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Recently, edge artificial intelligence (Al) devices, particularly those
with in-memory-computing (IMC)/near-memory-computing (NMC)
architecture, have demonstrated superior power efficiency compared
with conventional von-Neumann architecture [1]{7]. To further
improve the power efficiency, approximate computing techniques
have been investigated [8], which inevitably incur accuracy loss as
such approximations cannot be evaluated during the NN training
stage on GPU (Fig. 1). In addition, despite the exceptionally high
power efficiency at the macro-level, the often-overlooked resource
consumption for inter-/intra-layer data alignment and reshape can
actually lead to substantial overhead of power consumption and
latency. This is caused by 1) inefficient memory bandwidth utilization
due to irregular or unbalanced read/write patterns (e.g., [3][4]), and
2) severe memory space discontinuity due to inefficient neural
network (NN) mapping strategy (e.g., [6][7]), as shown in Fig. 1.
Hence, when considering the end-to-end NN execution, aspects of
off-chip memory traffic and network mapping strategy require further
investigations at the architectural level.

To address the above-mentioned issues, an edge-Al processor is
proposed in this work, featuring 1) power-/area-efficient processing
element (PE) with Booth-value-confined (BVC) approximate
multipliers and a shared adder tree, supporting BVC-based NN
training with no accuracy loss, 2) NMC-friendly data flow supporting
regular and balanced read/write operation and optimized data-reuse,
and 3) memory space contiguity-aware (MSCA) NN mapping
strategy with hardware-software co-design for minimum memory
access latency, as shown in Fig. 1.

Fig. 2 presents the architecture of the proposed edge-Al processor,
consisting of a full RISC-V sub-system with rich peripherals as the
main controller, a digital PLL, a programmable pooling unit
supporting both max and average pooling, and a programmable
MatrixConv unit with 16 near-memory-engines (NMEs) for
accelerating the convolutional and matrix computations. Each NME
contains a BVC PE with a 16KB weight memory directly connected
for NMC. The BVC PE supports 3 customized precision, namely
BVC8/6/3, detailed in Fig. 3. The NMC-friendly data flow
accommodates two main data streams: 1) inter-NME data flow for
activation reuse, and 2) intra-NME data flow for weight reuse,
detailed in Fig. 4.

To further improve power efficiency, multi-precision (MP) capability
is integrated into the proposed radix-8 Booth-based BVC
approximate PE, supporting three different custom precisions
(BVC3/6/8) with offline Booth encoding, as shown in Fig. 3. The BVC
weights inherently exclude “+3X” cases after BVC-based NN training
on GPU with minimal accuracy loss. MP parallel computation is
achieved by the configurable shifters and multiplexer for different
combinations of partial product accumulations, with the adder trees
shared in all precisions. The overall reductions in power and area are
82% and 70% respectively, compared with conventional MP Booth-
based PE [2]. Moreover, BVC3 case only generates one partial
product per weight, resulting in a 2X throughput compared to other
BVC cases. Besides, the quantity of unique value of BVC3/6/8 is 7,
36, 144, respectively.

To fully exploit the benefits of NMC, both intra- and inter- NME data
paths with NMC-friendly data flow are incorporated, allowing data
reuse for both activations and weights, as shown in Fig. 4(a). A
Partial Sum Scheduler is utilized to schedule the accumulation
process of temporal NME outputs. 16 data in each buffer group
represent the output of 16 different output channels, while data under
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channel. As shown in Fig. 4(b), each weight memory updates data
every 1-to-16 cycles, which means that each weight can be reused
1-to-16 times in each PE. In addition, activations can also be reused
1-to-16 times as the number of NME is 16. Moreover, at the system-
level, three data-loading options are incorporated: 1) updating
weights, 2) updating activations, and 3) updating both, as the weights
or activations used in the current computation round might be called
upon again in the next round depending on the mapped NN structure.
Fig. 4(c) shows the proposed MSCA NN mapping strategy. The input
shape of each layer is determined by Nm (i.e., the number of
multipliers in each PE), while the output shape of each layer is
determined by Ne (i.e., the number of PEs). Hence, the primary idea
is to ensure that the input shape matches the output shape so that
no data reshaping is required, specifically Nm = Ne. However,
fulfilling the above condition might not always be feasible due to
limited chip area and power budgets. In such cases, it is preferable
to ensure that Nm is divisible by Ne, thereby eliminating the required
buffer and logic for weight reshaping. In addition, the memory space
contiguity is strictly maintained when the off-chip data storage is
organized in line with Nm-based data shape, meaning that the high-
volume burst access is always feasible, resulting in minimum
memory access latency.

Fig. 5 illustrates the BVC-based NN training flow. Original weights in
floating-point (FP) format are first quantized to INT8 and then
extended to MP INT weights via Neural Architecture Search (NAS)
[9]. Then, the exact MP INT weights are converted to MP BVC
weights through a lookup table during each re-training iteration until
a minimal accuracy loss is achieved. Note that the NN computation
on our architecture is identical to that in re-training on GPU. Also,
weight encoding is adopted to reduce the computation complexity of
the BVC PE on chip. Finally, data reshaping is applied to satisfy the
proposed NMC-friendly data flow. Besides, the performance of each
layer of the VGG16 and ViT-Tiny models trained based on the above
strategy is shown below. Due to the low weight reuse rate in
transformer-based NNs, the power efficiency of ViT-Tiny is relatively
lower compared to convolutional NNs like VGG16.

Fig. 6 illustrates the end-to-end NN executions of VGG16 and ViT-
Tiny, performed with off-chip DRAM (/O power consumption is
excluded for a fair comparison), achieving an average power
efficiency of 10.14-15.11 TOPS/W, peak power efficiency of 12.92-
29.11 TOPS/W, and 23.3%-31.4% memory latency reduction.
Moreover, Fig. 6 compares the proposed design with prior arts [3]-
[7]. Compared with [3]-[5] where only an accelerator is implemented,
the proposed design is capable of end-to-end NN executions with
competitive peak performance and power efficiency. Compared with
[6]-[7] in real NN evaluations, the proposed design improves the
power efficiency by 1X-5X and area efficiency by 4.6X-35.7X at a
similar process node. The proposed edge-Al processor is fabricated
on 22nm CMOS process (Fig. 7). The measured power is 13.61-
210.67mW at 230-1020MHz frequency under a voltage of 0.6-1.1V.
The peak power efficiency is 33.98TOPS/W with Activation(INT4) x
Weight(BVC3) case at 0.6V and 230MHz.
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Measurement results on different NN models.

Fig. 6. Measurement and comparison with state-of-the-art designs.
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Process 22nm CMOS
Supply [VI 0.6-1.1
230-1020 (Accelerator)
Froquency Wiz} 10-200 (RISC-V)
Chip Area [mm’] 293
Core Area [mm?] 1.719
Power [mW] 13.61-210.67
128 (ITCM & DTCM)
ez 128 (AMEM)
Momory [KB] 256 (WMEM)
1024 @ A-INT4 x W-BVC3
Multiply-and-Accumulate 512 @ A-INT8 x W-BVC6
512 @ A-INT8 x W-BVC8
INT8/16/32 (RISC-V)
Precision Weight: BVC3/6/8 (Accel.)

Activation: INT4/8 (Accel.)

Peak Performance @ 1.1V

2.09 @ A-INT4 x W-BVC3
1.04 @ A-INT8 x W-BVC6
1.04 @ A-INT8 x W-BVC8

1.215@ A-INT4 x W-BVC3
0.608 @ A-INT8 x W-BVC6
0.608 @ A-INT8 x W-BVC8

10.74 @ A-INT4 x W-BVC3*

5.48 @ A-INT8 x W-BVC6*
4.96 @ A-INT8 x W-BVC8*

0
= [TOPS]
H
H
H Area Efficiency @ 1.1V
E [TOPS/mm?]
H
H Peak Power Efficiency @ 1.1V
H [TOPSW]
Peak Power Efficiency @ 0.6V
[TOPSW]

33.98 @ A-INT4 x W-BVC3*
18.51 @ A-INT8 x W-BVC6*
15.91 @ A-INT8 x W-BVC8*

29.11@ VGG16
12.92 @ ViT-Tiny

e )

F. 7. Die microgragh and summary table.

'25% / 75% sparsity for weight / activation, 100% PE utilization
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