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Abstract—For resource-constrained AI accelerators applied
in edge computing, achieving high power efficiency in neural
network (NN) model computation is crucial. However, current
designs often overlook the efficiency of off-chip/on-chip data in-
teraction, leading to high latency, which in turn results in subopti-
mal power efficiency during computation. Additionally, inefficient
memory bank allocation further exacerbates latency by causing
underutilization of storage resources, thereby contributing to
higher overall latency and energy consumption. To address these
challenges, this paper proposes a scalable multi-path rolling data
refresh and layer-wise bank allocation architecture. The rolling
data refresh mechanism enables efficient data interaction between
off-chip and on-chip storage, reducing latency and minimizing
the area overhead of on-chip memories. The layer-wise bank
allocation optimizes on-chip memory utilization according to
specific application requirements, improving memory efficiency.
A case study on a 28nm Al accelerator demonstrates a 30.6%
reduction in area, achieves a power efficiency of 7.36-10.28
TOPS/W, and reduces external memory access by 2.63% to
37.24% on VGG16 and ViT-Small.

Index Terms—AlI accelerator, rolling data refresh, layer-wise
bank allocation, power efficiency, edge computing.

I. INTRODUCTION

In the era of edge computing, the need for energy-efficient
Al accelerators has been more critical. Edge-Al applications,
such as real-time video processing, autonomous navigation,
and health monitoring, are often constrained by limited re-
sources, including power, memory, and computational capabil-
ities [1], [2]. To achieve high performance in these scenarios,
accelerators must strike a delicate balance between compu-
tational efficiency and power consumption [3], [4]. However,
current Al accelerators often fail to fully address the inherent
challenges of data transfer and memory utilization, which
significantly impact both latency and energy efficiency [5].

A key issue in many Al accelerator designs is the inefficient
interaction between off-chip and on-chip memory [6]. As
neural networks (NNs) become more complex, the volume of
data exchange increases significantly, leading to substantial
delays. The latency, directly impacts the overall throughput of
the system, resulting in poor power efficiency. Furthermore,
many existing designs overlook the need for efficient memory
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allocation, often resulting in underutilized or poorly allocated
memory resources [7]-[9]. This inefficient use of memory
further exacerbates latency and energy consumption, especially
in resource-constrained systems where every cycle counts.

To address these challenges, this paper introduces a scal-
able architecture for the deployment of edge-Al accelerators.
Highlights of this paper are:

o Multi-Path Rolling Data Refresh: The proposed refresh
mechanism ensures that data transmission between off-
chip and on-chip memory is seamless and streamlined.
Using a circular data refresh approach, the system ensures
a more consistent and efficient flow for data transmission,
avoiding the additional overhead caused by read-write
conflicts. Furthermore, this approach leads to a significant
reduction (30.6% in a case study) in chip area overhead.

o Layer-Wise Memory Bank Allocation: The layer-wise
memory bank allocation strategy further optimizes mem-
ory usage by dynamically assigning memory based on the
specific needs of each NN layer. By adjusting memory
resources in a layer-wise way, this targeted allocation re-
duces waste, enhances on-chip data reuse, and minimizes
external memory access (up to 37.24% reduction in real
NNs) while maintaining high throughput.

The following sections begin with a review of related
Al accelerator designs, focusing on key challenges in data
transfer and memory allocation (Section II). We then present
our proposed architecture, featuring a rolling data refresh
mechanism and dynamic bank allocation strategy (Section III).
To evaluate our design, we deploy an edge-Al accelerator as
a test platform (Section IV). Experimental results are then
provided, demonstrating the performance of our approach
and comparing it with state-of-the-art (SOTA) accelerators
(Section V). Finally, we conclude the paper in Section VI.

II. RELATED WORK

Edge-Al applications often face resource constraints, re-
quiring careful balance between performance and power con-
sumption. Many recent efforts have focused on improving
memory efficiency, reducing latency, and optimizing power



consumption through different memory access architectures
and dynamic resource allocation strategies.

Symons et al. introduced a loop-order-based memory allo-
cation (LOMA) method [8], which schedules DNN workloads
on accelerators by leveraging the nested loop structure of DNN
layers. LOMA improves memory utilization, supports both
even and uneven mappings, and offers fast auto-scheduling.
However, it overlooks key issues such as data reuse, limited
memory capacity, and interactions with off-chip memory.

Similarly, Huang et al. proposed an integer-only quantiza-
tion scheme and algorithm-hardware co-design for running
Transformer-like networks on edge devices [10]. While their
approach enhances matrix multiplication and self-attention
through optimized memory management, it relies on sequential
memory bank access. This limits parallelism, underutilizes
memory resources, and struggles with varying workloads and
irregular memory access patterns.

Furthermore, another promising direction involves compute-
in-memory (CIM) architectures. Jain et al. [11] proposed
a CIM-based accelerator that combines distributed memory
tiles for efficient multiply—accumulate (MAC) operations with
dedicated compute cores for various tasks. A dense 2D mesh
supports efficient data exchange and workload pipelining.
However, the main challenge remains managing data effi-
ciently within CIM arrays, as data movement and off-chip
memory latency still hinder performance, especially in edge
scenarios where fast and efficient memory access is essential.

Focusing on the aforementioned challenges: 1) inefficient
off-chip memory access and data reuse, 2) suboptimal memory
management, and 3) inadequate data scheduling for comput-
ing, our proposed architecture addresses these by combin-
ing a multi-path rolling data refresh mechanism with layer-
wise bank allocation. This approach improves data transfer
efficiency, lowers latency, and optimizes memory utilization,
thereby improving energy efficiency in Al accelerators.

ITII. PROPOSED ARCHITECTURE

Fig. 1 illustrates the proposed scalable multi-path rolling
data refresh and layer-wise bank allocation architecture for
edge-Al accelerators. The architecture is designed to optimize
memory access and data reuse by employing five rolling-
refresh direct memory accesses (RRDMAs), along with a bank
allocation strategy to enhance on-chip data management.

The external memory (DDR) is accessed through an AMBA
AXI-based interface, which supports burst transfers. Data are
fetched using two external DMAs: external activation DMA
(XADMA) and external weight DMA (XWDMA), which
manage activation and weight transfers from the external
memory to internal memory, respectively. These DMAs imple-
ment rolling-based data refresh, ensuring that memory banks
are updated sequentially in a circular fashion rather than
simultaneously, allowing efficient single-port SRAM deploy-
ment. The rolling refresh mechanism updates one bank per
configurable cycles, avoiding conflicts between read and write
operations in the same bank while maximizing memory band-
width efficiency. In particular, the rolling-based data refresh
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Fig. 1: Proposed architecture for scalable external memory
access and on-chip storage.

mechanism demonstrates compatibility with CIM and near-
memory computing (NMC) architectures. This synergy arises
from the inherent design characteristics of modern memory-
processor integrations, where PEs are either directly interfaced
with memory modules or physically embedded within memory
banks. When implemented in multi-bank memory architec-
tures, this mechanism optimizes three critical aspects of system
performance: 1) efficient utilization of off-chip memory band-
width, 2) maximized throughput across all memory banks, and
3) full exploitation of parallel computing through coordinated
PE array. The combined effect significantly enhances data
reuse while maintaining balanced resource utilization.

The layer-wise bank allocation strategy (Fig. 1, middle)
dynamically assigns on-chip memory banks to store weights
and activations across different NN layers. The total number
of memory banks is n, with banks 1 to m (< n) allocated for
activations and banks m + 1 to n allocated for weights. Each
layer is assigned a dedicated set of banks to prevent resource
contention and underutilization, as elaborated in Section I1I-B.
Two internal DMAs (internal activation DMA (IADMA) and
internal weight DMA (IWDMA)) efficiently fetch activations
and weights from their respective allocated banks and stream
them into the PE array for computation. The PE array then
performs parallel operations for Al tasks. In addition, most
Al accelerators integrate partial sum handler (PSH) to handle
temporary results in buffers and accumulate them until the final
results are obtained. When the current round of calculations
is completed, the PSH feeds the final result into the output
DMA (ODMA), which also follows a rolling-refresh style
similar to other DMAs. The ODMA sequentially transfers final
results from buffers to external memory, ensuring continuous
data movement and high computational utilization. A finite
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Fig. 2: Data paths and rolling data refresh strategy.

state machine (FSM) and register file orchestrate all these
operations, ensuring seamless synchronization of data flow.

A. Multi-Path Rolling Data Refresh Mechanism

The proposed architecture employs a rolling data refresh
mechanism with five independent paths to ensure efficient
memory access and computational throughput, as shown in
Fig. 2. These five paths are directly tied to the data load and
store operations, while the blue path from the PE array to the
output buffer through the PSH is fixed. This configuration is
designed to improve memory access efficiency by aligning
each path with specific load/store cycles and computation
tasks, ensuring a balanced data flow and high throughput.
The external memory serves as the primary data source. In
addition, to match the bandwidth resources of the ODMA
read channel, XWDMA and XADMA actually share a write
channel. That is, only one of them will be activated in each
burst transmission. These two DMAs (2 rolling paths) manage
the data movement from DDR to on-chip memory through a
rolling strategy, ensuring that each memory bank receives data
sequentially in a queue-like manner. For example, during the
first cycle, Bank #1 is updated, followed by Bank #2 in the
next cycle, and so on, until all activation or weight memory
banks have been refreshed. In addition, the storage of weight
banks (e.g., in convolution operation) is allocated according to
the number of kernels. Assume there are k (i.e., n—m) weight
banks and 3xk kernels. Then kernels (#1, #k + 1, #2k + 1)
are stored in bank #m + 1, kernels (#2, #k + 2, #2k + 2)
are stored in bank #m + 2, and so on. If there is not enough
storage, it will be allocated to the next round of storage and
continue calculation. This cyclic refresh mechanism eliminates
the need for bulk updates, allowing a continuous data flow
and balanced bandwidth utilization. Similarly, IADMA and
IWDMA introduce two additional rolling paths, ensuring that
activations and weights are sequentially fetched from memory
banks and fed into the PE array for computation. The FSM
governing these operations guarantees that read and write
operations are performed on different banks in each cycle,
preventing conflicts that would arise if both read and write
operations targeted the same bank simultaneously. Unlike

conventional methods that access a single bank for multiple
cycles before switching to the next, which usually require dual-
port or two-port SRAMs, the proposed rolling refresh strategy
staggers memory access across different banks and time slots.
This scheduling naturally avoids port conflicts between DMA
units, allowing efficient multiplexing of SRAM ports without
performance degradation. As a result, all on-chip memory
banks can use single-port SRAMs, significantly reducing area
overhead while maintaining high computational throughput.
Furthermore, the PSH maintains a structured storage scheme
using multiple buffer groups. As a computation round nears
completion, a rolling strategy enables the sequential output
of each group’s results in a queued manner (i.e., one group
is fully output before the next begins) ensuring an orderly
and continuous data stream. At peak throughput, these groups
can be output without interruption. Subsequently, the ODMA
then transfers the results from group #1 to #g to external
memory in a rolling queue approach, cyclically repeating the
cycle until the current layer’s computation is complete. This
approach improves memory bandwidth efficiency and ensures
that results are promptly stored for the next processing stage.

B. Layer-Wise Bank Allocation and Data Reuse Strategy

A layer-wise bank allocation strategy is proposed to min-
imize external memory access and maximize on-chip data
reuse. As specified in Algorithm 1, an example of convolution
operation is offered. In addition, since convolution operations
and matrix multiplication can be directly converted to each
other, this method is also applicable to matrix operations [12].

The algorithm determines the best partitioning of memory
banks for input activations and weights while ensuring efficient
spatial and channel-wise tiling strategies. It begins by initial-
izing hardware and convolutional layer parameters. The key
hardware constraints include the number of available memory
banks Nyqnk, the PE array size PFE,,, and the number of MACs
per PE PE,,. The bit width of calculation precision W, and
the depth Dpyyni and the width Wy, of each memory bank
are also taken into consideration. The convolutional parame-
ters include the input activation dimensions (Hj,, W), the
number of input and output channels (Cj,, Cyy:), kernel size
(K5, Ky), stride size (S, Sy), and padding size (P, P,).

Once the parameters are set, the algorithm calculates the
output activation dimensions H,,; and W,,; based on the
given parameters. Next, it computes the minimum required
memory banks for storing activations and weights, ensuring
that their total does not exceed the available memory banks
Npank. The minimum number of memory banks and memory
capability are determined to ensure that at least W,,,; results
per PE can be output in one calculation round in current layer.

To find the optimal memory allocation, the algorithm it-
erates over possible memory bank allocations, determining
that assigning two subsets of memory banks to weights
and activations results in the least external memory access.
For each allocation, it calculates the channel partitioning
strategy by determining the number of output channels that
can be processed simultaneously Cj;ce, ensuring that the



Algorithm 1 Search for optimal bank allocation and data reuse
strategy to minimize external memory access and maximize
data reuse for NN mapping

Require: Convolution Layer Parameters:
H;p,, Wiy Input activation dimensions
Cin, Cout: Input/output channel count
Ky, Ky, Sz, Sy, Pr, Py : Kernel & Stride & Padding size
Hardware Parameters:
PE,,: Number of MACs per PE
PE,: Number of PEs in the PE array
Npank: Number of memory banks
Waata: Data bit width
Dpgni: Depth of each memory bank
Wheank: PEm X Waatq {Bank width in bits}
Ensure: Optimal memory bank allocation and tiling parameters
: Compute Output Activation Dimensions and Overlap Area:
: Hout « |(Hin +2Py — Ky)/Sy] +1
: Wout < I_(Win +2P; — Ka:)/SxJ +1
AH +— Ky — 8y
: Calculate Minimum Storage Requirements:
Dper_row = Win X [Cin/PEp] {Elements per row}
 NJU™ <= [Dper_row X Ky/Dpgnk] {Minimum required memory
banks for input activation}
¢ N« [(Kg x Ky X PEp X [Cin/PEm))/Dbank] {Minimum
required memory banks for weights}
9: if N/2im 4+ N > Ny, then
10: Return Error: Insufficient memory resources
11: end if
12: Iterate Over Memory Allocation Configurations:
13: Initialize M Acyrrent = 00
14: for Nget = NI to Npgpni — N do
15: Nyt < Npank — Nact
Dyank X Nuwt

160 Cstice < min (| s TPE (Ci,,L/PEm]J X PEWCOM)
17: Channel Partitioning Strategy:

18:  Cspiit < [Cout/Csiice | {Output channel split count}

Cslice Cout mod Cslice =0

Cout mod Cgpice  otherwise

20: Spatial Tiling Strategy:

oo

19: Clu,st «—

212 H?;L:St < L(Dbank X Nact/Dpe’V‘_’l‘O’LU + Py - Ky)/syj + 1
22: H}?rst (H]?;‘:St —1) x Sy + Ky — Py {First block input height}
23 HE e [(Dygnk X Nact/Dper_row — Ky)/Sy] +1

24 H! .« (HoU, — 1) x Sy + Ky {Middle block input height}

250 if H$E > Hout then

;g; d f})?ﬁﬁ  Hout, Hfl} o = Hin
. end 1

28: Ryemain < Hout — H;;L':St

29: Hsplit <~ {Rremain/ :”V’L/Ld“ +1
H:?nuﬁi Rremain mod anlﬁl =0
Ryemain mod H;::J,'Ltd otherwise

31: if Hypiie > 2 then

30 HPM,

last

32: Hi", « Hip— Hi  + AH — (Hgpiy —2) x (HI™, , — AH)
{Last block input height}
33: end if

34: Memory Access Estimation of Weight/Activation Reuse:

35:  MAwt/PEnm + Ko X Ky X Cout X ((Pcljf; ) +
(Dper_'row X Hin + DpeT_row X AH X (Hsplit - 1)) X C.spl'it

36 MAact/PEm  Hopiie X Ko x Ky % Cour x ([581) +
Dpe'r_row X Hzn + Dper_'row x AH x (Hsplit - 1)

37:  Select Optimal Configuration:

38:  if MAwt < MAcurrent then

39: M Acyrrent < M Ayy; Store weight reuse Method
40: else if M Ager < M Acyurrent then

41: MAcurrent < M Aqct; Store activation reuse M ethod
42: end if

43: end for

44: Return Final Output Configurations for NN Deployment:
45: N;’ff ,NE *. Optimal memory bank allocation

46: Method"pt € {WeightReuse, Activation Reuse}

47: All optimal parameters relevant in the search process

Note: All related parameters are stored in the register file, enabling the FSM

to dynamically execute corresponding computations in the Al accelerator.
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Fig. 3: Design of PE array for evaluation.

data fit within the allocated memory banks. The number of
required partitions Cypyi; and the remaining channels in the
last partition Cj,s; are computed accordingly. Similarly, the
spatial tiling strategy is determined by partitioning the output
activation height into multiple segments, ensuring efficient
memory utilization. The output tile height H¢* Firs t Jmid/last’ the
input tile height H®" First/mid/last and the number of partitions
Hpiie are derived based on the available memory space.

After defining the tiling strategies, the algorithm estimates
the total memory access consumption under two different
strategies, including 1) weight reuse strategy prioritizes keep-
ing weights in memory while reloading activations as needed,
2) activation reuse strategy prioritizes keeping activations
in memory while reloading weights. Since the weights or
activations calculated in the current round may be reused in the
next round, in addition to properly allocating memory banks,
choosing a reasonable data reuse scheme can further reduce
external memory access and increase on-chip data reuse.

The external memory access of weight reuse M A,,; and ac-
tivation reuse M A, is computed by considering the number
of channel and spatial partitions, and the PE array size. The
algorithm then selects the configuration with the lowest total
memory access. Finally, it outputs the optimal memory alloca-
tion configuration, including the number of allocated banks for
activations NP/ and weights N2V, relevant parameters for the
configuration of Al accelerator, and the chosen optimization
strategy M ethodPt. This approach ensures that the memory
footprint is minimized, reducing off-chip memory access while
maximizing computational throughput and on-chip data reuse.

IV. AN EDGE-AI ACCELERATOR FOR EVALUATION
A. Design of Processing Element Array

To evaluate the proposed architecture, a typical PE array
is constructed as shown in Fig. 3. The array consists of 16
PEs (PE,), each containing 16 INT8§ MAC units (PE,,).
Each PE outputs the accumulated result of 16 INT8XINTS8
operations. Activations and weights (128-bit) are fetched via
IADMA and IWDMA into dedicated activation (Act_Buf)
and weight (Wt_Buf) buffers. The PEs generate 20-bit partial
sums, which are stored in a partial sum holder (PSH) for
further accumulation. The PSH consists of 16 buffer groups,
each storing 16 results, totaling 256 temporary results. These
partial sums are accumulated until final results are obtained,
which are then truncated to 8-bit to align the data width.

Furthermore, to build an accelerator for comprehensive eval-
uation, a total of 16 (Vp4,k) memory banks are implemented
corresponding to the proposed architecture. The size of each
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Fig. 4: Data update strategy in PE array.

clk#4 clk#5 clk#6 . . . clk#18 clk#19 clk#20 clk#21 = = =

Group#1 | 1,11 | 1,2] | [1,3] [1,15]1|[1,16]1| [1,1] | [1.2]
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Group#3 [n, pl: [3,1] [3,13]1][3,14] | [3,15] | [3,16]
- n means the output from n-th PE _ -,
p means the p-th output of output channel .
Group#15 *o. |11511|015,21] 115,31 | 115,41
Group#16 1 R RS

Fig. 5: Data update strategy in PSH for accumulation.

bank is 128b(Wpyank) x2048(Dpank), a total of 512KB in the
accelerator. The memory size is determined according to the
size of prevalent NN models and the number of on-chip PEs.
Moreover, these 16 memory banks can be reasonably allocated
according to Algorithm 1 in Section III-B to achieve the most
efficient external memory access and on-chip data reuse.

B. Data Update Strategy Related to PE Array

Fig. 4 illustrates the data update strategy in the PE array,
showing how activations and weights interact to achieve effi-
cient data reuse. INDMA is responsible for fetching weight
data from the bank memory and distributing it to multiple
weight buffers (Wt_Buf #1 to #16), each corresponding to a
PE. At peak throughput case, each Wt_Buf updates data every
16 cycles, which means that each weight can be reused 16
times. Similarly, IADMA loads activation data into Act_Buf
#1 and passes the data to Act_Buf #16 in a pipelined manner.
The 16-stage pipeline means that each activation can be reused
16 times. The temporary results (partial sums) generated by
PEs are forwarded to the PSH, which can accumulate partial
sums before writing the final results to external memory. The
PE array structure ensures efficient data reuse because the
weights are kept in buffers as different activations pass through
the PE, minimizing the memory bandwidth requirements.

Fig. 5 details the data update strategy within the PSH,
highlighting how partial sums are accumulated across clock
cycles. Each group represents a set of partial sums generated
by different PEs, which are progressively updated over time.
Initially, at clk#4, PE#1 outputs an initial partial sum [1,1].
As the clock progresses, each PE produces additional results,
with subsequent activations and weights contributing to further
accumulations. By clk#19, each group has computed multiple
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Fig. 6: Experimental setup for performance evaluation.

intermediate partial sums. At clk#20, the buffer starts pro-
cessing a new set of accumulations starting from [1,1] while
still retaining previous results, allowing efficient accumulation.
This approach ensures that the output remains consistent
across multiple cycles. The strategy effectively balances data
reuse and pipeline execution by maintaining intermediate sums
within the PSH, thereby reducing memory access overhead.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

The experimental setup is shown in Fig. 6. The proposed
design is implemented on a commercial 28nm CMOS process
at 0.8V, using standard digital IC design flow with commercial
EDA tools (i.e., Synopsys Design Complier for logic synthesis
and Cadence Innovus for physical design). The post-layout
simulation is performed in Synopsys VCS with extracted
parasitic resistance and capacitance from the layout. Two
models, VGG16 and ViT-Small, are used to evaluate the
performance. During the initialization process, the testbench
loads the model data into the DDR behavioral model, and then
the controller configures the register file in the chip through
the AXI-Lite bus to activate the accelerator. The accelerator
exchanges data with DDR through the AXI-Full bus.

B. Evaluation of Rolling Data Refresh

The rolling data refresh strategy improves memory access
efficiency by distributing refresh operations over time, reduc-
ing memory stalls and ensuring a more balanced workload.
Another key advantage is that it schedules read and write
operations to avoid conflicts, allowing to use single-port
SRAM instead of two-port SRAM. This significantly reduces
area overhead, as single-port SRAM requires fewer transistors
per bit. For a 128bx2048 SRAM, single-port block occupies
0.061 mm?2, while two-port block takes 0.122 mm? (50%
area reduction). This optimization leads to a reduction of
30.6% in the total area of the chip compared with an identical
design realized by two-port SRAMs, significantly improving
the area efficiency. Additionally, it lowers power consumption
and simplifies memory design by reducing routing complexity.

C. Evaluation of Layer-Wise Bank Allocation and Data Reuse

Fig. 7 demonstrates the effectiveness of our layer-wise
bank allocation and data reuse strategy in reducing external
memory access across different NN architectures. Different
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Fig. 7: External memory access of related layers in NNs.

NN architectures exhibit varying memory demands: models
with deeper channels tend to have larger activation sizes,
while models with larger kernels require more weight storage.
Given these variations, the bank allocation strategy must be
designed to accommodate a wide range of models rather
than being optimized for a single case. To establish a fair
baseline comparison, we assume an even distribution of the
16 banks for weights and activations without layer-wise bank
allocation. This strategy ensures that the memory allocation
is balanced across different models. Conversely, allocating
too few banks for weights or activations can hinder large-
kernel models and deeper networks, causing computation
failures or memory bottlenecks. Thus, VGG16 uses 8 banks for
weight and activation respectively. However, ViT-Small uses
6 banks for weight and 10 banks for activation, otherwise it
cannot complete the calculation due to insufficient memory.
Compared to traditional approaches without bank allocation
or mixed-data reuse, our strategy achieves 2.63% to 37.24%
reduction in memory access for VGG16 and 4.29% to 29.90%
reduction for ViT-Small. This improvement is attributed to
the optimized memory partitioning, which assigns dedicated
banks for activations and weights, minimizing data transfers.
Additionally, the data reuse mechanism efficiently leverages
on-chip buffers, further reducing the reliance on costly external
memory access, enhancing overall performance. On the other
hand, for some layers with a few parameters and computational
overhead (e.g., QxKT), the on-chip memory can store all or
most of the data at once, so the optimization is not significant.

D. Comparison with Existing Al Accelerators

TABLE I: Performance comparison with SOTA designs.

. [13] [14] [15]
This Work 1SSCC’23 1SSCC’23 VLSI’23
Technology 28nm 28nm 22nm FDX 40nm
Evaluation Post-layout Chip Chip Chip
Method Simulation Measurement Measurement Measurement
. Digital Digital RISC-V + Digital
Architecture Accel. Accel. RBE Accel. Accel.
Supply [V] 0.8 0.66-1.3 0.5-0.8 0.7-0.9
Freq. [MHz] 700 100-500 420 5-80
Area [mm~] 2.21 7.81 18.7 4.92
Power [mW]| 34.85-42.70 17-174 12.8-123 0.793-1.032
Memory [kB] 512 1120 1152 206
Precision INTS8 INT8 INT2-8 (Accel.)| A:8b; W:1-8b
Area
Efficiency 0.162 0.131 0.034@RBE2x2| 0.004@A8b,W1b
[TOPS/mm?]
€Peak Power| 10.28@INT8T | 7.28@ResNet50 |3.81 @RBE2x2
Efficiency [8.81@VGG162(7.15@MobileNetV1|1.96@ResNet20|, 30 @AW 0
[TOPS/W] | 7.36@ViT-5% |5.10@MobileNetV2|1.79@ResNet18| obiieet

150% sparsity, 100% PE utilization
?19.33% / 72.55% sparsity for weight / activation in VGG16, accuracy: 71.68%
312.78% 1 55.14% sparsity for weight / activation in ViT-Small, accuracy: 76.82%

“Power efficiency scaled to [0.8V 28nm] = Energy efficiency x ZZ2=225 (%)2

In Table I, we compare the accelerator built on the proposed
architecture with other SOTA designs. As seen from the
comparison with [13]-[15] in real end-to-end NN evaluations,
our design achieves a power efficiency improvement ranging
from 1x to 6.4x. This improvement is largely due to the
efficient layer-wise bank allocation and data reuse strategy that
aligns seamlessly with our proposed architecture. Furthermore,
the rolling data refresh strategy contributes to a significant
improvement in area efficiency, ranging from 1.2x to 40.5x.

VI. CONCLUSION

This paper presents a scalable architecture that addresses
key challenges in resource-constrained Al accelerators for
edge computing, specifically focusing on optimizing memory
access and management. By integrating a multi-path rolling
data refresh mechanism and layer-wise bank allocation, the
proposed design enhances the efficiency of off-chip and on-
chip data interactions, significantly reducing latency and min-
imizing memory overhead. The layer-wise allocation of mem-
ory banks optimizes memory access based on the structure
of specific NNs, leading to improved memory efficiency and
reduced latency. A case study on a 28nm Al accelerator
demonstrates impressive power efficiency of 10.28 TOPS/W
and a 2.63% to 37.24% reduction in external memory access
for VGG16 and ViT-Small models. The proposed architecture
shows promising potential for enhancing the performance and
efficiency of Al accelerators in edge computing environments.
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