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Abstract

A radiation-hardened neuromorphic imager prototype is
developed for space exploration, featuring a fully spike-based
neuromorphic vision system architecture, in-pixel self-healing
against radiation-induced damage, and integrated unified
spiking neural network (USNN) with adaptive neurons and
synapses and contrast enhancement at low-contrast conditions.
Self-healing reduces dark current by 6.25x at 14kGy
cumulative dose, recovering recognition accuracy by 27.8%.
USNN consumes 0.0529 pJ/SOP at 5,000 events/s.

Introduction

Space-grade ICs are in constant demand in view of the
continuous interest in space exploration [1]-[8], where the
operating environment challenges silicon systems (e.g.,
radiation from cosmic rays induces damage and faults, extreme
lighting conditions limit the harvested power from solar
panels). Such harsh conditions mandate high radiation
tolerance, low power consumption, and resilient processing in
space ICs (Fig.1). For space image sensors, radiation causes
total ionizing dose (TID) and displacement damage dose
(DDD) in CMOS pixels [9]-[10], resulting in faulty responses
and hot pixels with high dark current [11]-[14]. Voltage
compensation has been used to mitigate these effects but
requires high voltages (9-30V) and significant power (>0.2W)
[11]. While silicon carbide (4H-SiC) photodiodes (PDs) offer
strong radiation tolerance, their quantum efficiency in the
visible range is limited [14]. Techniques like gate-overlap PDs
and enclosed layout transistors [11]-[13] can enhance radiation
tolerance but fail to recover damaged pixels, thus not extending
the actual pixel lifetime. Annealing can effectively repair
radiation-induced lattice damage, but heating the full sensor
incurs significant power [15]. Furthermore, conventional pixel
readouts [11]-[14], relying on analog sampling and conversion,
are susceptible to transient faults from radiation-induced
charge fluctuations and signal distortions, while also lacking
the processing capability required for image enhancement and
advanced space exploration tasks. Imagers incorporating
CNNs [16] or BNNs [17] add intelligence but remain
susceptible to radiation in space.

Proposed Neuromorphic Imager

This work presents a radiation-hardened neuromorphic
imager for space robotics (Fig.2), featuring: 1) a fully spike-
based vision system, which eliminates the need for ADCs,
enhances resilience to radiation-induced faults, and achieves
state-of-the-art energy efficiency; 2) radiation-hardened pixel
array with in-pixel localized annealing, enabling self-healing
against radiation damage; 3) integrated unified spiking neural
network (USNN) incorporating adaptive excitatory and
inhibitory (E/I) neurons and synapses for space object
recognition and spatialization; and 4) spike-based time-domain
exponential (STE) contrast enhancement for low-light
conditions. Key feature demonstrations are shown in Fig.3.

The system (Fig.2) consists of a 73x73-pixel array, a USNN,
pixel readout, controller, and an SPI interface. The pixel array
generates spike signals with frequencies representing light
intensity, which are directly fed into the USNN with three task-
specific output heads for terrain recognition, object positioning,
and focus state analysis. Each USNN layer processes spikes
using digital counters, multiplying binary weights (-1, +1) and
firing output spikes to the next layer. The distributed nature of
spikes offers inherent redundancy and resilience [18]-[22],

making our system more fault-tolerant than traditional
sampling-based systems.

Triple module redundancy (TMR) registers are used for
weight storage, but TMR proves less effective for CMOS
pixels, which are susceptible to cumulative long-term radiation
damage. Accelerated alpha irradiation tests reveal significant
hot pixels at doses exceeding 10kGy, with dark current
increases of ~10,000% (Fig.1, bottom). To address this, in-pixel
annealing is introduced to enable localized thermal recovery of
silicon’s electrical properties. Fig.4 shows the pixel design
integrating spike generation and self-annealing. The PD is an
N+/P- well diode with an extra N-well guard ring for enhanced
radiation tolerance. Spike generation is achieved through a
positive feedback loop, where photocurrent from reversed-
biased PD alternately charges and discharges the Schmitt-
trigger buffer, producing output pulses with frequencies
proportional to light intensity [18]. In self-annealing, the PD is
forward biased by the column driver, creating a local hot spot
(>120°C @ 2V) for annealing with minimized power overhead.

USNN (Fig.5, top) begins with STE modules for synaptic
integration. A synchronizer aligns asynchronous pixel spikes
before aggregation, firing spikes to subsequent layers when
thresholds are exceeded. To enhance energy efficiency,
adaptive E/I neurons and synapses inhibit irrelevant neurons
and synapses using clock gating (Fig.5, bottom). For low-light
conditions commonly encountered in space exploration, STE
contrast enhancement exponentially accumulates pixel spikes
during synaptic integration via shifters (Fig.6, top and Fig.3(c)).

Measurement Results

The proposed 180nm design (Fig.10) exhibits excellent
spike frequency linearity with light intensity, achieving an R?
value of 99.7% (Fig.7, top). Under low-light conditions (~100
lux), STE contrast enhancement improves inference accuracy
by 57.8%-63.1% and inference speed by 3.3x. The USNN
operates at 200 kHz to match the highest spike frequency and
consumes 59 uW at 0.6V during recognition and spatialization
tasks for the Mars surface images dataset (Fig.6, bottom).
Adaptive E/I neurons and synapses reduce USNN power
consumption by 31.2% with 61.83% of synapses inhibited,
achieving a system energy (including pixel array) of 0.0529
pJ/SOP (18.9 TSOPS/W), marking a 51-to-639% improvement
over previous SOTA imagers (Table.I). Accelerated alpha
irradiation experiment is performed using Americium-241
with a radioactivity of 4 Mbq (significantly exceeding typical
space conditions, Fig.8). During in-pixel localized annealing,
the local power density ranges from 0.11 to 0.47 mW/um? at
1.5-2.5V, reaching temperatures above 120°C at a typical
voltage of 2.0V (Fig.8, bottom). Damaged pixel recovery was
evaluated under varying radiation doses, demonstrating both
quick recovery within 3 minutes and repeated recovery (Fig.9,
left). In repeated recovery, after four rounds of accelerated
irradiation and annealing, self-healing pixels show a dark
current increase rate that is 6.25x slower than untreated pixels,
effectively extending the device lifespan. As cumulative doses
increase, the number of damaged pixels rises, degrading USNN
accuracy. By applying self-healing, the USNN accuracy is
recovered by 27.8% under 14kGy irradiation (Fig.9, right).
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TABLE 1. Comparison with state-of-the-art imagers

[16] JSSC2023| [17]1SSCC2024 | [11] commercial | [13] TNS2015 this work
hnology | 180nm CMOS | 180nm CMOS CIs 180nm CMOS 180nm CMOS
chip architecture | imager + CNN |  imager + BNN imager imager imager + SNN
supply voltage 08 analog: 0.35 3.3 (normal), analog: 3.3 0.6-0.8 (normal)
v) : digital: 1.1 -9~-30 (V.comp.) | digital: 1.8 [1.5-2.5 (self-healing)
area (mm?) 5.368 25 >75 not reported 28.275
pixel array 128x128 128x128 720x720 128x128 73x73
pixel size (um?) 7.6x7.6 20x20 12x12 10x10 22x21 (10x10 for PD)
pixel structure 4T PWM 6T PWM not reported 3T 14T spike
power not reported | 1.578~121.74mW 020 notreported |  76.3uW @ 0.6V
image spike-based time-
t No No No No domain exponential
pixel radiation . _ high voltage  [gate-overlap PD, | in-pixel self-healing,
hardening compensation | enclosed layout | NW-guarded PD
dark current ~125x wlo healing
increase @14kGy| i not reported >100x ~20x ! healing
optical + BNN
neural network | CNN (3-layer) (3-ayer) - - USNN (7-layer)
memory type flip-flops flip-flops TMR flip-flops
frame/event rate | 50~250 fps 1~32 fps - - 1~5,000 eventis
@1~50K lux lighting
dataset LFW/Kaggle | MNIST (96.4%), Mars Surface Images
(accuracy) Oregon Eyes Orientation - - (89.77% recognition;
Y ildlife (93.6%), (94.9%) 93.18% spatialization)
energy efficiency - 0.367 TOPS/W - - 18.889 TSOPS/W
energy per 338 . )
operation pJ/pixelframe 0.0529 pJisop
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