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Abstract—Approximate multipliers offer an efficient approach
to reduce power consumption in compute-intensive applications,
such as Deep Neural Networks (DNNs). However, current 8-
bit approximate multipliers struggle to maintain high accuracy
across various DNN applications. In this paper, we highlight
challenges in 8-bit multiplier designs with body approximation
strategies and evaluate the effectiveness of input approximation
methods. Recognizing that exact multipliers with quantization
bit-widths below 8 bits have demonstrated superior performance,
we aim to explore whether alternative input approximation
methods can provide an even better trade-off between accuracy
and energy consumption. To this end, by exploiting the fact that
weight operand values are smaller than activations and prepared
offline in DNNs, we simplify a static segmented multiplier
(SSM) into a static semi-segmented multiplier (S3M), achieving a
31.58% reduction in power-delay product (PDP) compared to the
original SSM, with similar classification accuracy. Additionally,
we propose Coded S3M with optimized memory usage and im-
plement various multipliers on a systolic array-based accelerator.
Experimental results show that the proposed S3M and Coded
S3M outperform existing 8-bit approximate multipliers in DNN
applications, effectively bridging the PDP and inference accuracy
trade-off observed across exact commercial IP multipliers of
varied bit-widths without requiring time-consuming retraining.
Consequently, the proposed multiplier designs provide enhanced
computational solutions for energy-efficient DNN inference ac-
celerators.

Index Terms—Approximate computing, multiplier, low-power
design, neural network

I. INTRODUCTION

As DNNs increase in complexity, the heightened power
consumption on edge devices necessitates a thorough ex-
ploration of low-power techniques. Given the inherent error
resilience of DNN applications, reducing the bit-width of
operands, as one of the techniques in approximate computing,
is widely adopted for energy reduction as it decreases not
only computational energy but also memory usage. With the
success of 8-bit quantization in tensor processing units (TPU)
[1], 8-bit precision has become the most popular choice for re-
cent approximation works [2]. Given that multiply-accumulate
(MAC) units account for approximately 90% of computations
in CNNs [3], and considering the more complex structure and
higher power consumption of integer multipliers compared to
adders, numerous designs for 8-bit approximate multipliers
have been proposed to further reduce power consumption [4].

Among various approximate multiplier design strategies [4],
one popular approach for 8-bit width involves modifying the
multiplier itself to reduce logic gates, named body approxi-
mation in this paper. Representative methods include replacing
exact compressors with approximate compressors in the Dadda
multiplier structure [5] [6] [7], introducing the approximate
Booth encoding [8] [9] [10], and exploring an approximate
multiplier with two-input gates such as AND and OR through
a genetic programming algorithm [11] [12] [13].

Despite the existence of numerous 8-bit approximate multi-
pliers with body approximation, none of them has proven to be
practical and reliable across various DNN applications. Some
works employ retraining to enhance the inference accuracy,
but this can be prohibitively time-consuming, as GPUs can-
not directly cope with approximate components [14]. Others
combine approximate multipliers with an exact multiplier in
a reconfigurable design to maintain application accuracy [15].
However, this approach results in an increase in both power
and area due to the additional control logic and the exact
multiplier, whereas such overhead is not emphasized.

On the other hand, an alternative approach is approximation
at the input, represented by two types of input truncation
schemes: dynamic segmented multiplier (DSM) [16] [17] and
static segmented multiplier (SSM) [18] [19]. While DSM is
more suitable for large bit-width multipliers, SSM could be a
practical design strategy for 8-bit approximate multipliers as it
does not require complex leading-one detectors. SSM extracts
m contiguous bits from two n-bit operands by checking the
n − m most significant bits (MSB), where m is statically
fixed in SSMs. Subsequently, the segmentation information
of the two operands is incorporated into the shift information,
expanding the inner m × m multiplication into the final 2n-
bit result. However, SSM has not been fully recognized in the
DNN domain.

This paper investigates the challenges in designing effective
8-bit approximate multipliers in DNN inference accelerators
and analyzes the strengths of the SSM. To adapt the SSM
for DNN applications where one operand (weights) is pre-
pared offline, we simplified its structure, enhancing hardware
efficiency to rival the performance of exact DesignWare IP
multipliers with various bit-widths. This demonstrates its prac-
ticality in real-world scenarios where many previous designs
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failed to compete with commercial IPs. Moreover, unlike
many prior designs that focus solely on the multiplier level,
we implement multiple multipliers into a systolic array with
memory bit-width aligned with the bit-width of activations
and weights to comprehensively evaluate multiplier hardware
performance at the accelerator level. Additionally, we encode
the segmentation information into weight operands, further
improving performance at the accelerator level. The major
contributions of this work include:

• Analyzing the challenges and limitations of the 8-bit
approximate multiplier in body approximation.

• Simplifying SSM to static semi-segmented multipliers
(S3M) that segment only weight inputs, proven to be more
practical for DNN applications.

• Proposing a novel design named Coded S3M, which
reduces the memory footprint required for weight storage
compared to S3M, thereby reducing power consumption
at the accelerator level.

II. CHALLENGES FOR 8-BIT MULTIPLIER DESIGN WITH
BODY APPROXIMATION

A. Body Approximated Multipliers

In this paper, body approximation refers to making multipli-
cation function more hardware-friendly through simplifications
at the circuit architecture level, given that exact multiplica-
tion typically requires numerous logic gates. Conventionally,
multiplier architecture designs mimic hand-written multipli-
cation by generating an array of partial products, which are
subsequently accumulated and compressed to yield the final
result [4]. Body approximations are applied during this process
either at the partial products generation phase (PPG), using
techniques such as simplified Booth encoding, or at the partial
products compression phase (PPC), where the number of logic
gates in units like full adders or 4-2 compressors is reduced.
Often, these approximation strategies are implemented on the
least significant parts, and several designs also truncate the
least significant columns of the partial products array (Trun.)
to achieve greater area and power savings while reducing the
number of output registers. Additionally, some studies use ge-
netic algorithms (GA) to automatically generate approximate
multipliers, employing basic logic functions like AND and OR
to meet specific accuracy thresholds.

Table I summarizes representative designs of approximate
multipliers from recent years, while earlier designs are listed in
reference [4]. The Distribution column in Table I indicates the
data distribution used for accuracy evaluation during the design
phase. Notably, only a small portion of these designs take
into account the properties of real-world applications when
developing these approximations.

B. Computational Cost of Quantization

When implementing a neural network in 8-bit format, quan-
tization is essential, as the original training data is typically
in floating-point format. The quantization and dequantization
equations, as derived from [20], are expressed as xQ =
Int(x/s)+ z, x̂ = (xQ − z)× s, where x, xQ and x̂ represent

TABLE I
SUMMARY OF REPRESENTATIVE BODY APPROXIMATED MULTIPLIERS.

Work PPG PPC Trun. GA Distribution

[5] [6] [21] ✓ Uniform
[7] [22] ✓ Gaussian

[8] [9] [10] ✓ ✓ Uniform
[11] [12] ✓ Uniform

[13] ✓ Gaussian
[23] [24] ✓ ✓ Uniform
[25] [26] ✓ ✓ ✓ Uniform

real, quantized and dequantized values, s and z denote the
scale and zero point of quantization. The outcome of the real-
valued matrix multiplication Y = A ·W, with a matrix size
of p, can be approximated with quantized values, as follows:

yij =

p∑
k=1

aikwkj ≃
p∑

k=1

(aQik − za)(w
Q
kj − zw)sasw

=

p∑
k=1

(aQikw
Q
kj − aQikzw − wQ

kjza + zazw)sasw. (1)

In signed quantization, the zero point z is typically set to
0, known as symmetric quantization. On the other hand,
asymmetric unsigned quantization involves a non-zero z, lead-
ing to more multiplications and additions in Eq. (1). This
extra computation may diminish the advantage of quantized
integer operations [27]. Thus, this paper focuses on the signed
multiplier with symmetric quantization.

C. Hardware Challenge

Recent approximate multipliers typically incorporate their
body approximation strategy into various types of exact digital
multipliers from [28] [29], and conduct hardware perfor-
mance comparisons with their hand-crafted exact multipliers to
demonstrate the effectiveness of their approximation designs.
However, these hand-crafted multipliers often show worse
power, performance, and area (PPA) metrics compared to
the DesignWare datapath IP [30]. This suggests that the
performance of existing approximate multipliers is not fairly
evaluated and compared with the exact multipliers that are
commonly used in industrial designs. Our experiments reveal
that current 8-bit exact multipliers are inferior to DesignWare
IPs, which will be discussed in Section V-A. Therefore, body-
approximate multipliers must eliminate additional gates to
achieve considerable PPA reduction over commercial multi-
plier IPs.

D. Accuracy Challenges

Over the past decades, many works [31] [32] have employed
systolic arrays to manage matrix multiplication in DNN ap-
plications, with the MAC unit being the most computation-
intensive component. Fig. 1 exemplifies the structure of a
popular MAC unit [33], comprising an 8-bit multiplier and
a 24-bit adder with registers to accumulate the multiplication
results. This accumulation, depicted by the blue line in Fig. 1,
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Fig. 1. MAC unit in systolic array-based DNN accelerators.

presents the first challenge for accuracy in approximate multi-
pliers: errors that tend to skew in one direction (either positive
or negative) accumulate over multiple iterations, leading to
non-zero biased errors in MAC results.

Addressing this accuracy challenge for an 8-bit multiplier
with body approximation includes two potential solutions:
a high-accuracy multiplier with minimal absolute error, and
an unbiased approximate multiplier with a balanced error
direction. However, the former approach often results in
suboptimal PPA outcomes due to the hardware challenges
mentioned earlier, whereas the latter poses significant design
challenges. Specifically, once a multiplier is designed with
body approximation, its configuration becomes fixed. This is
problematic since the diverse data distributions in different
DNNs, or even across layers in a single DNN, are given to a
configuration-fixed approximate multiplier. Some researchers
have explored dynamic approximation strategies to overcome
the error accumulation issue [16] [17] [34], but these ap-
proaches are often too complex for 8-bit widths, resulting in
a significant PPA overhead.

The hardware and accuracy challenges above have directed
our focus toward approximation at the input stage rather
than the body approximation, as these challenges are better
managed with input approximation strategies, which is an area
yet to be fully explored.

III. STATIC INPUT SEGMENTATION

A. Approximation at Input

Input approximation reduces the bit-width of operands,
allowing for the use of a smaller exact multiplier, which
simplifies the design and reduces memory usage. Two widely
adopted methods for this are quantization and truncation of
the least significant bits (LSBs). In truncation, compensation
is often applied, typically using a two-input OR gate [19].
Specifically, the LSB of the truncated operands is replaced
by the logical OR result of its value with the MSB of the
discarded LSBs.

To assess the effectiveness of various input approximation
strategies in DNN-like applications, we performed MAC op-
erations on two 2048 randomly generated Gaussian operands
using various input approximation strategies. This process was
repeated 20,000 times, recording the strategy that yielded the
minimum accumulated error compared to the original floating-
point result each time. Fig. 2 summarizes the distribution of
different strategies achieving the minimum accumulated error.

Fig. 2. Minimum error occurrences for different strategies. 8Q: 8-bit quanti-
zation. T1: truncating 1 LSB, +OR: OR gate compensation, +1: setting 1 to
the LSB for compensation.

Fig. 3. Distributions of activation and weight of 8-bit quantized ResNet18 on
ImageNet dataset. X-axis: Quantized Values. Y-axis: Occurrence Probability.

Note that even 6Q attains the minimum accumulated error in
1,928 (9.64%) out of the total 20,000 cases. We can see that
the simple quantization strategy achieves the highest accuracy
in the same bit-width precision. For example, among 7-bit
precision cases, 7-bit quantization 7Q is the best. Furthermore,
1-bit truncation with OR gate compensation maintains higher
accuracy than lower bit precision and 2-bit truncation, e.g.,
8QT1+OR > 6Q, 7QT1+OR > 8QT2+OR. On the other hand,
the other input approximation strategies fail due to their biased
error tendencies.

The superior accuracy of quantization arises from its inher-
ent unbiased property, as each floating-point value is mapped
to the nearest integer. On the other hand, a significant preci-
sion gap still exists between different bit-width quantizations.
An effective design for an input approximate multiplier in
DNN applications should, therefore, aim to achieve hardware
efficiency comparable to lower bit-widths while maintaining
accuracy close to higher bit-widths. Achieving this requires
careful analysis of the data distribution in real applications.

B. Static Input Segmentation in DNN

To further explore input approximation strategies more
suitable for DNN, we investigate the DNN data distribution.
Fig. 3 shows the data distribution of 8-bit quantized ResNet18
on ImageNet dataset. The majority of data, especially weights,
is concentrated within a deviation of 32 (25) from 0. This con-
centration suggests the potential for achieving high accuracy
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0 1

W [w − 1 : 0]

W [w − t − 1 : 0 ]

when W [w − 1 : w − t − 1]
is all 0’s 𝑜𝑟 is all 1’s

SW [w − t − 1 : 0]

A [a − 1 : 0]

{SO, t′b0} {t′bSign, SO}

SO [a + w − t − 1 : 0]

O [a + w − 1 : 0]

{W [w − 1 : t + 1],
(W [t ] | W [t − 1])}

0 1

Fig. 4. Structure of S3M.

by maintaining exact multiplication within the range of [-32,
31], where only 6 bits contain information.

SSM is suited for handling this data distribution property
when segmenting 6 bits from 8-bit input operands. Input
operands residing within the range of [-32, 31] can be iden-
tified by the presence of MSBs as either 000 or 111. In the
signed SSM from [19], a check is performed on the MSBs of
the input operands. If these checked bits are either all 0s or 1s,
they are truncated, except the sign bit, without accuracy loss
from 8-bit quantization. For checked bits not all-0s or all-1s,
indicating a larger absolute magnitude of operand, the LSBs
are truncated with OR gate compensation.

However, SSM faces two challenges: (1) the online seg-
menting significantly increases the overall multiplication delay,
and (2) activations are not strictly confined to small values
as illustrated in Fig. 3. While the original SSM proposes
offline weight segmentation [18], the multiplier must wait
for activation segmentation. Furthermore, the segmentation
information from both activation and weight must be com-
bined to determine the shift amount for obtaining the final
multiplication result, which increases the delay further.

IV. PROPOSED MULTIPLIERS

A. Static Semi-Segmented Multiplier (S3M)

To address the two challenges pointed out in the previous
section, we have simplified the SSM design to create the S3M.
This new S3M design segments only one operand offline in
relation to weights, which are typically more concentrated in
smaller values than activations and are pre-trained and stored
in memory for inference.

Fig. 4 illustrates the structure of S3M, where a and w are
the bit-width of the activations A and weights W , respectively,
and t represents the number of bits to be truncated. SW
denotes the segmented weight, and SO is the result of the
inner multiplication, with O indicating the final multiplication
output. The segmentation, represented by the dotted line, is
completed offline. In this design, S3M features only an inner
multiplier with a size of a×(w−t) and a two-input multiplexer
serving as the final shifter, meaning that the overhead due
to segmentation is significantly reduced. Consequently, S3M

0123456

111

1′b0OR10011

1′b1101

1′b1001

1′b1110

1′b1010

1′b0OR10100

000

012345

Coded Static Segmentation

1∶ Zero appending 1 bit
0 ∶ 1 bit Sign extension

Fig. 5. Coded S3M example for 6-bit segmentation from 7-bit word. Blue
background represents the segmented operand; Precise for values within [-
16, 15] corresponding to the top and bottom rows; slight error for values
outside this range with coded shift information for zero-padding at LSB or
sign-extension at MSB.

CW [w − 1 − 1 : 0]A [a – 1 : 0]

CW [w − 2] ⊕ CW [w − 3]
&CW [0]

{CO, 1′b0} {1′bSign, CO}

CO [a + w − 1 − 1 : 0]

O [a + w − 1 : 0]

1 0

Fig. 6. Structure of Coded S3M.

effectively decreases both delay and power consumption com-
pared to the original SSM model. Meanwhile, the activations
are processed using simple quantization, a method well-suited
to their typically broad data distribution.

B. Coded S3M

For S3M in Fig. 4, when a = w = 8 and t = 2, the
design requires storing 8-bit activations and 7-bit weights
(including 1-bit shift information, which corresponds to the
selection signal of the final multiplexer). This results in a 1-
bit reduction in memory usage compared to an 8-bit multiplier
with body approximation or online segmentation. Moreover,
we have found that the shift bit in S3M can bring about further
improvements in PPA at the DNN accelerator level.

To eliminate the extra 1-bit memory usage per weight,
we encode the shift information into the weight operands
offline. Here, considering that 7QT1 offers better accuracy
than 8QT2, as shown in Fig. 2, we opt for truncating only
one LSB in each case. In situations where the two MSBs of
the segmented weight are opposite, the LSB is set to 0 in
non-shifting cases and to 1 in shifting cases. In non-shifting
cases, the second least significant bit (second LSB) is adjusted
by an OR operation between the LSB and the second LSB to
mitigate the coding error. In shifting cases, setting the LSB to
1 helps distinguish them from non-shifting cases while also
partially mitigating segmentation errors. Conversely, when the
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two MSBs of the segmented weight are the same, all cases
are non-shifting. Fig. 5 illustrates an example of the coded
method for w = 7 with 1-bit truncation, where the blue-boxed
area indicates the weight operand after segmentation. In this
example, when the two MSBs of the segmented operand are
opposite and the LSB is 1 simultaneously, the inner multiplier
output undergoes a left shift by one bit.

Fig. 6 shows the structure of the proposed Coded S3M,
where CW denotes the coded weights and CO is the result
of the inner multiplier. The addition of a simple decoder,
consisting of an XOR and an AND gate, incurs minimal
overhead compared to S3M while efficiently saving one bit
storage for each weight. Note that the delay of (CW [w-2]
⊕ CW [w-3]) & CW [0] is shorter than that of the inner
multiplier, and hence the entire delay is expected to be the
same as S3M.

V. EXPERIMENTAL RESULTS

We quantized a pre-trained VGG11-BN model on CIFAR-
10 and CIFAR-100 datasets downloaded from [35], and
applied similar quantization to ResNet-18, ResNet-50, and
ResNet-101 on the ImageNet dataset from [36]. The post-
training quantization method described in [20] was employed,
which involved replacing 8-bit exact multipliers with different
bit-width quantization and various approximate multipliers for
accuracy evaluation. We also developed a DNN accelerator,
featuring an output-stationary systolic array with integrated
SRAMs, where the bit-width was adjusted based on the
activations and weights. All circuits were synthesized using
Design Compiler with a commercial 22nm 0.81V library. For
the multipliers, power consumption and maximum delay were
estimated from the synthesis data, targeting a challenging
0.3ns clock period. At the accelerator level, power assessments
were performed using PrimeTime, with the test data conform-
ing to the distribution observed in ResNet-18 on ImageNet,
and the netlist was synthesized under a stringent 0.5ns clock
period.

A. Multiplier Level Evaluation

Table II presents the hardware results of signed 8-bit ex-
act multipliers. The Dadda and Booth multipliers were self-
implemented, while Mul8s-1KV6 is the signed 8-bit exact
multiplier taken from the multiplier library [11]. The increased
power-delay product (PDP) relative (Rel.) to the DesignWare
IP exposes a gap between hand-crafted multipliers and com-
mercial multiplier IP, which is the baseline performance loss
for body approximation multipliers.

Many prior studies on approximate multipliers evaluated
their designs using low-challenge datasets such as MNIST or
CIFAR, which typically exhibit greater error resilience com-
pared to ImageNet. Fig. 7 presents the PDP and classification
accuracy on the CIFAR dataset for various signed multipliers.
DesignWare IP serves as the baseline with varying bit-width
multiplications ranging from 8 × 8 to 4 × 4 with simple
quantization. The experiment includes the proposed S3M and

TABLE II
EXACT MULTIPLIER SYNTHESIS RESULTS (SPEED-ORIENTED).

Signed 8-bit Area Power Delay Rel.PDP
Exact Multiplier (µm2) (µW) (ns) (%)

DesignWare IP 166 311 0.34 -
Dadda 150 274 0.41 + 6.24
Booth 175 324 0.35 + 6.60

Mul8s-1KV6 [11] 137 238 0.50 + 12.26

Fig. 7. PDP vs Top1 error for several multipliers on VGG11 BN model
pre-trained on CIFAR dataset.

Coded S3M with different bit-widths, along with signed 8-
bit approximate multipliers from EvoApproxLib [11], and
several other reproduced signed 8-bit approximate multipliers
[7] [8] [9]. It also encompasses the signed 8-bit SSM (6-
bit segmentation) with weights pre-segmented [18] and OR
gate compensation strategies [19], providing a comprehensive
comparison.

In Fig. 7, most 8-bit multipliers with body approximation
exhibit significant errors, even when evaluated on the CIFAR-
10 dataset. The errors are more pronounced on the CIFAR-
100 dataset, highlighting the disparities between these ap-
proximate multipliers and the DesignWare IP baseline. The
SSM related designs are all in the same line with DesignWare
IP, demonstrating their suitability for DNN applications by
performing 8-bit exact multiplication for predominantly small-
value input operands with a smaller inner multiplier. However,
given the high error resilience of the CIFAR datasets, utilizing
6-bit quantization or even 5-bit quantization with the exact IP
multiplier may offer the optimal energy-efficient solution, as
the increase in error is minimal.

For the high-challenge dataset evaluation, we deployed
multiplier designs from Fig. 7 on ResNet with the ImageNet
dataset. The PDP and classification error are depicted in Fig. 8,
where the designs with less accuracy than 6-bit quantization
(6× 6) are excluded. The × symbol in Fig. 8(a) indicates the
inner multiplier precision of static segmented multipliers. It
is evident that only one multiplier with body approximation,
Mul8s-1KVM [11], appears in Fig. 8, yet it struggles to
maintain acceptable accuracy for ResNet101. In contrast, all
proposed S3Ms designs and several Coded S3Ms models
demonstrate a better trade-off, as indicated by their lower left
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Fig. 8. PDP vs Top1 error for several multipliers on ResNet model pre-trained on ImageNet dataset. The figure displays only one body approximation design;
multipliers not presented here have Top-1 errors exceeding that of IP 6×6.

. ..

. . .

. . .

. . . . .
 .

. . .

16×16

Systolic 
Array

Weight SRAM
1𝐾 × 16 × 𝑤 𝑏𝑖𝑡

Weight Buffer 

Activation SRAM 
1𝐾 × 16 × 𝑎 𝑏𝑖𝑡

Activation Buffer 

MAC Unit
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 + 𝐴 × 𝑊 

Fig. 9. Accelerator structure with a 16× 16 systolic array.

positioning compared to exact IP multipliers. For instance,
S3M 8×7 achieves a 5.69% PDP reduction from IP 8×8 with
an accuracy loss ranging from -0.02% to 0.08%. On the other
hand, the prior SSM 6 × 6 design is positioned in the upper
right compared to exact IP multipliers, indicating its inferiority
in the trade-off. Specifically, IP 7 × 7 offers a larger PDP
reduction with a smaller Top-1 classification error. Meanwhile,
S3M 7 × 6 reduces PDP by 31.58% from SSM 6 × 6 while
maintaining similar classification accuracy, as shown in Fig. 8
(a). In this scenario, the proposed S3M emerges as an energy-
efficient alternative to exact IP multipliers at the multiplier
level and the accelerator level when the memory bit-width is
fixed.

B. Accelerator Level Evaluation

We integrated the same multipliers from Fig. 8 into the
output-stationary systolic array in the DNN accelerator de-
picted in Fig. 9. SRAM bit-widths a and w adapt to the bit-
width of activation and weight inputs in the MAC unit within
the array. Additionally, the accumulator bit-width decreases to
align with the reduction in SRAM bit-widths.

Fig. 10 shows the results, where 8 × 8 in (a) indicates
the inner multiplier bit-width of S3M, while a8 w8 in (c)
represents the required activation and weight SRAM bit-
widths. Compared with Fig. 8, the PDP of the proposed Coded
S3M shows improvement and surpasses that of S3M and exact

IP multipliers in several cases due to the reduced memory and
accumulator bit-widths.

The performance of the representative designs is detailed
in Table III, which includes a floating-point 8-bit multiplier
with 2-bit exponent and 5-bit mantissa (FP8-E2M5) [37]. This
FP8 multiplier was selected for its 5-bit mantissa + shift
structure having a similarity with SSM, enabling a compre-
hensive comparison. However, while the FP8-E2M5 maintains
acceptable accuracy with a 50% PDP reduction compared to
the INT8 case at the multiplier level, it incurs about a 63%
PDP overhead at the accelerator level due to the complex FP16
accumulation. Additionally, the body approximation multiplier
Mul8s-1KVM also exhibits a higher PDP than IP 8× 8 at the
accelerator due to its larger maximum delay.

Notably, regarding the proposed multipliers, the area and
PDP improvements from the IP baseline are more significant
at the multiplier level than at the accelerator level. For instance,
at the multiplier level, Coded S3M 7×6 achieves a substantial
41.33% reduction in PDP compared to IP 8 × 8, whereas at
the accelerator level, the reduction is 22.39%. Additionally,
the S3M 8 × 7 demonstrates a 5.69% PDP reduction at the
multiplier level and a 1.77% PDP reduction at the accelerator
level. The relatively smaller PDP reduction at the accelerator
level can be attributed to the composition of the accelerator
in this experiment, which consists of approximately 22.5%
power consumption from the multiplier, while 19.7% from
SRAM, and the remaining 57.8% from components like the
accumulator and register. This indicates that evaluating at
the multiplier level alone is insufficient to fully assess the
effectiveness of approximate multipliers.

On the other hand, Coded S3M 8× 7 achieves no accuracy
loss for ResNet18 and it offers a higher PDP reduction
of 4.25% at the accelerator level compared to 3.35% at
the multiplier level, benefiting from a reduced memory bit-
width. Furthermore, Coded S3M 8×8 demonstrates enhanced
classification accuracy for ResNet18 and ResNet50 by 0.08%
and 0.13%, respectively, thanks to 8-bit weights derived from
9-bit quantization. Despite a 13.37% increase in PDP at the
multiplier level, this rise is mitigated at the accelerator level,
where the increase is limited to just 3.80%.
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Fig. 10. PDP vs Top1 error for systolic arrays with several multipliers on ResNet model pretrained on ImageNet dataset.

TABLE III
EVALUATION RESULTS OF SEVERAL REPRESENTATIVE MULTIPLIERS (SPEED-ORIENTED).

Multiplier Level Accelerator Level Top-1 Error on ImageNet
Design a× w Area Power Delay Rel.PDP Area Power Delay Rel.PDP ResN18 ResN50 ResN101

(µm2) (µW) (ns) (%) (µm2) (mW) (ns) (%) (%) (%) (%)

IP 8× 8 166 311 0.34 - 162883 45.74 0.53 - 30.54 24.29 23.09
IP 8× 7 135 259 0.34 −16.72 150962 42.63 0.53 −6.80 31.16 25.00 23.46
IP 7× 7 142 232 0.31 −31.98 140442 38.94 0.52 −16.47 31.41 25.58 24.82
IP 8× 6 112 214 0.31 −37.26 129464 38.05 0.53 −16.80 32.69 27.21 26.91
IP 7× 6 102 180 0.32 −45.53 119447 35.69 0.52 −23.44 32.94 27.99 28.27
IP 6× 6 95 142 0.30 −59.71 108125 32.89 0.52 −29.44 34.81 32.10 41.96

FP8-E2M5 117 165 0.32 −50.07 246066 41.95 0.94 +62.67 30.95 24.74 23.62

Mul8s-1KVM [11] 122 215 0.46 −6.47 166203 42.96 0.59 +4.58 31.45 25.60 41.17

SSM 6× 6 [18] [19] 140 209 0.39 −22.91 152711 40.95 0.54 −8.79 31.79 25.48 24.73

S3M 8× 7 157 277 0.36 −5.69 175246 46.67 0.51 −1.77 30.54 24.37 23.07
S3M 7× 7 140 220 0.34 −29.26 153602 42.23 0.51 −11.15 30.92 24.90 24.33
S3M 8× 6 138 218 0.34 −29.90 150452 42.31 0.51 −10.98 31.28 25.07 23.38
S3M 7× 6 110 169 0.33 −47.26 136602 38.68 0.51 −18.62 31.71 25.66 24.76

Coded S3M 8× 8 164 324 0.37 +13.37 180894 47.48 0.53 +3.80 30.46 24.16 23.13
Coded S3M 8× 7 156 292 0.35 −3.35 166051 44.25 0.53 −4.25 30.54 24.51 23.16
Coded S3M 7× 7 131 228 0.34 −26.69 149350 39.89 0.52 −14.43 30.96 24.14 24.30
Coded S3M 8× 6 127 240 0.34 −22.83 138346 39.05 0.53 −14.62 31.80 25.14 23.93
Coded S3M 7× 6 100 188 0.33 −41.33 126453 36.18 0.52 −22.39 32.08 25.86 25.47

The previously favored multiplier design for DNN applica-
tions, SSM 6× 6 [18] [19], appears more inferior to commer-
cial multiplier IPs in Fig. 10 than in Fig. 8. Furthermore, other
existing approximate multipliers with body approximation fail
to achieve acceptable accuracy and comparable PDP against
commercial IPs, highlighting the obstacle of improving DNN
inference accelerator performance through approximate multi-
plier design alone. In contrast, although the absolute PDP gains
from the proposed S3M and Coded S3M are modest relative
to commercial IPs, it is clear that most of these models are
positioned closer to the coordinate origin in both Figs. 8 and
10. This positioning demonstrates a superior trade-off between
PDP and classification accuracy for computation-demanding
inference tasks, like ResNet on ImageNet, which indicates that
that the proposed designs are approaching the practical limits

of multiplier design for real-world DNN applications.

VI. CONCLUSION

In this paper, we highlight the challenges in traditional 8-
bit approximate multiplier designs with body approximation
and showcase the advantages of simple quantization and
SSM for DNN applications. By exploiting the properties of
weights being fixed offline and having biased distributions,
we simplified the structure of SSM and propose S3M, which
shows better energy-accuracy trade-offs compared to other
approximate multipliers in this experiment. Additionally, to
decrease the memory bit-width in the accelerator, we introduce
Coded S3M. Both the proposed S3M and Coded S3M models
achieve over 40% PDP reduction at the multiplier level and
approximately 20% at the accelerator level in the 7 × 6
configuration, compared to the 8-bit exact IP multiplier, while
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maintaining similar accuracy in the 8×7 case, with respective
PDP reductions of 1.77% and 4.25% in the DNN inference
accelerator. More importantly, the proposed S3M and Coded
S3M models bridge the gap in PDP and inference accuracy
trade-offs among commercial multiplier IPs of varying preci-
sions, offering more energy-efficient options for multiplication
and inspiring future approximate multiplier designers about the
design direction.
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