45.80%)

DUP 12,196,068 122,583,632 267,127,536
(47.83%) (55.12%) (42.69%)

Remained 954,906 21,366,128 71,996,031
Fault (3.74%) (9.61%) (11.51%)

In summary, the total time is approximately 1043.86 min-
utes (~1 day) for HummingBird E203, 2364.47 minutes (~2
days) for Tiny RISC-V, and 43051.2 minutes (~1 month) for
the NVDLA-based accelerator. However, this execution time
is entirely acceptable within the overall ASIC design process.

C. Fault Reduction Results

Table IV presents the fault analysis results for the DUTSs
shown in Table II. Initially, each design is subjected to a
large number of total possible faults. However, by applying
ACE analysis, a significant portion of faults is identified as
unACE (i.e., faults that do not affect the architectural state
and therefore do not need to be injected). For example,
in the HummingBird E203, 48.43% of the total faults are
identified as unACE, while the NVDLA-based accelerator
and Tiny RISC-V have 45.80% and 35.27% unACE faults,
respectively. Subsequently, DUP reduction is performed to
eliminate masked faults that would otherwise produce the same
effects. This further reduces the number of FIs. For instance,
DUP analysis removes 47.83% of the faults in E203, 55.12%
in Tiny RISC-V, and 42.69% in the NVDLA-based accelerator.

As a result of these two steps, the final set of faults
that actually need to be injected for accurate evaluation is
dramatically reduced. Specifically, only 3.74% of the original
faults remain in HummingBird E203, 9.61% in Tiny RISC-V,
and 11.51% in the NVDLA-based accelerator. This substantial
reduction highlights the effectiveness of combining ACE and
DUP analyses to focus FI efforts on only the architecturally
and functionally significant cases, thereby saving considerable
simulation time and computational resources.

D. Comparison with Fault Evaluation SOTAs

Compared to prior fault evaluation approaches as shown
in Table V, Tenpura demonstrates significant advantages in
both efficiency and practicality. In [7], although FI is per-
formed through simulation, it requires extremely long runtimes
(approximately 1500 years, scaled to the same CPU, i9-
10850K) if one intends to inject faults across all FFs in a full
application cycle. In [6], while fault reduction is supported,
the evaluation is conducted solely on small-scale applications
without considering large or complex workloads, making the
evaluation incomplete and inaccurate. When scaled to full-
application coverage to the same desktop CPU, this work
would still require approximately 35 years to complete FI
and reduction analysis. The above two SOTAs are mainly
limited by the impact of software simulation efficiency. In
[13], a FI platform based on software-hardware co-design

TABLE V
COMPARISON WITH FAULT EVALUATION SOTAS.
DAC’24 [7]| ACE-Pro [6] [HachiFI [13]| This work
. Simulation | Simulation Software- Software-
Technique (VCS) (Verilator) Hardwgre Hardware
Co-Design Co-Design
FI Backdoor Backdoor Scan Reconfigured
Mechanism | Access Access Chain Scan Chain
FI Efficiency Low Low High High
Fault No Yes! No Yes
Reduction (98.91-99.91%) (88.49-96.26 %)
FI/Reduction <1 month
. |1500 years?| 35 years? 1 year? -
A‘(‘:a(gts‘s (AT Accel.)| (PicoRV32) | (AI Accel.) E(zf);ygiccli.)
. Netlist Netlist Designs
]')r:srii‘:s])Ntzztilé;ts chjsqiﬂéns Designs w/ SC(s) and
w/ SC(s) Gate Cells

TOnly simple applications are evaluated (e.g., String Search, Qsort).
2Estimated time for full-coverage FI and/or analysis of the application.

can effectively solve this problem. However, due to the lack
of hardware-software-based ACE and DUP fault analysis, it
cannot effectively filter out errors that have no impact. It can
only perform comprehensive FI to analyze system reliability,
so the cost also takes about 1 year. In contrast, our proposed
software-hardware co-designed approach achieves comparable
FI and fault reduction analysis within just one month ranging
from lightweight MCU designs to complex Al accelerators,
offering orders-of-magnitude improvement in analysis time
while maintaining high efficiency and broad applicability.

V. CONCLUSION

This paper presents Tenpura, a novel fault evaluation plat-
form that enhances the efficiency and accuracy of system
reliability analysis. By addressing the limitations of traditional
FI methods, Tenpura introduces a scan-based activity tracing
mechanism, an FI scope narrowing with obtained activity
traces, and an FPGA-based emulation platform to significantly
improve fault evaluation processes. The activity tracing mecha-
nism enables precise FI operations and cycle-by-cycle tracking
of FF write states. The FI scope narrowing based on ACE and
DUP analysis further enhances efficiency by systematically
filtering out faults that do not impact system behavior, reducing
unnecessary FIs. Additionally, FPGA emulation accelerates
data acquisition, allowing rapid validation of fault propaga-
tion effects. Experimental results demonstrate that Tenpura
achieves ultra-fast reliability analysis (<1 month ranging from
lightweight MCU designs to complex Al accelerator design)
while maintaining comprehensive fault coverage, making it a
promising solution for large-scale fault injection studies.

ACKNOWLEDGMENT

This work was supported in part by the Grant-in-Aid for
Scientific Research (S) from Japan Society for the Promotion
of Science (JSPS) under Grant 24H00073, by JST CREST,
Japan, under Grant JPMJCR19KS5; the National Natural Sci-
ence Foundation of China under Grant 62274081; Grant
2023QN10X177. Dr. Xiong’s contribution to this work is
limited to his interactions with Drs. Cheng and Hashimoto
at Kyoto University, Kyoto, Japan.

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

P. Rech, “Artificial Neural Networks for Space and Safety-Critical Appli-
cations: Reliability Issues and Potential Solutions,” in IEEE Transactions
on Nuclear Science, vol. 71, no. 4, pp. 377-404, April 2024, doi:
10.1109/TNS.2024.3349956.

J. Gutiérrez-Zaballa, K. Basterretxea, and J. Echanobe, “Evaluating
single event upsets in deep neural networks for semantic segmentation:
An embedded system perspective,” in Journal of Systems Architecture,
vol. 154, 103242, 2024.

S. S. Mukherjee, J. Emer and S. K. Reinhardt, “The soft error problem:
an architectural perspective,” 11th International Symposium on High-
Performance Computer Architecture, San Francisco, CA, USA, 2005,
pp. 243-247, doi: 10.1109/HPCA.2005.37.

T. Garrett, S. Roffe and A. George, “Soft-Error Characterization and
Mitigation Strategies for Edge Tensor Processing Units in Space,” in
IEEE Transactions on Aerospace and Electronic Systems, vol. 60, no.
4, pp. 5481-5498, Aug. 2024, doi: 10.1109/TAES.2024.3393929.

Q. Cheng et al., “Reliability Exploration of System-on-Chip With Multi-
Bit-Width Accelerator for Multi-Precision Deep Neural Networks,” in
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70,
no. 10, pp. 3978-3991, Oct. 2023, doi: 10.1109/TCSI1.2023.3300899.
D.-A. Yang, Y. -T. Chang, T. -S. Hsu, J. -J. Liou and H. H. Chent, “ACE-
Pro: Reduction of Functional Errors with ACE Propagation Graph,” 2021
IEEE International Test Conference (ITC), Anaheim, CA, USA, 2021,
pp. 10-19, doi: 10.1109/ITC50571.2021.00008.

Q. Cheng et al., “How accurately can soft error impact be estimated
in black-box/white-box cases? — a case study with an edge Al SoC -,”
2024 61st Design Automation Conference (DAC).

C. Bolchini, L. Cassano, A. Miele and A. Toschi, “Fast and Accurate
Error Simulation for CNNs Against Soft Errors,” in IEEE Transac-
tions on Computers, vol. 72, no. 4, pp. 984-997, 1 April 2023, doi:
10.1109/TC.2022.3184274.

Q. Xu, M. Tanvir Arafin and G. Qu, “Security of Neural Networks
from Hardware Perspective: A Survey and Beyond,” 2021 26th Asia
and South Pacific Design Automation Conference (ASP-DAC), Tokyo,
Japan, 2021, pp. 449-454.

S. Nema et al., “Eris: Fault Injection and Tracking Framework for
Reliability Analysis of Open-Source Hardware,” 2022 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), Singapore, Singapore, 2022, pp. 210-220, doi: 10.1109/1S-
PASS55109.2022.00027.

S. Laskar, M. H. Rahman and G. Li, “TensorFI+: A Scalable Fault
Injection Framework for Modern Deep Learning Neural Networks,”
2022 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), Charlotte, NC, USA, 2022, pp. 246-251, doi:
10.1109/ISSREW55968.2022.00074.

N. Khoshavi, C. Broyles, Y. Bi and A. Roohi, “Fiji-FIN: A Fault Injec-
tion Framework on Quantized Neural Network Inference Accelerator,”
2020 19th IEEE International Conference on Machine Learning and
Applications (ICMLA), Miami, FL, USA, 2020, pp. 1139-1144, doi:
10.1109/ICMLAS51294.2020.00183.

Q. Cheng, W. Liao, R. Zhang, H. Yu, L. Lin and M. Hashimoto,
“HachiFI: A Lightweight SoC Architecture-Independent Fault-Injection
Framework for SEU Impact Evaluation,” 2025 Design, Automation &
Test in Europe Conference (DATE), Lyon, France, 2025, pp. 1-7, doi:
10.23919/DATE64628.2025.10993139.

S. Raasch, A. Biswas, J. Stephan, P. Racunas and J. Emer, “A fast and
accurate analytical technique to compute the AVF of sequential bits in
a processor,” 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Waikiki, HI, USA, 2015, pp. 738-749,
doi: 10.1145/2830772.2830829.

H. Cho, S. Mirkhani, C. -Y. Cher, J. A. Abraham and S. Mitra, “Quan-
titative evaluation of soft error injection techniques for robust system
design,” 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, USA, 2013, pp. 1-10.

Z. -M. Huang, D. -A. Yang, J. -J. Liou and H. H. Chen, “FPGA-Based
Emulation for Accelerating Transient Fault Reduction Analysis,” 2022
IEEE 31st Asian Test Symposium (ATS), Taichung City, Taiwan, 2022,
pp. 144-149, doi: 10.1109/ATS56056.2022.00037.

A. Biswas, P. Racunas, J. Emer and S. Mukherjee, “Computing Accurate
AVFs using ACE Analysis on Performance Models: A Rebuttal,” in
IEEE Computer Architecture Letters, vol. 7, no. 1, pp. 21-24, Jan. 2008,
doi: 10.1109/L-CA.2007.19.

(18]

[19]

[20]

[21]

[22]

[23]

R. Barbosa et al., “Assembly-Level Pre-injection Analysis for Improving
Fault Injection Efficiency,” in Dependable Computing—EDCC 5, Berlin,
Heidelberg: Springer, 2005, pp. 246-262.

J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock and J. Haid,
“Efficient fault emulation using automatic pre-injection memory access
analysis,” 2012 IEEE International SOC Conference, Niagara Falls, NY,
USA, 2012, pp. 277-282, doi: 10.1109/SOCC.2012.6398361.

J. Guthoff and V. Sieh, “Combining software-implemented and
simulation-based fault injection into a single fault injection method,”
Twenty-Fifth International Symposium on Fault-Tolerant Computing.
Digest of Papers, Pasadena, CA, USA, 1995, pp. 196-206, doi:
10.1109/FTCS.1995.466978.

Y. Tong and Y. Xia, “Implementation of Hummingbird E203
Based Electric DC Motor Controller,” 2023 3rd International Con-
ference on Electronic Information Engineering and Computer Sci-
ence (EIECS), Changchun, China, 2023, pp. 1220-1223, doi:
10.1109/EIECS59936.2023.10435587.

J. Zhou, G. Qin, L. Li, C. Guo and W. Wang, “ISA Extensions
of Shuffling Against Side-Channel Attacks,” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 43,
no. 3, pp. 761-773, March 2024, doi: 10.1109/TCAD.2023.3323165.
F. Farshchi, Q. Huang and H. Yun, “Integrating NVIDIA Deep Learning
Accelerator (NVDLA) with RISC-V SoC on FireSim,” 2019 2nd Work-
shop on Energy Efficient Machine Learning and Cognitive Computing
for Embedded Applications (EMC2), Washington, DC, USA, 2019, pp.
21-25, doi: 10.1109/EMC249363.2019.00012.

