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Abstract—Reliability-demanding  devices often  require
numerous fault injections (FIs) for reliability analysis in the
product cycle. However, software-based FI typically demonstrates
extremely low efficiency due to low simulation throughput,
especially for large-scale designs, while hardware-based FI
presents challenges related to complexity of setup and limited
scalability. Additionally, FIs often occur in intervals where errors
do not affect the system’s outcome, e.g., after final read before
next write, necessitating efficient pruning of non-impactful FIs.
To address this, a general-purpose FI-specialized framework,
Genshin, is proposed for rapid reliability analysis. On the
hardware side, we provide an FI-specialized design, which
works with Design Under Test (DUT) chips on PCB boards and
supports FI control based on the scan chain (SC). An integrated
programmable logic allows for flexible and custom FI pattern
definitions. Furthermore, an architecturally correct execution
(ACE) analysis generates pruned fault tables for DUTs. In
Genshin, the SC logic achieves 3,802-65,388 cycles/FI across SC
lengths ranging from 2,795 to 61,393 in different DUTs, while
the programmable logic enables custom error patterns such as
layout-aware multi-bit upset (MBU). Furthermore, the pruned
fault tables achieve fault reduction rates from 45.80% to 83.21%.

Index Terms—fault injection, reliability analysis, architec-
turally correct execution, software-hardware co-design

I. INTRODUCTION

In reliability-demanding applications, such as aerospace and
autonomous systems, the threat of radiation-induced failures
(e.g., single-event upset (SEU)) presents significant challenges
[1]-[3]. Soft error arises when charged particles strike sensitive
areas of semiconductor devices, potentially causing transient
faults, data corruption, or system malfunctions [4]-[6]. To
analyze the reliability of systems, fault injection (FI) is a pre-
ferred and solid solution for assessing the reliability, offering
a practical, controlled, and cost-effective means of simulating
radiation conditions in a laboratory environment [7].

However, existing FI techniques face several critical lim-
itations. Simulation-based FI, while highly flexible, is often
constrained by long simulation times, making it inefficient,

2378-2250/25/$31.00 ©2025 IEEE
DOI 10.1109/1TC58126.2025.00008

27

especially for large-scale or complex designs where billions
of cycles may be required to model realistic fault scenarios
[8], [9]. This low efficiency significantly delays the analysis
process and limits its applicability for time-sensitive projects.
Hardware-based FI techniques, on the other hand, offer faster
FI and testing capabilities, but come with significant setup
complexity, cost, and limited scalability, often requiring cus-
tom hardware configurations that are challenging to reconfig-
ure for different test cases [10]-[12]. Besides, when a Design
Under Test (DUT) chip is designed for final validation or
production, it typically lacks FI-specific functions due to area
cost and security concerns. Using a large-scale integration
(LSI) tester for FI is often impractical due to the extended
occupation of expensive resources. Similarly, while FI and
logic analysis can be implemented on FPGAs, such platforms
often offer an excessive amount of logic and routing resources
relative to the simplicity of FI tasks, resulting in inefficient
resource utilization and high reconfiguration overhead.

On ther other hand, most reliability-demanding designs
focus on SRAM, leveraging mature mitigation techniques such
as Error Correction Code (ECC). However, the reliability
of other components, including state machines and control
logic, remains largely overlooked. Ensuring the reliability of
these components is critical, as their failures can also sig-
nificantly impact overall system stability, and their reliability
can be analyzed through information obtained from Flip-Flops
(FFs). When incorporating error detection and/or recovery
mechanisms into chips and systems, it is necessary to verify
and validate them through FI, as these mechanisms are not
activated during normal operation.

In addition, hardware-based FI methods generally struggle
to achieve comprehensive coverage of possible fault scenarios,
limiting their effectiveness in providing a thorough reliability
assessment [10], [11]. Meanwhile, not all FIs can trigger
errors. Only bit flips that occur within the architecturally
correct execution (ACE) interval can generate errors [13],
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[14]. The ACE interval refers to the critical period during
which changes in system data or state can disturb system
operation, typically starting with a write event that is not
immediately followed by another write and continuing until
the last read before the next write. Conversely, the non-ACE
interval spans from a read event to a write event and may
include redundant writes in between. Bit-flips during the ACE
interval may affect the final output, while errors outside this
interval (non-ACE interval) do not affect the system because
they are overwritten by the following write event. Therefore,
any FI within the non-ACE interval has no impact on the
system. In many systems, over 50% of the timing intervals
result in non-ACE intervals, leading to redundant FIs [13],
[14]. Efficiently pruning these non-impactful FIs is crucial for
enhancing the overall FI throughput.

To address these challenges, we introduce Genshin, a
GENeralized framework with Software-Hardware co-design
and pruned fault INjection to enable rapid, scalable, and
flexible SEU analysis via an efficient software-hardware co-
design approach. On the hardware side, Genshin integrates
an Fl-specialized design that supports common protocols and
provides flexible clock and scan chain (SC) control for DUT
chips, offering enhanced efficiency in SC-based FIs with
minimal PCB connections. In addition, Genshin includes a
programmable logic component that enables custom error pat-
tern definitions, including complex scenarios such as layout-
aware MBUs, thereby achieving high adaptability to various
SEU cases. This allows for wide coverage of fault types while
maintaining operational speed and minimizing reconfiguration
overhead. On the software side, Genshin employs ACE-based
analysis to generate pruned fault tables, thereby effectively
reducing unnecessary FIs. This optimization significantly de-
creases the number of required injections while preserving
comprehensive analysis capability. Importantly, Genshin is
designed for lab-based pre-deployment testing rather than in-
field runtime FI, enabling designers to evaluate and improve
reliability during early design validation stages. Consequently,
Genshin not only increases FI efficiency but also enhances
fault coverage, supporting a broader range of error patterns
and injection scenarios without the high resource demands of
traditional hardware-only methods. Highlights of this paper
are:

« Genshin Framework for Fault Injection: Genshin is a
general-purpose FI platform designed to facilitate SEU
analysis across a broad range of systems. By integrating
software-hardware co-design for both FI circuits and
DUTs, Genshin enables rapid and efficient FI, leveraging
SC control and programmable logic for defining flexible
error patterns. The ACE-based pruning approach ensures
high fault coverage while significantly reducing FIs, mak-
ing it highly adaptable to various testing environments.

« Implementation and Evaluation for Genshin: To val-
idate the Genshin framework, we implement it as an
ASIC in a 180nm CMOS process. The FI experiments of
three DUTs (two microprocessors and one Al accelerator)
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demonstrate Genshin’s efficiency, flexibility, and adapt-
ability for FI, underscoring its practical value for high-
reliability applications requiring rigorous fault analysis.

II. RELATED WORK

Fault injection techniques allow researchers to systemati-
cally explore a system’s response to various fault scenarios,
assess its fault tolerance mechanisms, and identify potential
weaknesses. However, traditional FI simulation techniques
have notable limitations. A major issue with software-based
FI is its effectiveness. Eris [8], a fast C/C++ RTL simulation
FI framework, offers high coverage at a low cost, but is
limited to instruction-level FIs for processor designs and
requires long simulation cycles for large designs. Similarly,
Cheng et al. proposed a software-based FI to analyze an Al
SoC with full coverage via backdoor access [9]. However,
backdoor access and long simulation cycles severely hinder
FI efficiency, resulting in experiments that may take months
or even years to complete. In terms of hardware-based FI,
the main challenge lies in the trade-off between coverage and
hardware overhead. TensorFI [10], a high-level FI framework
for TensorFlow applications, cannot directly inject faults into
low-level hardware, limiting its utility for hardware-specific
testing. Similarly, Fiji-FIN [11], a FI framework for evaluating
deep learning models on IoT devices, is restricted to injecting
faults into memory cells and cannot target registers, thus
limiting its coverage for testing DUTSs’ resilience. Moreover, a
FPGA-based FI framework [12] was proposed to mix various
numbers of injected faults across multiple modeling levels
(i.e., software, register, and FF). However, it suffers from high
time and resource consumption, and the results may not fully
reflect the behavior of modern, complex processors due to
its reliance on the LEON3 architecture. Furthermore, these
frameworks lack a specific definition of error patterns tailored
to the requirements of different DUTs.

Meanwhile, fault reduction methods are essential to mini-
mize unnecessary Fls in system reliability evaluations, allow-
ing resources to focus on impactful errors. By targeting critical
paths and sensitive components, these methods improve test
efficiency and reduce FI time and computational demands.
However, most existing fault reduction frameworks rely solely
on RTL simulations, which can be inaccurate in both large and
complex systems. For example, Raasch et al. [13] introduced
an innovative approach that extracts circuit node trees from
RTL designs to improve the precision of ACE analysis, yet
this method does not simulate the actual netlist, which can
result in inaccuracies. Similarly, Yang et al. [14] proposed an
ACE-based propagation graph approach (ACE-Pro) for fault
reduction using RTL analysis, achieving fault reductions rang-
ing from 98.91% to 99.91%. However, the ACE-Pro method
relies on pre-simulation and analysis at the RTL level, which
also cannot accurately reflect the actual physical designs.

Both software-based and hardware-based FI frameworks
have their own advantages. Therefore, a co-design FI frame-
work that combines both software and hardware, with low
overhead and high efficiency, is essential. Additionally, it
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is necessary to develop components capable of accurately
modeling the faults in the DUT under real conditions, allowing
pruned FI and further improving FI efficiency.

III. GENSHIN FRAMEWORK

As shown in Fig. 1, a generalized FI framework (Genshin)
is introduced, incorporating a lightweight RISC-V core for
FI in the standalone mode and JTAG logic for FI in the
interactive user mode. In standalone mode, FI is conducted
solely using the RISC-V core without external interaction.
This mode is suitable for large-scale FI experiments, especially
with many DUT chips in parallel. In interactive mode, a
computer communicates with Genshin through JTAG, issuing
Tcl commands to perform interactive human-in-the-loop FI. A
clock and scan management unit (CSMU) and a programmable
FI unit (PFIU) similar to a tiny FPGA are implemented for
SC-based FI with configurable error patterns. In addition, an
ACE-based fault table generator is implemented for efficient
fault reduction during FI.

A. Hardware Architecture

As shown in Fig. 1(a), the hardware architecture in Genshin
is built with four key components: 1) A 3-stage RV32IM
RISC-V processor for standalone FI (Section III-B3), equipped
with 1KB data buffer, and an affluent set of peripherals such
as UART, (Q)SPI, and IIC. 2) A JTAG module designed
for debugging and interactive FI (Section III-B3), having the
privilege to access all on-chip components. 3) A clock and
scan management unit (Section III-A1), supporting the control
of SC-incorporated DUTs for SC-based FI with efficient clock
management. 4) A programmable FI unit (Section III-A2),
providing flexible error pattern definitions for users. Beside,
the RISC-V processor (w/o on-chip instruction buffer) runs
on Flash Execute-In-Place (FlashXIP) mode, where code can
be executed directly on the external flash memory mode.
Meanwhile, the JTAG module is based on typical 0.13 draft
of the RISC-V Debug Support Specification [15].

1) Clock and Scan Management Unit: Most commercial
oft-the-shelf (COTS) integrated circuits incorporate SCs as
a design-for-testability (DFT) feature during manufacturing
testing and internal debugging. Although these SCs are typ-
ically disabled in the final commercial products to prevent
security risks and protect proprietary design information,
they remain fully accessible during pre-silicon verification,
production testing, and early bring-up stages, providing a
valuable opportunity to apply our technique for accurate FI
and reliability evaluation before deployment. Therefore, our
framework exploits these SCs for FI. To enable efficient SC-
based FI and support an ACE-based fault table, the CSMU is
implemented to manage clock signals and SC control.

The main logic of the CSMU is shown in Fig. 2. To
better illustrate the logic, handshake functions are omitted
between two clock domains in the figure but are present in
the actual design. The timing of FI is randomly specified or
swept within a period of interest. When the specified timing
does not fall within the ACE intervals at the FI position,
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Genshin will skip the FI operation to improve the efficiency
of SEU analysis. When Genshin activates the FI operation
(FI_EN) and determines a FI time point (F'/_T'tming), the
target device continues normal operation up to that point based
on Sys_CLK signal. During this normal operation phase, the
CSMU gives the normal clock signal (Sys_CLK) to DUTs
and keeps track of the cycles. Once the designated FI time
(FI_Timing) is reached, the SC function is triggered. Signals
such as SC_EN, SC_IN and SC_OUT are activated. During
this process, the CSMU switches its output clock to the scan
clock (SC_CLK), performing FI cycles that match the length
of the SC (SC_Length). The position of the FF for FI is
randomly selected or specified to particular FFs in a focused
test. Before reaching the designated FI point (¥'/_Position),
SC_OUT is directly assigned to SC_IN, maintaining a seam-
less signal flow. Upon reaching the FI point (F'I_Position),
SC_OUT is inverted and then reassigned to SC_IN, effectively
completing a bit-flip operation. This inversion introduces the
intended fault by altering the signal, allowing precise control
over FI within the SC. After injection is complete, this one-
time FI operation is completed. Besides, additional rounds can
be repeated in subsequent tests.

2) Programmable Fault Injection Unit: To provide flexi-
bility in reconfigurable FI error patterns, a lightweight FPGA-
like PFIU is designed specifically for FI purposes, as shown
in Fig. 3. The programmability owing to FPGA-like array
is crucial to perform FI at the speed of SC_CLK, which
simplifies the clocking and improves the FI throughput. For
example, supposing a RISC-V is handling a complex FI
into the SC, the RISC-V needs tens of instructions for each
scan clock since counters and some combinational logic are
necessary to locate the FFs of interest. In this case, the RISC-
V needs to operate with another clock instead of SC_CLK,
which complicates the clocking and degrades the FI efficiency.
Another approach is to enrich the CSMU functionality, but it
is difficult to list all possible FI patterns in advance.

In systems equipped with ECC or Triple Modular Re-
dundancy (TMR) mechanisms, direct single-bit upset (SBU)
injection is often tolerable. When we need to evaluate the
impact of rare yet catastrophic events, such as a multiple-bit
upset (MBU) in a single word, the PFIU can be configured to
inject errors into two adjacent bits simultaneously as shown in
Fig 4(a). Moreover, in certain Al systems where buffers store
model data, the inherent robustness of Al models necessitates
extensive data flipping to effectively assess the reliability of
the device. To address this, the PFIU can be configured to
perform continuous bit-flips over a specified length of data
as illustrated in Fig 4(b). On the other hand, the probability
of occurrence of MBUs is considered to determine the test
coverage of the main FI modes. Evaluating all modes equally
in isolation may misrepresent system-level risk. By modeling
the probability of fault occurrence, FI operations can match
real-world fault scenarios, providing a more accurate and
practical vulnerability assessment. Thus, users can customize
error patterns in the PFIU to achieve different fault scenarios
based on specific application needs. Besides, to achieve a
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Fig. 3. Programmable Fault Injection Unit.

realistic reliability analysis, it is necessary to calculate the
occurrence probability of these pattern-specialized errors. The
probability estimation provides insight into how often such
errors might happen in real-world conditions, enabling a more
accurate assessment of the system’s fault tolerance.

The design employs a 5x5 array structure constructed with
LUT4 logic elements and FFs. Here, each LUT in a logic
block accepts 4 inputs, enabling complex combinational logic
by mapping these inputs to a desired 1-bit output. Meanwhile,
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the number of LUTs per logic block is 4, allowing for parallel
logic functions or more complex functions by combining
multiple LUTs within the same block. Furthermore, each
routing wire segment spans 4 logic blocks, reducing routing
hops and potentially lowering delay. Also, 15% of the inputs
in each logic block can connect to a given routing channel,
providing routing flexibility to the block inputs. Similarly, the
output connection fraction, where 10% of the outputs from
the logic block have direct connections to any specific routing
channel, managing how outputs are routed in the array.

Each edge of the array incorporates 5 ports, totaling 20
ports, with two ports dedicated to S_IN and P_IN networks
internally (Fig. 2) to facilitate the definition of various error
patterns. Also, the bitstream downloaded via the configuration
logic is 677B in size, offering efficiency advantages in error
pattern switching scenarios. The reconfiguration process (error
pattern switching) for the PFIU completes in approximately
110 ps at 50MHz, enabling quick switches between patterns.
In contrast, conventional FPGA (e.g., Genesys2) setups of-
ten require several seconds and even longer to reload and
reconfigure. This dramatic reduction in reconfiguration time
significantly boosts FI throughput, especially in scenarios
requiring frequent pattern changes, where delays in switching
could severely impact overall testing efficiency.

To accommodate different error patterns, the bitstreams
for each error pattern are stored in QSPI flash. Users can
select different error patterns based on specific scenarios and
download them into the PFIU through either JTAG or RISC-V.

B. Software Architecture

As shown in Fig. 1(b), the software architecture for SEU
impact evaluation via FI on the DUT, incorporates two opera-
tional modes: JTAG interactive mode and RISC-V standalone
mode. In JTAG mode, the Tcl scripts build the FI operations,
which relies on the ACE-based fault tables with fault reduction
to enhance FI efficiency. The tables are generated using the
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module PFIU_Pattern1 (
input wire SC_CLK,
input wire S_IN,

module PFIU_Pattern2 (......);
parameter N = 7;

reg [3:0] counter; reg keep_flip;

input wire P_IN, always @(posedge SC_CLK) begin
output SC_IN if (P_IN) begin
); counter <= N;
reg MBU; end else if (counter > 0) begin
always @(posedge SC_CLK) begin keep_flip <="'b1;
if (P_IN) counter <= counter - 1;
MBU <= 1'b1; end else begin
else keep_flip <= 'b0;
MBU <= 1'b0; counter <= 'd0;
end end
assign SC_IN =MBU ? IS_IN : S_IN; end
endmodule assigh SC_IN = keep_flip ? IS_IN : S_IN;
endmodule

(a) PFIU_Pattern#1 (b) PFIU_Pattern#2

Fig. 4. Examples of Custom Error Patterns Using PFIU.

D
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Fig. 5. ACE-based Fault Table Generator.

ACE-based table generator, the DUT and its SC definition.
The DUT is then modeled and tested using the CSMU and
PFIU. The PFIU is configured to define error patterns in
bitstream format. Similarly, in the RISC-V standalone mode, a
C program, compiled with the GCC compiler, coordinates the
execution of FI processes. These processes involve merging
files (e.g., compiled C program, error pattern definitions, and
fault tables) before being transferred to the DUT for reliability
analysis. The difference between these two modes is whether
to use JTAG to implement FI or directly use RISC-V to
implement FI. The rest is basically the same. After FI, result
checking is essential, especially to ensure the repeatability and
reliability of FI. In our setup, two result-checking strategies
are employed: 1) coarse-grained observation through DUT
peripherals such as UART, or GPIO to verify the functional
correctness of program execution; and 2) fine-grained moni-
toring via SC extraction every cycle after FI, allowing detailed
analysis of internal system behavior and correctness.

1) ACE-based Table Generator: Based on the ACE analysis
flow mentioned in [13], [14], the ACE-based table generator is
built as shown in Fig. 5. The process begins at the RTL level,
where ACE analysis is conducted to identify relevant ACE
intervals throughout the design. This involves analyzing the
RTL code in the context of the system’s logic and architecture.
Specifically, trace assignments are inserted into the RTL to
monitor key signal updates. During simulation, timestamped
logs are generated using statements such as $fwrite when-
ever these assignments are triggered. By correlating these
timestamps with register update events, the framework can
accurately determine the clock cycles during which architec-
tural state transitions occur, thereby identifying ACE intervals.
However, ACE analysis at the RTL level may not fully capture
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the physical behavior of real hardware DUTs, since flip-flops
can be removed, split, or merged during synthesis and place-
and-route optimizations, leading to discrepancies between the
RTL model and the final hardware implementation.

To generate ACE-based tables compatible with the DUT
hardware platform for FIs, an additional mapping procedure
based on C/C++ and Tcl is adopted. Once the ACE intervals
are identified and raw ACE tables are generated, the sys-
tem moves to the next stage, where the results are verified
and mapped onto the SC definitions. In this stage, a Tcl
script is constructed that utilizes built-in commands (e.g.,
report_scan_path) to list the names, paths, and numbers of
all scan chain cells in the design. These details are stored in
a file for further processing. In the subsequent stage, C/C++
code is used to implement a regular expression-based search
function. This function will match the FF cell names in the
raw ACE tables with the corresponding scan chain cell names
extracted in the Tcl script. Once matched, the registers in the
raw ACE tables are converted into their exact positions within
the scan chain. This ensures that the ACE tables are mapped
to the actual physical locations of the scan chain cells. Finally,
the result is a scan chain cell index-based ACE table, which
allows for accurate FI based on the actual configuration of the
scan chain cells in the DUT hardware. These operations ensure
that the generated ACE table corresponds to the actual SC
configuration, enabling accurate FIs. The ACE table generated
from the RTL code is then mapped onto the SC, enabling FI
operation through the SC interface. Therefore, the final fault
tables contain the location information of each FF in the SC
and the distribution of its specific ACE intervals. This table
can be converted into a matrix form for efficient FIs as follows:

SH(1,0)  St(2,0) St(m, 0)
sy sz St(m. 1)
St(1,n) SH2,n) St(m,n)

Here, St(p,t) € {0,1} represents the ACE information (i.e.,
one means ACE point, and zero means non-ACE point) of the
p-th scan cell at time ¢. The first dimension p represents the
scan chain index, with 1 < p < m. m represents the total
length of SCs. The second dimension ¢ represents time (i.e.,
system cycle), ranging from 0 to n. n represents the overall
execution cycle of system. This notation expresses the ACE
transitions of the SC over time. The FI of non-ACE points will
not affect the system’s operation, so it can be directly reduced.
This mapping ensures that faults can be injected in a precise
and controlled manner, based on the verified ACE table, thus
improving the fault reduction process and overall FI accuracy.

2) PFIU Compiler: Regarding the PFIU compiler, the
bitstream compiled using YOSYS [16] and VTR [17] is
employed to facilitate the selection and configuration of
error patterns within the PFIU. YOSYS is an open-source
framework for digital synthesis, which enables the synthesis
of hardware description languages (HDLs) into gate-level
representations suitable for FPGA implementation. It allows
for the optimization and transformation of designs, providing
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Fig. 6. Chip for Genshin Validation.

the flexibility to adapt various configurations according to
specific requirements. VIR is a suite of tools designed to
facilitate the process of FPGA design from high-level synthesis
through to the final routing of the circuit. It takes synthesized
designs and performs the placement and routing necessary for
implementation on FPGAs, optimizing for area, delay, and
power consumption.

3) Operating Mode: On the software level, Genshin pro-
vides two modes for FI. The first FI mode is a standalone
mode based on RISC-V, designed for automated intensive FI
experiments. Users need to develop C code for FI. In the C
code, the relevant parameters for the SC and the FI error
patterns need to be configured first. After that, faults can
be injected through the CSMU and PFIU based on pseudo-
random numbers or user-defined FI strategies. Finally, the
output information from peripherals can be monitored to
observe the system’s operating status. If the DUT crashes, all
SC information can be uploaded to the user via the CSMU for
further analysis.

The second FI mode is an interactive mode based on JTAG
module. Users need to construct a Tcl-based script package.
This package should also include the relevant parameters for
the SC and scripts for selecting and configuring the error
patterns. Additionally, users can directly control JTAG via
OpenOCD software [18] on the computer to perform similar
FIs. In Genshin, JTAG can also directly control the CSMU and
PFIU, allowing users to perform Fls interactively and monitor
the operating status of the entire DUT from the host side.

IV. PERFORMANCE EVALUATION

A. Fabricated Chip for Reliability Analysis

Fig. 6 presents the chip fabricated using a 180nm CMOS
process for Genshin Validation, covering an area of 4.86 mm?2.
This work focuses on a comprehensive FI implementation with
three main features. First, it supports FI control via RISC-V or
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TABLE 1
CHIP SPECIFICATIONS

Value

180nm CMOS

RISC-V or JTAG

Clock and Scan (CSMU)
Programmable Pattern (PFIU)

Specification

Process

Control Type

Fault Injection Operation
Fault Pattern Configuration

Core Supply [V] 1.3

1/0 Supply [V] 33
Frequency [MHz] 25-50

Chip Area [mm?] 4.86

Core Area [mm?] 3.66

Power [mW] 16.38-32.49
On-chip Memory [Byte] 1024
Off-chip Flash [Bit] Up to 256M

a 4-port JTAG interface, providing flexible control types for FI.
Second, it incorporates CSMU for precise clocking and scan
signal control during fault injection, ensuring accurate fault
simulation and injection. Third, it includes a PFIU, designed
to define and apply customizable FI patterns. Moreover, the
specifications of this chip are shown in Table I. The chip
operates at a frequency range of 25-50 MHz, with power
consumption ranging from 16.38 mW to 32.49 mW. It supports
a core supply voltage of 1.3 V and an I/O supply voltage
of 3.3 V. Although the system can support higher operating
frequencies under higher pre-driver supply, the FI process is
based on scan chain operations that rely on I/O bandwidth,
which is limited to around 50 MHz. As a result, the chip
has only been tested up to 50 MHz. However, the actual
system can operate at significantly higher frequencies in non-
FI scenarios. Additionally, the chip integrates a 1024B on-chip
memory and supports external data access through a Q-SPI
flash communication protocol with up to 256 Mb capacity,
enabling flexible and efficient FI testing.

B. Experimental Setup

To assess the effectiveness of Genshin, experiments are
conducted with three DUTs: two RISC-V cores of PicoRV32
[19] and Ibex [20], and a downsized NVDLA-based [21] Al
accelerator with 1616 INTS8 processing element array. These
platforms reflect a range of complexity, from lightweight pro-
cessors to high-performance Al designs, allowing for a com-
prehensive evaluation of Genshin’s FI capabilities. Besides,
as the Fl-specialized chip has been fabricated as mentioned
in Section IV-A, the experiments are conducted directly on
hardware environment for fault analysis under real conditions.

The experimental setup used to evaluate the Genshin frame-
work is conducted on our chip and a FPGA board (Xilinx
ZCU102) as shown in Fig. 7, integrating multiple components
to facilitate FI and analysis. At the core of the setup is
the Genshin chip soldered on a tiny circuit board (Fig. 7,
bottom-left), which interfaces with the aforementioned DUTSs
implemented on ZCU102 via PMOD ports. Note that these
DUTs are on the FPGA to prepare multiple designs for the
proposed FI system validation, but any custom chip DUTs
with SCs can be tested. These DUTs are synthesized and
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Fig. 7. Experimental Setup for Genshin.

routed using DFT flow for SC generation to produce a back-
end netlist, starting from the RTL source of each DUT and
utilizing Synopsys Design Compiler and ICC2. Subsequently,
the back-end netlist, along with behavioral files, is imported
into Vivado for synthesis and implementation. However, since
some primitives described in the behavioral files (e.g., derived
from standard cell libraries) are not natively supported by
Vivado, slight modifications to these files are necessary to en-
sure compatibility during synthesis and implementation. This
design transfer from Design Compiler to Vivado facilitates
the introduction of SCs into DUTSs on the FPGA, as SCs are
generally absent in typical Vivado-mapped FPGA designs due
to the availability of built-in debugging features.

To support pruned FI, the fault table generator creates ACE-
based fault tables based on each DUTs and its SC definition.
The custom FI patterns are then defined and compiled via the
PFIU compiler. In standalone mode, the C program needs to
be compiled. These elements are loaded into the QSPI flash.
Moreover, some peripherals (e.g., UART, SPI) are incorporated
to enable seamless interactions with Genshin. A host computer
running OpenOCD acts as the primary control hub for the user
in interactive mode, managing the FI and monitoring through
the JTAG module (Fig. 7, left). The host can compile FI
patterns and C programs via the PFIU and RISC-V compiler,
coordinating with Genshin for FI. This setup allows for real-
time FI and performance evaluation, effectively assessing
Genshin’s capabilities in handling SEUs across diverse DUTs,
validating Genshin’s adaptability and efficiency.
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TABLE 1T
FAULT INJECTION PERFORMANCE.

Pico NVDLA-based
DUT RV32 Tbex Accelerator
SC Length 2795 4630 61393
Standalone | 3802 cycles 5637 cycles 62400 cycles
Mode (1.3603*) (1.2175%) (1.0164*)
Interactive | 6790 cycles 8625 cycles 65388 cycles
Mode (2.4293%*) (1.8629%*) (1.0651%*)

*Normalization performed using cycles/scan chain length.

C. Fault Injection Performance Analysis

We first evaluate the efficiency of Genshin by measuring
the FI latency, defined as the number of clock cycles required
for each FI operation (cycles/FI), and the FI throughput across
three DUTSs, excluding application execution time. In addition,
note that in the throughput estimation, the overhead of result
checking is not included, as it can vary significantly depending
on the application and fault severity. For example, some faults
may require detailed debugging or system rollback, while
others may have negligible impact. Therefore, the reported
throughput reflects the peak performance, assuming that no
critical faults occur (i.e., no error logging is required) during
execution. To align with the real hardware conditions, the
chip runs at 50 MHz for FI evaluation. Also, the CSMU is
configured to handle clock management and synchronization,
ensuring that FIs occurred with minimal delay. Also, to test the
fundamental FI efficiency of Genshin, the PFIU is compiled
with direct input-to-output connection logic for SC_IN port.

The SC length of these DUTs are shown in Table II.
In standalone mode, the FI latency for both PicoRV32 and
Ibex core are 3.8k, and 5.6k cycles/FI, respectively. The Al
accelerator demonstrates a higher latency of 62k cycles/FI due
to its increased complexity and parallel computing structure.
In interactive mode, due to the characteristics of serial com-
munication in JTAG, the FI latency is about 3k cycles higher
on average than in standalone mode due to the latency of
JTAG configuration. After being normalized by dividing the
total number of clock cycles required for a single FI by the
SC length, which gives a normalized value representing the
number of clock cycles required per scan bit, it can be found
that when the number of scan FFs is relatively large, the
latency of FI is basically proportional to the SC length (e.g.,
the accelerator design with a normalized latency of 1.0164 at
standalone mode). In terms of throughput, Genshin achieved
rates of 801 to 13,150 FIs/second on these DUTs in standalone
mode and 765 to 7,363 Fls/second in interactive mode.

Here, the PFIU exhibits a significantly faster and more
lightweight error pattern switching capability compared to
conventional FPGA-based approaches. Although commercial
FPGAs such as the Genesys board offer abundant LUT
resources that support simultaneous placement of multiple
circuits for FI, allowing one-cycle pattern switching via
multiplexers, the cost is high in terms of resource usage
and design complexity. In addition, the number of patterns
placed simultaneously is limited by available logic resources
and routing constraints. In contrast, our PFIU enables flexi-
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TABLE III
PRUNED FAULT INJECTION EVALUATION.

Pico NVDLA-based
buT RV32 Thex Accelerator
. Dhrystone . LeNet5
Application (10 runs) String Search (MNIST)
ACE Analysis
Overhead (days) ~2 ~3 ~24
Execution Cycle 19,424 21,180 83,506
Total Fault 54,245,360 98,063,404 625,737,938
ACE / non-ACE | 20,183,258 / 16,464,012/ 339,123,567 /
Fault 34,062,102 81,599,392 286,614,371
Fault
Reduction Ratio 62.79% 83.21% 45.80%
Total FI Overhead | °1.295e+11  54.600e+11 51.788e+13
Reduction #2.313e+11 #7.038e+11 1.874e+13

SRISC-V standalone mode, * JTAG interactive mode.

ble reconfiguration of error patterns via compact bitstreams,
achieving switching latency as low as 110 ps. Assuming a
new error pattern is required for every FI cycle, the overhead
accounts for less than 9x 10~ of the application execution
time, rendering it practically negligible. This efficiency allows
the PFIU to support scalable and fine-grained FIs without the
overhead or resource waste often associated with FPGAs.
Usually, to accelerate the reliability analysis of DUTs,
high-intensity neutron or proton (e.g., 100,000x higher or
more than the flux at ground level) irradiation experiments
will be conducted. FF soft error rates (SERs) under these
conditions typically range from 107 to 10~2 errors/sec/Mb
for 65nm or smaller nodes [22]. When the maximum value
of 1073 errors/sec/Mb is applied to the accelerator DUT,
the error rate is 5.855x107° errors/sec. On the other hand,
Genshin achieves the FI throughput of 765 Fls/sec. When
supposing a 1-second application for reliability analysis, we
need 170,800 application executions to obtain one FI sample
in the irradiation experiment, while we can inject a fault
every application execution. In this case, 170k times speed-
up is possible in our framework, which contributes to a more
comprehensive analysis without any special facilities. It should
be mentioned that when the actual irradiation test, it is difficult
to use higher intensity beams since multiple independent errors
frequently occur in SRAMs in a short time, for example, in
a recovery phase and rebooting process, while such errors
will scarcely happen in real environments. On the other hand,
our framework eliminates such unrealistic error patterns while
keeping the high FI throughput. Note that our framework
evaluates such extremely rare cases as well if necessary (e.g.,
highly redundant designs for mission-critical applications).

D. Pruned Fault Reduction Analysis

Genshin enhances Fls through ACE-based pruning method.
This approach targets and eliminates faults with minimal
impact on system reliability, thereby drastically reducing the
overall number of FIs. The effectiveness of this strategy is
evident in Table III, which presents the pruned FI evaluation
across three DUTs as mentioned in Section IV-B. Each DUT
is tested with a specific application: Dhrystone for PicoRV32,
String Search for Ibex, and LeNet5 for Al accelerator.
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The ACE-based table generation, executed on the EPYC
7502P platforms with multiple threads for parallel analysis,
presents a considerable run-time for ACE analysis. Therefore,
only 10 runs of the Dhrystone benchmark have been con-
ducted, alongside the String Search benchmark. Additionally,
the LeNet5 model, a smaller and more manageable architec-
ture, has been chosen. Despite these reductions, the analysis
remains comprehensive. The applications contain numerous
repeated computational units, which means that even with
fewer runs or a smaller application size, the impact on the
analysis is minimal. With PicoRV32 requiring approximately
2 days, Ibex around 3 days, and the NVDLA-based accelerator
needing about 24 days. Further research for speeding-up the
ACE analysis is demanded while it is beyond this work.

The pruned FI analysis across these three DUTs reveals
significant reductions in fault numbers and total FI cycles.
PicoRV32 exhibits an impressive 62.79% reduction in faults,
equating to a decrease of approximately 1.295x 10! cycles in
standalone mode and 2.313x10!! cycles in JTAG interactive
mode with direct input-to-output connection logic of SC. Ibex
follows with a 83.21% fault reduction, leading to a total FI
cycle reduction of around 4.600x10'' cycles in standalone
mode and 7.038x10*! cycles in interactive mode. Lastly, the
NVDLA-based Al accelerator demonstrates a 45.80% fault
reduction, resulting in a substantial total FI cycle reduction
of approximately 1.788x10'? cycles in standalone mode and
1.874x10" cycles in interactive mode. Idle computing units
and memory-related operations are the main sources of non-
ACE in the Al accelerator, and the proportion of control logic
is relatively lower. The Al accelerator is designed to focus
more on parallel computing and can significantly reduce the
proportion of non-ACE, while Dhrystone and String Search
contain more non-computation-related logic, resulting in a
higher proportion of non-ACE. On the other hand, although
our methodology primarily targets ACE intervals to efficiently
reduce faults, evaluating FI during non-ACE intervals is also
important to confirm the absence of unintended error propaga-
tion. While a comprehensive non-ACE analysis is outside the
scope of this work, our framework supports such extensions
and can be configured to perform specific FIs across both ACE
and non-ACE windows for full functional validation.

E. Comparison with the State-of-the-Art FI Frameworks

Table IV summarizes the measurements of Genshin frame-
work and compares it with prior art [8]-[12]. Eris [8] and
Cheng et al. [9] rely heavily on simulation techniques, while
TensorFI [10] uses software-based TensorFlow graphs, and
Fiji-FIN [11] and Cho et al. [12] utilize hardware emulation
through FPGAs. In contrast, Genshin adopts a software-
hardware co-design approach with an ASIC implementation,
using a SC-based FI mechanism controlled by the CSMU to
enable precise and controllable FI and monitoring.

Regarding FI efficiency, Eris [8] and Cheng et al. [9]
are rated as low due to the limitations of simulation tools,
while TensorFI [10] achieves moderate efficiency using multi-
threading. Fiji-FIN [11] and Cho et al. [12] also show only
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TABLE IV

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART FAULT INJECTION FRAMEWORKS

Eris [8] Cheng et al. [9] TensorFI [10] Fiji-FIN [11] Cho et al. [12] This work
Technique Simulation Simulation Software Hardware Hardware Emulation |Software-Hardware
qa (Synopsys VCS) (Xilinx FPGA) (Xilinx FPGA) Co-Design (ASIC)
FI Mechani Instrumented C-model | Backdoor Access TensorFlow Memory BEE3 Scan Chain
echanism | erived out of HDLs | of FF & Memory Graphs Access Emulation System (CSMU)
. Middle . . .
FI Efficiency Low Low (Multi-thread) High Middle High
. Yes
Fault Reduction No No No No No (45.80-83.21%)
FI Pattern No No Yes Yes No Yes
Definition (Scalar&Tensor) (SEU&MBU) (PFIU)
Target Desi Chisel+Verilog+ Netlist-level Tensorflow-based | Limited ML/DL- LEON3 Processor | Any Hardware with
arget Designs VHDL Designs Designs Programs Powered IoTs (in-order SPARC) Scan Chain(s)
Fault Tracking Yes Yes
Cabability Yes Yes No No (System Stack) (Scan Chain)
Accessibility to . . . . High
Internal Modules High High Low Middle Middle (All Registers)
o . Middle Middle . High
Controllability High (Relying on Tools) | (TensorFlow-based) Low Middle (RISC-V&JTAG)
Repeatability Yes Yes NA Yes Yes Yes
Monitoring Time . . . . High
Resolution High High Middle Low High (System Cycle)
- Middle . Low Low Middle .
Scalability (Processor Level) High (Tensorflow Only) | (Limited QNNs) (Process Level) High
Fault Coverage High High High Low Middle High
Injection Middle High Middle Low Middle (3 Levels: High
Granularity (Instruction Level) (System Cycle) (Graph Level) (Image Level) |FF, Register, Program) (System Cycle)
. . High . .
. Middle High . . High High
Automzft}on (Manual Intervention | (Backdoor Access (Graph Copymg, Middle (w/ Comprehensive (Processor-based&
Capability Requi . Duplication, and |(Complex Process) . )
equired) Automatically) Logging Propagation Patterns) Script-based)

moderate performance. In contrast, our framework achieves
high efficiency through real-time FI enabled by SCs and tight
integration of hardware and software components. For exam-
ple, when running the same Al accelerator under Cheng et al.’s
simulation-based framework [9] on VCS, each FI takes ap-
proximately 20,000 times longer than Genshin. Fault reduction
is another key differentiator. While all other frameworks lack
built-in fault reduction mechanisms, our system demonstrates
fault reduction rates ranging from 45.80% to 83.21% across
three DUTs (PicoRV32, Ibex, and an Al accelerator) due to
the ACE-based pruning technique [13], [14].

In terms of FI pattern definition, most frameworks are either
limited or completely lack this capability. Eris [8] and Cheng
et al. [9] do not offer pattern definition, and TensorFI [10]
is restricted to scalar and tensor fault patterns. Fiji-FIN [11]
and Cho et al. [12] have minimal support for SEU and MBU
faults. Genshin, however, incorporates a PFIU that can define
comprehensive FI patterns, offering better insight and control
over fault behavior. On the other hand, the range of target
designs supported by each framework varies significantly. Ten-
sorFI [10] is limited to TensorFlow-based programs, Fiji-FIN
[11] is tailored to IoT devices with limited machine learning
(ML) capabilities, and Cho et al. [12] focused on the LEON3
processor. Genshin, in contrast, is highly adaptable and can
be used with any hardware that incorporates SCs, making it a
more flexible solution for FI across diverse platforms.

When considering tracking capability, several frameworks,

such as TensorFI [10] and Fiji-FIN [11], do not offer tracking
at all, while Eris [8], Cheng et al. [9], and Cho et al. [12]
provide only basic tracking. Genshin excels in this area by
utilizing SCs for real-time fault tracking. Besides, access
to internal modules is another area where our framework
demonstrates superiority. While TensorFI [10] provides low
access and Fiji-FIN [11] offers moderate accessibility, Genshin
ensures high access to all internal registers and modules,
facilitated by the use of SCs.

Controllability varies across frameworks as well. TensorFI’s
controllability is constrained by TensorFlow’s limitations [10],
Cho et al. [12] relies on specific emulation systems, and Fiji-
FIN [11] provides only low controllability. Our framework,
on the other hand, offers high controllability through RISC-
V and JTAG-based methods as mentioned in Section III-B3,
allowing efficient FI control and monitoring. Repeatability is
another critical factor, and while some frameworks like Eris
[8] ensures consistent repeatability, TensorFI [10] and Fiji-
FIN [11] fall short. Our framework supports high repeatabil-
ity through comprehensive control features and monitoring,
ensuring consistent results across repeated Fls.

Monitoring time resolution is critical for accurate fault
analysis. TensorFI [10] is limited in this respect, and Fiji-FIN
[11] provides low time resolution. Genshin, however, ensures
high-resolution monitoring through efficient FI scheduling in
CSMU, enabling precise tracking of fault behavior. Scalability
is another area where our framework excels. While TensorFI
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[10] has limited scalability and Fiji-FIN [11] only supports
quantized neural networks (QNNSs), Genshin is highly scalable
across hardware domains, making it suitable for most systems.

Fault coverage injection granularity is an essential feature
for accurate fault analysis. Fiji-FIN [11] is restricted to image-
level granularity, TensorFI [10] covers graph-level granularity,
and Cho et al. [12] reaches instruction-level granularity. Gen-
shin surpasses these solutions by achieving high granularity
at system cycle level, covering all FI points more effectively.
Lastly, Genshin demonstrates clear superiority in automation
capability. Eris [8] and Fiji-FIN [11] rely on manual interven-
tion, TensorFI [10] requires complex processes, and Cheng et
al. [9] provides automatic backdoor access. Our framework,
however, demonstrates high automation through processor-
based (RISC-V) and script-based (OpenOCD) automation pro-
cesses, enabling efficient, repeatable FI and analysis.

In general, our framework outperforms other FI solutions
in most categories. Its FI efficiency, fault reduction capability,
granularity, tracking, controllability, scalability, automation,
and pattern definition capabilities make it the ideal solution
for reliable, high-performance FI in ASIC-based applications.

V. CONCLUSION

In this work, we present Genshin, a generalized FI frame-
work designed to address the challenges of reliability analysis
in high-reliability systems. By integrating hardware-software
co-design with a RISC-V/JTAG-controlled architecture, Gen-
shin leverages a CSMU and a lightweight PFIU to enable
precise, flexible, and high-throughput FI and SEU analy-
sis across diverse DUTs. Another key advancement of the
framework is its ACE-based fault pruning approach, which
significantly reduces FI overhead by minimizing test duration
while maintaining a high level of fault coverage. To further
validate Genshin’s effectiveness, we implemented a prototype
on a 180nm CMOS chip, demonstrating its feasibility in real-
world hardware scenarios. This physical chip implementation
provided additional insights into Genshin’s FI capability for
reliability analysis under realistic conditions, reinforcing its
practical applicability. Evaluations on multiple DUTs imple-
mented on FPGA, including PicoRV32, Ibex, and a down-
sized NVDLA-based Al accelerator, demonstrate that Genshin
achieves 3,802-65,388 cycles/FI and fault reduction rates
ranging from 45.80% to 83.21%. These results underscore
Genshin’s efficiency, flexibility, and scalability, establishing it
as an ideal solution for SEU analysis in space and other critical
environments where SEUs are prevalent.
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