
2025 Design, Automation & Test in Europe Conference (DATE 2025)

 978-3-9826741-0-0/DATE25/© 2025 EDAA

 HachiFI: A Lightweight SoC Architecture-Independent
Fault-Injection Framework for SEU Impact Evaluation

Quan Cheng1,2, Wang Liao3, Ruilin Zhang1, Hao Yu2, Longyang Lin2, Masanori Hashimoto1,∗

1Department of Communications and Computer Engineering, Kyoto University, Kyoto, Japan
2School of Microelectronics, Southern University of Science and Technology, Shenzhen, China

3School of Systems Engineering, Kochi University of Technology, Kochi, Japan
*{hashimoto@i.kyoto-u.ac.jp}

Abstract—Single-Event Upsets (SEUs), triggered by energetic
particles, manifest as unexpected bit-flips in memory cells or regis-
ters, potentially causing significant anomalies in electronic devices.
Driven by the needs of safety-critical applications, it is crucial to
evaluate the reliability of these electronic devices before they are
deployed. However, traditional reliability analysis techniques, such
as irradiation experiments, are costly, while fault injection (FI)
simulations often fail to provide full coverage and have limited
effectiveness and accuracy. To address these issues, we introduce
HachiFI, a lightweight, architecture-independent framework that
automates fault injection with 100% coverage via memory and
scan-chain accesses and simulates the behavior of SEUs based
on specific cross-sections. HachiFI supports configurable fault
injection patterns for both system-level and module-level reliability
analysis. Using HachiFI, we demonstrate a low hardware overhead
(<2%) and a high match (R2=0.984) between FI and irradiation
experiments, verified on a 22nm edge-AI chip.

Index Terms—single-event upset, architecture-independent,
fault injection, irradiation

I. INTRODUCTION

In recent years, reliability-demanding electronic devices have
grown significantly, particularly in safety-critical applications
such as aerospace, automotive, medical devices, and industrial
automation [1]. These devices are often exposed to harsh
conditions, including radiation from energetic particles that
can cause severe disruptions to electronic systems. One of the
most common and challenging effects induced by radiation
is Single-Event Upsets (SEUs) [2], [3]. SEUs occur when
high-energy particles (e.g., protons, neutrons, or heavy ions)
strike sensitive regions of semiconductor devices, causing un-
expected bit-flips in memory cells, registers, or other criti-
cal components. These bit-flips, while transient, may lead to
significant anomalies, including functional errors and system
crashes, which in turn may have catastrophic consequences,
such as navigation errors in spacecraft, malfunctioning medical
devices, or failure of autonomous vehicle control systems [4]–
[6]. Therefore, evaluating the reliability of electronic devices
against SEUs before their deployment is crucial, particularly
for safety-critical applications. To ensure the robustness of
these systems, comprehensive reliability assessments must be
performed during the design and testing phases.

Traditionally, reliability analysis of electronic devices has
been conducted using irradiation experiments and fault injec-
tion (FI) experiments [7]–[11]. Irradiation experiments involve
exposing the device under test (DUT) to a radiation source, such

as particle accelerators or radioactive isotopes, to induce SEUs
and observe the behavior of the system. Although irradiation
experiments provide valuable insight into system’s vulnerabil-
ity, these experiments are typically costly, require specialized
facilities, and their availability is highly limited. Furthermore,
the turnaround time from the plan to the experiment takes
several months, making instant or iterative testing infeasible.
On the other hand, FI technique provides a more accessible
and cost-effective alternative for SEU analysis by artificially
injecting faults into the system to mimic SEUs. FI technique
allows users to model and analyze the system’s response to
various fault scenarios, offering a flexible approach for relia-
bility analysis. However, FI technique usually cannot achieve
full coverage or accurate FI of all potential SEU scenarios due
to vast state space and complex interactions within electronic
systems. Besides, FI technique is often constrained by the
assumptions and simplifications made in the fault models,
which can lead to an incomplete or inaccurate representation
of real-world SEU effects. Additionally, the effectiveness of FI
simulations heavily depends on the quality and granularity of
FI patterns, which can vary widely between different studies.

To address the limitations of traditional reliability analysis
techniques, we introduce HachiFI, a Handy, ArCHitecture-
Independent FI framework designed to enhance SEU and
hardware security analysis, where the SEU analysis is focused
in this paper. HachiFI aims to provide a comprehensive so-
lution by automating the FI process, offering full coverage
of potential SEU scenarios, and accurately simulating SEU
behavior based on specific cross-sections. Unlike traditional
FI tools, which are often constrained to specific architectures
and require extensive manual configuration [12], HachiFI is
designed to be easily adaptable to a wide range of hard-
ware platforms. It features a unified FI and analysis interface
through a customized OpenOCD [13] that accesses on-chip
memories, processor register files, as well as scan-chains inside
the processor and peripherals, achieving a full coverage of
storage components on a chip. Furthermore, HachiFI allows
for user-defined error patterns using TCL scripting, enabling
automated FI across multiple abstraction levels—from system-
level down to module-level analysis. This hierarchical approach
lets users configure FI patterns tailored to their system’s specific
requirements, facilitating detailed reliability assessments that
account for the unique characteristics of each component.

To validate the applicability of HachiFI, an edge-AI proces-
sor fabricated with a 22nm technology is adopted as a case
study. By using experimental results from alpha irradiation
on our processor as a golden reference, this work examines
how accurately and effectively HachiFI can estimate system
reliability solely through FI, without the need for irradiation
experiments. Specifically, faults are injected into the entire gate-
level netlist in the simulation case, while in the hardware case,
faults are injected into the actual chip under real conditions. The
experimental results demonstrate a high correlation between
HachiFI’s FI results and the measured effects of irradiation,
accurately replicating the impact of SEUs observed in real-
world testing. The key contributions of this paper include:

• HachiFI Framework for Fault Injection: This paper in-
troduces the HachiFI framework, a flexible and adaptable
FI tool designed to perform FI at multiple levels of abstrac-
tion, from system-level to module-level, using TCL-based
error patterns. HachiFI supports software-based (simula-
tion) and hardware-based (emulation and fabricated chip)
environments, providing comprehensive error patterns to
evaluate the reliability of hardware platforms without the
need for costly irradiation experiments. Its optimized in-
tegration with OpenOCD and scan-chains through custom
commands further enhances its capabilities, making it
suitable for a wide range of hardware platforms.

• Validation with a 22nm Edge-AI Processor: The ef-
fectiveness of the HachiFI framework is validated us-
ing a 22nm edge-AI processor, specifically designed for
energy-efficient data processing in harsh environments. By
combining FI analyses and irradiation measurements, this
study provides a comprehensive evaluation of the proces-
sor’s reliability and resilience against SEU effects. Exper-
imental results demonstrate a high correlation between FI
results performed by HachiFI and actual irradiation data,
confirming HachiFI’s accuracy in replicating SEU effects.

II. RELATED WORK

Existing methods for analyzing and improving system re-
silience against SEUs can be broadly classified into two main
categories: irradiation experiments and fault injection tech-
niques. Each has its own advantages and limitations, shaping
their applicability for modern electronic systems.

A. Irradiation Experiment

Irradiation experiments are considered gold standards for
evaluating the impact of SEUs on electronic devices. The key
advantage is their ability to directly observe the physical impact
of energetic particles on real hardware, yielding highly accurate
data on device vulnerabilities and failure modes.

However, irradiation experiments have significant drawbacks.
The high cost of access to specialized irradiation facilities,
along with the need for extensive safety protocols and complex
experimental setups, makes these tests expensive and time-
consuming [14]. J. Gava et al. conducted a detailed analysis of
the Zynq-7000 device under neutron irradiation [10]. In the irra-
diation experiment (fluence: 1010 neutrons/cm2), approximately
300 events were observed. Similarly, Cheng et al. analyzed their

custom SoC implemented on a flash-based FPGA under neutron
irradiation [11]. During a 4-day irradiation experiment (fluence:
2×108neutrons/cm2), fewer than 300 events were recorded. Due
to the high cost and the limited number of data points, the
reliability analysis might be prone to bias, potentially leading
to less accurate conclusions about the system’s robustness.
Additionally, irradiation experiments are often limited by the
availability of specific particle sources and energy levels, which
may not fully represent the diverse radiation environments
encountered in real-world applications [15]. Besides, irradiation
experiments are often scheduled several months in advance,
causing significant delays. These constraints limit the practical-
ity of irradiation experiments, especially during the early stages
of design when frequent testing and adjustments are needed.

B. Fault Injection Technique

FI techniques provide a more accessible and flexible alter-
native to irradiation experiments by simulating SEU effects
in a controlled simulation environment. FI techniques allow
researchers to systematically explore the system’s response to
various fault scenarios, assess its fault tolerance mechanisms,
and identify potential weaknesses. Despite their advantages,
traditional FI simulation techniques have notable limitations.
One major issue is the lack of full coverage in FI scenarios.
TensorFI [12] is a high-level FI framework for TensorFlow
applications, designed to inject both hardware and software
faults. Its main limitation is the inability to directly inject faults
into low-level hardware, restricting its use for hardware-specific
testing. Similarly, Fiji-FIN [16] is a FI framework for evaluating
deep learning models on IoT devices. Its primary drawback is
that it can only inject faults into memory cells, not registers,
which limits its coverage for testing hardware fault resilience.

Furthermore, current FI techniques face significant chal-
lenges in precisely targeting specific time points or particular
system operating cycles for FI. A FI technique that injects
errors into the FPGA’s configuration memory limits its ability
to perform fine-grained fault analysis, potentially oversimpli-
fying the process by failing to capture dynamic or complex
fault scenarios [17]. Also, Zhang et al. proposed an SEU FI
framework based on UART port [18]. However, using UART to
interact with the DUT during FI can interfere with the original
execution of the DUT’s program. Additionally, UART cannot
support instruction-level FI, limiting its accuracy for precise
analysis. Meanwhile, these existing tools remain tied to specific
platforms, limiting their applicability across different systems.

These limitations lead to substantial inaccuracies in relia-
bility analysis, as the injected faults may not accurately reflect
real-world conditions or device behavior. The discrepancies be-
tween FI results and real system behaviors under radiation can
undermine the reliability of FI frameworks for fault analysis.

III. HACHIFI FRAMEWORK

The HachiFI framework offers a comprehensive solution for
evaluating the reliability of electronic systems against SEUs.
It integrates a small circuitry responsible for FI capabilities
directly into Hardware Description Language (HDL) designs,
enabling both hardware-based and software-based FI. HachiFI

Fig. 1. HachiFI design flow. (a) DUT design flow. (b) Fault injection environment. (c) End-user flow.

is designed to seamlessly work with existing Application-
Specific Integrated Circuit (ASIC) design flows, providing full
coverage and configurability for reliability analysis.

The HachiFI design flow (Fig. 1) consists of the DUT design
flow, FI environment, and end-user flow, each of which will
be explained in the following subsections. The blue blocks
represent HachiFI components, such as the FI control module
and error patterns. The yellow blocks are user-provided inputs,
like the standard cell library and design constraints (SDC),
which guide synthesis and place-and-route. The pink blocks are
generated or inherent components during the design process, in-
cluding netlists, GDSII layouts, and memory/flip-flop (FF) lists
and cross-section data. The gray blocks indicate EDA tools,
such as synthesis, backend, and debug tools, which convert
HDL designs into physical chips and perform debugging.

A. DUT Design Flow
A DUT design in the HachiFI framework starts with standard

HDL designs (VerilogHDL or SystemVerilog) that are enhanced
with a FI interface by incorporating FI control module, as
shown in Fig. 1(a). Based on system bus interface and abstract
commands in OpenOCD, the FI control module manages FI and
interacts with designs to introduce controlled SEU simulations.
This FI control module includes a logic that can efficiently
schedule the scan shift and a read/write (R/W) module for
reading and writing on-chip memory. The design is synthesized
using standard EDA tools (e.g., Design Compiler) that can
build scan-chains and incorporate FI logic, and then processed
through backend tools for place-and-route, and generating the
netlist for simulation and the GDSII file for chip fabrication.

The scan-control logic circulates the bit sequence in the scan-
chain by connecting the scan-out to scan-in, and at the specified
bit location, modifies the value and injects it to the scan-chain.
During the integration process, the scan-chain control module
can automatically adapt to the HDL design, while the memory
reading and writing module requires the user to expand the
memory R/W interface to interact with the module. Notably,
memory access interfaces are commonly available in most
processors to support debugger access.

B. Fault Injection Environment
The FI environment in Fig. 1(b) utilizes memory and FF

cross-section data, user-defined error patterns, and memory and

FF lists to simulate SEUs in memory and FFs, where the user-
defined error patterns will be exemplified in Section III-D. The
cross-section data, representing the probability of a radiation
particle causing an upset, is crucial for assessing semiconductor
reliability. This data, tied to the chip fabrication process, is
constant in specific radiation environments and is used to model
bit-flips during FI, where it could be provided by foundries,
literature, or irradiation experiments. The memory and FF lists,
detailing all units available for FI, are referenced during these
simulations. Our optimized OpenOCD leverages the cross-
section data, along with the memory and FF lists, to enable
precise FI via the JTAG interface. In the extended OpenOCD
setup for scan-chain operations, new commands that we im-
plement for HachiFI (e.g., scRst for scan-chain reset, scRWb
for BYTE-level R/W of scan-chain, scRWw for WORD-level
R/W, and scRWd for DWORD-level R/W) allow fine control
over the scan-chain. Note that additional new commands can
be easily added to OpenOCD, if necessary. These commands
facilitate accurate FI and debugging by directly manipulating
the scan-chain by enabling the scan-enable signal and switching
the system clock to scan-chain clock.

A key advantage of HachiFI is its precise control over
system execution through JTAG. Commands such as halt and
breakpoint can stop the system at a specific instruction for
FI, which is especially useful for identifying vulnerabilities
in buses and interfaces between processors and peripherals.
Additionally, Hachi’s scan-chain control and a timer built into
OpenOCD allow comprehensive FI coverage, even when the
processor is idle or polling.

C. End-User Flow for Simulation, Emulation and Chip

The HachiFI framework supports end-users in both software-
based and hardware-based environments, as shown in Fig. 1(c).
In hardware settings, users can employ physical JTAG con-
nections to interact with the fabricated chip, injecting faults
and analyzing its performance in a real-world hardware envi-
ronment. Alternatively, virtual JTAG connections enable FI at
the simulation level, allowing users to test the netlist before
hardware is available. This simulation process interacts with
external tools or environments, enabling the design to be tested
and refined across multiple runs before reaching the physical
chip stage. Besides, the netlist can also be imported onto

an FPGA for FPGA-based prototyping and FI testing from
a physical view. This dual approach ensures flexibility and
broad applicability of the framework across various stages of
the design and validation process.

D. Error Pattern Definition and Accurate Execution

HachiFI significantly enhances FI processes by introducing
a customizable, architecture-independent platform for more
precise FI. Leveraging TCL scripts within OpenOCD, HachiFI
allows users to define several error patterns:

1) Spatially and Temporally Random (STR) Pattern: STR
FI allows for global FI simulation that closely reproduces
real-world irradiation experiments. This pattern, supporting the
access of all FFs and memories, enables the reproduction of
chip behavior under actual radiation conditions.

2) Biased Random (BR) Pattern: However, when dealing
with DUTs that integrate protection mechanisms like Error-
Correcting Code (ECC) or Triple Modular Redundancy (TMR),
STR FI may not yield accurate or efficient reliability insights, as
these mechanisms significantly lower the error rate. Continuing
to use STR FI on such protected systems may fail to expose vul-
nerabilities effectively. To overcome this, BR FI pattern is intro-
duced. This pattern enables HachiFI to target meaningful faults
by injecting Multi-Bit Upsets (MBUs) into protected regions
considering spatial proximity, bypassing irrelevant Single-Bit
Upsets (SBUs). This targeted approach ensures that reliability
analysis focuses on critical fault scenarios, thereby improving
the efficiency and relevance of FI testing.

3) Cross-Domain (CD) Pattern: HachiFI also facilitates the
analysis of faults propagating within different modules across
various functional domains of the chip, including memory,
peripherals, and I/Os. To realize this, a CD FI error pattern
is introduced for detailed tracking of how faults in one domain
or module can impact the system, highlighting potential vulner-
abilities and improving fault tolerance in large-scale designs.

4) Timing-based Attack (TA) Pattern: This pattern specifi-
cally targets the security integrity of subsystems or modules by
manipulating clock signals and injecting faults to simulate tim-
ing attacks. By adjusting the clock or causing intentional delays,
this pattern recreates the conditions under which timing-based
security exploits occur, such as leaking sensitive information
through clock glitches or disrupting secure processes.

In summary, the HachiFI framework introduces four key FI
patterns to enhance the accuracy and relevance of FI testing
across a wide range of scenarios. The FI flow using optimized
OpenOCD is illustrated in Flow 1. These customizable patterns
significantly improve FI precision, targeting both reliability and
security concerns in complex systems.

IV. AN EDGE-AI PLATFORM FOR HACHIFI VALIDATION

A. Edge-AI Chip Framework

As shown in Fig. 2, our DUT of a 22nm edge-AI processor
is composed of four main components: 1) an RV32IM RISC-V
processor with a 3-stage pipeline, 64KB Instruction Memory,
32KB Data Memory, and peripherals such as UART, SPI,
and JTAG; 2) a computation engine designed for convolution
and matrix operations, featuring 16 Computation Cores (CCs),

Flow 1 FI Using Optimized OpenOCD with Pattern Support
1: Source all memory and FF information
2: Source memory and FF cross-section information
3: Record start
4: Repeat
5: Select fault injection pattern:
6: STR Pattern:
7: Generate random spatial and temporal locations
8: Halt system
9: Inject errors at generated locations

10: Resume system
11: BR Pattern:
12: Identify protected modules with ECC or TMR
13: Generate multi-bit upset patterns
14: Halt system
15: Inject MBUs into protected regions
16: Resume system
17: CD Pattern:
18: Select fault source in one domain/module (mem., I/O, etc.)
19: Track fault propagation to other domains
20: Halt system
21: Inject faults and record propagation
22: Resume system
23: TA Pattern:
24: Manipulate clock periods or introduce delays
25: Halt system
26: Inject timing faults into subsystems or modules
27: Resume system
28: Until (system crashes or test is complete)
29: Record end

Fig. 2. Edge-AI chip framework.

256KB internal memories, and 256KB external memories; 3)
a single scan-chain for supporting R/W operations for all FFs;
and 4) a Digital Phase-Locked Loop (DPLL) generating clock
outputs from 100 MHz to 1.2 GHz. Besides, our chip has
42,478 FFs. Specifically, the engine operates at a standard
frequency of 600 MHz at 0.9V, while the RISC-V core and the
scan-chain run at 100 MHz. In addition, protection mechanisms
(e.g., ECC, TMR) are not applied to any SRAMs.

Our design integrates a high-performance computation en-
gine with efficient arithmetic units and enhanced data reuse,
using an INT8 multiplier as the basic computation unit. To

TABLE I
OVERHEAD ANALYSIS OF HACHIFI INTEGRATION ON THE EDGE-AI CHIP.

Component Area(w/o HachiFI) Area(w/ HachiFI) Overhead
Core Logic 0.5642 mm2 0.5910 mm2 1.7398%
Memory 0.9723 mm2 0.9723 mm2 -
FI Controller N/A 0.0030 mm2 0.1948%
Digital PLL 0.0039 mm2 0.0039 mm2 -
Total 1.5404 mm2 1.5702 mm2 1.9346%
Decap cells, tap cells, endcap cells, and filler cells are not included.

enhance computational parallelism, each CC features 16 multi-
pliers, enabling multiply-accumulate (MAC) operations on 32
INT8 inputs to generate 1 output per data point. In each CC, the
computation units are directly connected to the internal mem-
ory. This design accommodates three data flows: 1) pipeline
data flow for external memory, 2) near-memory data flow for
internal memory, and 3) stationary data flow for outputs. Each
CC can process 32 bytes per clock cycle. Moreover, to achieve
high data reuse, each internal memory updates data every 1-to-
16 cycles, with all CCs alternating data updates. This means
that each data can be reused 1-to-16 times depending on the
configuration. Besides, it is notable that not only memory sizes
but also R/W patterns affect the soft error rate.

B. Hardware Overhead Analysis of HachiFI Integration

To assess the impact of integrating the HachiFI framework
on hardware resources, we conduct a detailed area overhead
analysis. The evaluation focuses on the additional logic and
resources required for the FI control module, scan-chain modi-
fications, and error detection logic introduced by HachiFI. The
analysis is performed on the 22nm edge-AI chip as mentioned
in Section IV-A, comparing the original design without HachiFI
to the modified design with FI capabilities.

The results, summarized in Table I, indicate that the inte-
gration of HachiFI incurs minimal area overhead. Specifically,
the additional components required by HachiFI occupied less
than 2% of the total chip area. This overhead primarily results
from the area difference between normal FFs and scan-FFs.
When the original design includes scan-FFs, which is common
in industrial designs for shipping tests, the overhead for HachiFI
is negligible. Also, the minimal area overhead observed during
the integration of HachiFI is largely due to the simplicity of the
scan-control logic. In synthesis, building the scan-chain only
requires replacing normal FFs with scan-FFs. As FF cells are
very small and relatively few in number, the size impact is
minimal. Additionally, scan-FF cells only incur a 28% increase
in area compared to normal FF cells, making the replacement
cost-efficient. Moreover, as RISC-V natively supports R/W
operations to on-chip memory, the integration of the FI system
with memory access pathway requires minimal effort.

Additionally, the OpenOCD interface can be extended to
interact with the R/W bus, ensuring that the memory-related
overhead remains negligible as well. This minor increase in area
ensures that the core performance and functionality of the chip
are preserved while enabling comprehensive FI capabilities.
The low overhead is a key advantage of HachiFI, making it
suitable for integration into existing designs without significant
impact on cost or power efficiency.

Fig. 3. Experimental setup for alpha irradiation and hardware fault injection.

V. EXPERIMENT AND EVALUATION

A. Experimental Setup

To validate the effectiveness of the HachiFI framework,
we employ a three-pronged approach consisting of software-
based FI via simulation tool, hardware-based FI via chip, and
alpha irradiation experiments. The processor runs the ViT-Tiny
network under ImageNet dataset for both alpha irradiation
experiment and FI with STR error pattern. The number of
cycles to execute one inference task is 13.94 million.

Firstly, for the software-based FI, we utilize a simulation
environment based on Synopsys VCS that replicates SEU-
like bit-flip errors in registers and memory blocks within a
virtualized model of the 22nm edge-AI chip. The simulation
environment allows us to configure various FI patterns, provid-
ing comprehensive coverage of possible fault scenarios without
the need for physical hardware.

Secondly, for hardware-based FI, we implement a hardware-
based environment where faults are directly injected into the
22nm edge-AI chip using physical JTAG interface. This setup
enables real-time testing of the chip’s response to injected
errors, replicating SEU conditions at a hardware level. The
FI setup in simulation and hardware is driven by the HachiFI
framework’s FI control module, allowing precise error pattern
control and cross-section analysis of FFs and memory cells.

Lastly, we conduct alpha irradiation experiments to analyze
the impact of energetic particles on the chip as shown in Fig. 3.
We perform an irradiation experiment using an 8kBq Am-241
alpha source with a 2.4mm diameter. The chip is exposed to the
alpha source, where the HachiFI framework’s error detection
and response are assessed under real-world SEU conditions.
The cross-section data (memory: 1.7087e-11, FF: 1.6538e-
11) are measured and used as reference data in software and
hardware environments. Note that such cross-section data of
basic storage elements could be provided from a foundry to
industry. Based on the cross-section data and the volume of
on-chip memories and FFs, the FI throughput for memory is
12.674 errors per second, while for FFs, it is 0.124 errors per
second. The FI throughput for FF is determined by the scan-
chain length, and can be improved by increasing the number
of parallel scan-chains, similar to production tests before the

chip shipment. In this DUT, the necessary cycles per fault is
44,697 for FFs and 14 for memory. It should be noted that the
number of FFs (42,479) is 117x smaller than the number of bits
in SRAMs (4,980,736), indicating the lower FI throughput of
FFs could be tolerable. The irradiation setup provides a bench-
mark for comparing the results from both software-based and
hardware-based FI, enabling a holistic evaluation of HachiFI’s
capability to model SEU effects accurately. The combination
of these three experimental setups provides a robust validation
of the HachiFI’s reliability and effectiveness in FI scenarios.

During the execution of applications, not all errors lead to
critical consequences. We categorize errors into four classes,
based on the severity of their impact: 1) minor Silent Data
Corruption (mSDC), where the classification outcome for an
image remains correct despite unexpected intermediary outputs;
2) critical SDC (cSDC), where there is an incorrect classifica-
tion result; 3) minor Detectable Unrecoverable Error (mDUE),
the computation engine fails to respond or malfunctions but it
can be restarted without power cycling; and 4) critical DUE
(cDUE), which involves the RISC-V core either running out of
control or crashing and requires the system rebooting.

B. Experimental Results

In the results of the experiments, we observe some differ-
ences in the efficiency and accuracy of FI methods between
the software FI, hardware FI, and alpha irradiation experiments,
highlighting the strengths of the HachiFI framework. Firstly, the
software-based FI demonstrates significantly lower efficiency
due to the computational burden of simulating SEU-induced
faults entirely in software, performing about five orders of
magnitude slower than the hardware FI. This emphasizes the
limitations of traditional software-based FI methods, particu-
larly when dealing with complex, large-scale fault scenarios. In
contrast, the hardware FI environment, which directly injects
faults into the fabricated 22nm edge-AI chip, demonstrates
efficiency levels closely matching those observed in the alpha
irradiation experiments. This close alignment in performance
is due to the hardware FI’s efficiency in replicating real-world
SEU conditions, without the heavy time consumption typically
seen in software-based simulations.

1) Efficiency Analysis of FI: The efficiency of FI methods
varies significantly between software-based FI and hardware-
based FI, highlighting the strengths and limitations of each
approach. Software-based FI, conducted entirely in software,
is inherently 400,000x slower (running on EPYC 7502P) due
to the high computational burden of mimicking SEU-induced
faults at the bit level. This process requires extensive com-
putational resources and time, especially when dealing with
complex systems, resulting in prolonged simulation times and
limiting its practicality for large-scale fault coverage.

In contrast, hardware-based FI for chip offers a dramatic
improvement in efficiency. By directly injecting faults into
the hardware, FI operates in real time, effectively replicating
the SEU effects without the computational delays typical of
software simulations. Our experiments demonstrate that the
hardware FI approach achieves performance levels comparable
to physical alpha irradiation tests, with only a 0.03% additional

Irradiation Software FI Hardware FI
1E−10

1E−09

1E−08

1E−07

Ev
en

t C
ro

ss
-s

ec
tio

n
(c

m
2)

 mSDC mDUE cSDC cDUE

Fig. 4. Cross-section comparison among software FI, hardware FI, and irra-
diation estimates. The standard deviations for the mSDC, mDUE, cSDC, and
cDUE are 5.881e-9, 1.24796e-8, 3.13663e-11, and 1.75107e-10, respectively.

time overhead for system FI, providing near-instantaneous
feedback on fault impact and system’s response. This high
efficiency makes hardware FI a highly suitable method for
validating the reliability of safety-critical systems, bridging
the gap between software simulations and costly irradiation
experiments while maintaining accuracy and speed.

2) Discussion on SEU Estimation: Across software-based
FI, hardware-based FI, and physical alpha irradiation, the
results of FI are remarkably consistent. The STR error pattern
and the system behaviors show a high degree of correlation
(R2=0.984), thereby validating the HachiFI’s accuracy and
reliability in modeling SEU effects. These consistent results
across diverse validation methods affirm the effectiveness of
HachiFI as a versatile FI framework capable of bridging the
gap between software simulation and hardware testing. The
comparable accuracy between the hardware FI and the physical
irradiation experiments further demonstrates that HachiFI can
serve as a reliable tool for SEU analysis, significantly reducing
the need for costly and time-consuming irradiation tests while
maintaining high fidelity in fault modeling.

VI. CONCLUSION

SEUs present major reliability challenges, especially in
safety-critical systems. Traditional methods like costly irradia-
tion experiments and limited FI simulations often fall short in
covering all SEU scenarios. To address these issues, we devel-
oped HachiFI, a lightweight, architecture-independent frame-
work that automates FI and simulates SEU behavior with full
coverage with the aid of a small FI control logic embedded in
DUT. Our validation on a 22nm edge-AI chip shows a high cor-
relation (R2=0.984) between FI and irradiation experiments and
<2% hardware overhead for HachiFI integration, confirming
HachiFI’s accuracy and low overhead. By bridging simulation
and real-world testing, HachiFI enhances reliability assessments
in radiation-prone environments and aids in the development of
fault-tolerant systems. Our future work is to apply HachiFI to
radiation-hardened designs and hardware security analyses.

ACKNOWLEDGMENT

This work was supported by the Grant-in-Aid for Scientific
Research (S) from Japan Society for the Promotion of Science
(JSPS) under Grant 24H00073, by JST CREST, Japan, under
Grant JPMJCR19K5, and the Grant-in-Aid for Early-Career
Scientists from JSPS under Grant JP21K17721.

REFERENCES

[1] I. Hill, P. Chanawala, R. Singh, S. A. Sheikholeslam and A. Ivanov,
“CMOS Reliability From Past to Future: A Survey of Requirements,
Trends, and Prediction Methods,” in IEEE Transactions on Device and
Materials Reliability, vol. 22, no. 1, pp. 1-18, March 2022.

[2] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of
single-event upset in digital microelectronics,” in IEEE Transactions on
Nuclear Science, vol. 50, no. 3, pp. 583-602, June 2003.

[3] F. Wang and V. D. Agrawal, “Single Event Upset: An Embedded
Tutorial,” 21st International Conference on VLSI Design (VLSID 2008),
Hyderabad, India, 2008, pp. 429-434.

[4] T. Tanaka, W. Liao, M. Hashimoto and Y. Mitsuyama, “Impact of
Neutron-Induced SEU in FPGA CRAM on Image-Based Lane Track-
ing for Autonomous Driving: From Bit Upset to SEFI and Erroneous
Behavior,” in IEEE Transactions on Nuclear Science, vol. 69, no. 1, pp.
35-42, Jan. 2022.

[5] K. M. Girgis, T. Hada and S. Matsukiyo, “Estimation of Single Event
Upset (SEU) rates inside the SAA during the geomagnetic storm event
of 15 May 2005,” 2021 IEEE International Conference on Wireless for
Space and Extreme Environments (WiSEE), Cleveland, OH, USA, 2021,
pp. 27-30.

[6] L. M. Luza et al., “Emulating the Effects of Radiation-Induced Soft-Errors
for the Reliability Assessment of Neural Networks,” in IEEE Transactions
on Emerging Topics in Computing, vol. 10, no. 4, pp. 1867-1882, 1 Oct.-
Dec. 2022.

[7] G. Abich, J. Gava, R. Garibotti, R. Reis and L. Ost, “Applying
Lightweight Soft Error Mitigation Techniques to Embedded Mixed Pre-
cision Deep Neural Networks,” in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 11, pp. 4772-4782, Nov. 2021.

[8] F. Libano et al., “Selective Hardening for Neural Networks in FPGAs,”
in IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 216-222,
Jan. 2019.

[9] S. Blower, P. Rech, C. Cazzaniga, M. Kastriotou and C. D. Frost, “Eval-
uating and Mitigating Neutrons Effects on COTS EdgeAI Accelerators,”
in IEEE Transactions on Nuclear Science, vol. 68, no. 8, pp. 1719-1726,
Aug. 2021.

[10] J. Gava et al., “A Lightweight Mitigation Technique for Resource-
Constrained Devices Executing DNN Inference Models Under Neutron
Radiation,” in IEEE Transactions on Nuclear Science, vol. 70, no. 8, pp.
1625-1633, Aug. 2023.

[11] Q. Cheng et al., “Reliability Exploration of System-on-Chip With Multi-
Bit-Width Accelerator for Multi-Precision Deep Neural Networks,” in
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70,
no. 10, pp. 3978-3991, Oct. 2023.

[12] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman and N.
DeBardeleben, “TensorFI: A Flexible Fault Injection Framework for
TensorFlow Applications,” 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE), Coimbra, Portugal, 2020, pp.
426-435.

[13] D. Rath, “Open On-Chip Debugger,” Diploma, Department of Computer
Science, University of Applied Sciences Augsburg, 2005

[14] G. S. Was, “Challenges to the use of ion irradiation for emulating reactor
irradiation,” Journal of Materials Research, vol. 30, no. 9, pp. 1158–1182,
2015.

[15] Ripoll, J-F., et al. “Particle dynamics in the Earth’s radiation belts: Review
of current research and open questions,” Journal of Geophysical Research:
Space Physics 125.5 (2020): e2019JA026735.

[16] N. Khoshavi, C. Broyles, Y. Bi and A. Roohi, “Fiji-FIN: A Fault Injection
Framework on Quantized Neural Network Inference Accelerator,” 2020
19th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA), Miami, FL, USA, 2020, pp. 1139-1144.

[17] F. Libano, B. Wilson, M. Wirthlin, P. Rech and J. Brunhaver, “Un-
derstanding the Impact of Quantization, Accuracy, and Radiation on
the Reliability of Convolutional Neural Networks on FPGAs,” in IEEE
Transactions on Nuclear Science, vol. 67, no. 7, pp. 1478-1484, July
2020.

[18] Zhang, F., et al. “An SEU fault injection platform for radiation-harden
design debugging in the FPGA,” Journal of Instrumentation 17.08 (2022):
P08007.

	Select a link below
	Return to Previous View
	Return to Main Menu

