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ABSTRACT

In hardware accelerators used in data centers and safety-critical
applications, soft errors and resultant silent data corruption sig-
nificantly compromise reliability, particularly when upsets occur
in control-flow operations, leading to severe failures. To address
this, we introduce a method for monitoring control flow-related
specifications using Petri nets. We validated our method across
three designs: convolutional layers in LeNet-5, Gaussian blur in
Canny edge detection, and AES encryption. Our fault injection
campaign targeting the control registers and primary control in-
puts demonstrated high error detection rates in both datapath and
control logic. Synthesis results show that a maximum detection rate
is achieved with a few to around 10 % area overhead in most cases.
The proposed detectors quickly detect 88.0% to 99.9% of failures
resulting from upsets in internal control registers and perturbation
in primary control inputs.
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1 INTRODUCTION

Hardware accelerators that process tasks like image processing
and Al inference are increasingly used in various domains, with
heightened demand for reliability in safety-critical applications such
as autonomous driving and medical devices [1, 2, 3, 4]. Silent data
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corruption in data centers accommodating hardware accelerators
draws significant attention [5, 6, 7]. Soft errors due to cosmic rays
in terrestrial and space environments pose significant reliability
concerns for these accelerators across their lifetime [8, 9].

Available methods for evaluating hardware accelerator reliabil-
ity against soft errors include irradiation experiments and fault
injection. The former uses actual radiation to deliver accurate as-
sessments but is limited by time and facility availability. Conversely,
fault injection experiments are more flexible, allowing for the con-
trolled injection of bit upsets over time and space, with an option to
repeat evaluations as needed. Fault injection targeting hardware ac-
celerators has demonstrated that control registers related to control
flow are especially vulnerable to bit upsets [10, 11].

Fault-tolerant methods like instruction redundancy in software
and hardware lockstep are proposed to detect soft errors impacting
control flow [12, 13, 14]. For hardware, Dual Modular Redundancy
(DMR) and Triple Modular Redundancy (TMR) are often used, sup-
plemented by application-specific strategies [15, 16]. However, even
TMR has been reported as ineffective against single points of failure,
such as shared I/O [17], indicating they cannot cope with input
failures. Additionally, existing error detection techniques often tar-
get the data and control flows of specific applications [18, 19, 20].
Therefore, establishing a generalized high-coverage error detection
method capable of identifying control flow faults, including those
that cannot be mitigated by TMR, while ensuring efficient area
usage, represents a significant yet crucial challenge.

This work proposes a generic approach for monitoring control
flow-related specifications in hardware accelerators for error detec-
tion. Our key concept involves constructing Petri nets that represent
specifications to monitor control flow. This method allows multiple
compact Petri nets to detect most control-flow perturbations caused
by both bit-flip and input failure, as well as the resulting incorrect
datapath outputs. These compact Petri nets can be integrated into
hardware for error detection with minimal hardware overhead,
ensuring no false error detection during error-free operations.

2 RELATED WORK

We aim to develop a method for detecting hardware failures effi-
ciently due to soft errors by monitoring hardware control flow. In
reviewing relevant research, several strategies emerge:

Hard Error Detection in Datapaths: Periodic monitoring using
pre-acquired golden values for implementations based on high-level
synthesis (HLS) is reported in [21]. Employing golden data during
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idle times in CNN accelerators allows error detection without af-
fecting cycle counts [18]. However, these methods do not address
soft errors directly.

Software Techniques for Transient Error Mitigation: Techniques
such as instruction duplication and multi-core redundancy com-
putations have been proposed to counter transient errors [22, 23].
Low-cost error detectors identify vulnerabilities and introduce re-
dundant programming [24], while compiler enhancements auto-
matically duplicate instructions to enhance resilience against soft
errors [12]. Although instruction duplication mitigates silent data
corruptions from datapath faults, control flow-related faults like
hang-ups remain challenging, with TMR showing no improvement.

Fault Injection and Reliability Evaluation: Techniques include
focusing fault injections on neuron outputs in CNN accelerators
where bit-flips significantly impact results [25] and identifying
sensitive bits in binary data in machine learning applications to
improve fault injection efficiency [26]. These methods effectively
identify vulnerable bits but still face challenges in efficient hardware
failure detection.

Soft Error Impact Mitigation: One approach selectively protects
crucial registers in control and data flows via HLS to reduce er-
ror probability, though it prioritizes error probability reduction
over detection [27]. A tool extracts and protects control flow from
C-language descriptions for HLS, mainly detecting errors affect-
ing execution times rather than computational accuracy [28]. The
performance of TMR techniques has been evaluated through irra-
diation experiments [17]. In normal TMR configurations, a shared
primary input is a single-point of failure, implying that TMR can-
not mitigate errors when inputs are affected by soft errors, thus
compromising the benefits of redundancy.

Machine Learning for Error Detection: A machine learning-based
method has been proposed to monitor crucial signals related to
control flow in microprocessors [29]. Despite its general applicabil-
ity, this method risks misidentifying fault-free operations as faulty,
which is a significant problem confirmed in subsequent experiments
detailed in Section 5.4.

Monitoring the soundness of control flow and detecting abnor-
mal behaviors efficiently remain substantial challenges. Unlike dat-
apath processes, which are driven by clear algorithms, control flow
depends on each design, complicating its efficient monitoring.

3 PROPOSED METHOD

Fig. 1 shows the proposed method consisting of three steps: (1)
generating Petri nets from specifications, (2) evaluating their fault
detection performance, and (3) selecting Petri nets based on area
and fault detection performance and implementing the selected
ones as detectors. This work assumes the existence of a specification
document that fully describes signal changes within the hardware,
which is typical in industrial designs, especially reliability-critical
hardware.

3.1 Petrinets

Before explaining each step in detail, we give the definition of Petri
nets used in this work. A Petri net is a mathematical model used
to describe the behavior of a discrete event system. Structurally, a
Petri net S is a directed bipartite graph whose vertices are divided
into two sets—places P and transitions T—connected by directed
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Figure 1: Proposed method from generating Petri nets to
implementing those as detectors.
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Figure 2: Simple Petri net.

edges E. Each place p € P keeps a non-negative number of tokens.
A state of a Petri net is represented by a function M : P — N,
where M(p) denotes the number of tokens in place p. We call such
a function f a marking of the Petri net. The initial marking of a
Petri net is denoted by M. A transition ¢ € T is said to be enabled
if every place p such that (p,t) € E (i.e., p is an input place of t)
contains at least one token. A Petri-net changes its state by firing
one of the enabled transitions; once an enabled transition t is fired,
it consumes one token from each input place py (i.e., (pr,t) € E)
and produces one token to each output place po (i.e., (t,po) € E).
In this way, a Petri net models a sequence of discrete events as a
sequence of transition firing.

Fig. 2 shows a simple Petri net with two places and one transition.
In the initial marking, Place 1 contains one token, while Place 2
is empty. The transition T1, whose input is Place 1 and output is
Place 2, is enabled since Place 1 contains a token. After T1 fires, the
token in Place 1 is consumed, and a token is produced in Place 2.

Petri nets have been widely used in studies related to hardware
security [30, 31, 32, 33]. However, there has been relatively little
research on the efficient implementation of Petri nets as runtime
checkers for soft errors. The following sections explain each step,
from the construction of Petri nets to their implementation.

3.2 Step 1: Extract event sets from specification
and generate their corresponding Petri nets

In the specification document, we categorized specific signal changes
into four types, interpreting them as individual events. Types 1 and
2 involve changes in the value of a specific signal; Type 1 includes
any change, while Type 2 focuses on changes to specific values.
Types 3 and 4 relate to the i-th change of the signal value, where i is
a predetermined value. Type 3 captures any i-th changes, whereas
Type 4 is restricted to i-th changes of specific values. For example,
considering a status signal indicating two states (S1, S2), changing
the signal value represents a state transition. A simple state tran-
sition is Type 1, while a transition to a specific state (e.g., S2) is
Type 2. The i-th state transition is Type 3, and the i-th transition to
a specific state (e.g., i-th S1) is Type 4. Considering the implemen-
tation, the allocation type of an event is relevant to the hardware
resources required for its observation. For instance, observing a
Type 4 event requires more hardware resources than observing a
Type 1 event to count the number of transitions. We finally con-
sider the balance between hardware resources and error detection
performance, which will appear in Section 5.3.
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Given our focus on monitoring the control flow of hardware
accelerators, we extract an event set that meets a specific condition:
There must be at least two target events, and their occurrence order
must remain consistent across multiple executions. For instance, this
condition is met if a monitored specification includes events A, B,
and C; and if these events consistently occur in the order of A, B,
and then C during correct executions. In this paper, we manually
identify event sets. Meanwhile, large language models (LLMs) or
automated assertion techniques, e.g., [34, 35, 36], may help.

Next, we generate Petri nets corresponding to individual event
sets. Each event is assigned to a transition, and a Petri net is con-
structed to represent the sequence of these event occurrences. To
enhance monitoring capabilities, multiple event sets and their Petri
nets are generated. We use Petri nets to handle complex control
flows in anticipation of future demands. However, within the scope
of this paper, alternatives such as automata may also be applied.

3.3 Step 2: Evaluate error detection performance

3.3.1 Simulating Petri net-based error detection. Error detection
with Petri nets is achieved by monitoring the sequence of transi-
tion firings. If an abnormal firing sequence (including the firing
of an incorrect final transition) that is not defined by the Petri net
is detected, it is considered that an error has been detected. The
focus here is on monitoring control flow; thus, fault injections sim-
ulate bit flips in registers responsible for control flow, as well as
in primary control inputs. Detection of output errors is indicated
by abnormal transition firings, where the output error is a fault
resulting in incorrect outcomes. The output errors are categorized
either as incorrect computational results, namely silent data cor-
ruption defined by deviations from correct values, or as abnormal
terminations of processing, identified by timing. These faults can
affect both the datapath and control logic. When a Petri net detects
an error upon the occurrence of an output error, it is considered
true error detection.

3.3.2  Metrics of error detection performance. We evaluate the er-
ror detection performance of Petri nets using three metrics: error
detection rate, error detection latency, and false error detection for
error-free operations. When an error is detected in the Petri net, it is
expected to indicate that the hardware produces incorrect outputs.
Therefore, if the Petri net detects an error and the hardware outputs
a fault, it is counted as a true positive error detection (N7p). Then,
the error detection rate (DR) is defined as DR = N7p/Nog, where
NoE is the number of output error occurrences.

Additionally, we evaluate the latency of error detection using
Petri nets. Latency (Lat) is defined as the average number of clock
cycles between the injection of a fault and the Petri net detecting
the error. In scenarios where the process fails to complete and
results in a timeout, the Petri net may only detect the incorrect final
transition. Given that the practical timeout duration is not fixed,
the latency of error detection becomes ambiguous. Consequently,
the proportion of such error detections is calculated as DR_TO,
which is a subset of the DR. A smaller Lat and a lower DR_TO are
indicative of better error detection capabilities.

A critical measure of the effectiveness of Petri net-based error
detection is its ability to avoid false positives during error-free
(golden) operations. We introduce a metric, FP_golden, which can
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Figure 3: Architecture of Petri net based error detector.

be Yes or No, to assess the presence of false error detection. In
the proposed scheme, FP_golden is guaranteed to be No, indicating
there are no false positives. This assurance stems from the Petri
nets being generated directly from the specification documents.
The absence of false error detection will be further validated when
our method is applied to the three designs discussed later.

3.4 Step 3: Select and implement Petri nets as
error detectors

This step involves implementing Petri nets as error detectors to
monitor hardware failures in real time. Fig. 3 illustrates the archi-
tecture of the Petri net-based error detector, consisting primarily
of three parts: input monitoring, managing transition firing, and
the normal sequence table. The input to the error detector con-
sists of the signal lines assigned to events. These input signals are
monitored by the input monitoring module to detect changes in
signals and the associated events. Event occurrences are defined as
the transition firing in the Petri nets. The transition-firing manage-
ment module monitors the firing sequence of transitions based on
the normal sequence table. When the module detects transitions
firing in abnormal sequences, it asserts the fault flag (Fault flag)
to indicate error detection. Additionally, the transition-firing man-
agement module constantly outputs the last-fired transition (Last
trans.), enabling the detection of abnormal process terminations.
When maximizing detection rate (DR) with an area overhead
constraint, we find the combination of detectors that achieves the
highest DR while satisfying the area constraint. When minimizing
area with a DR constraint, we identify the detector combination
with the minimum area overhead while meeting the DR constraint.

4 DESIGN EXAMPLES
4.1 Convolutional layer computation in CNN

For practical applications, such as those used in autonomous driving,
we first focus on the convolutional layer computation in LeNet-
5 on a CNN accelerator, specifically a quantized LeNet-5 model,
employing INTS8 precision and trained on the MNIST dataset. The
convolutional layer computation under test has 32 X 32 X 1 input
activation data and produces a 28 X 28 X 6 output. Post-convolution,
rectified linear unit (ReLU) activation functions are applied.

Fig. 4 illustrates the architecture of the CNN accelerator proposed
in [37], which enables high data reuse and low latency performance.
The convolution (Conv.) has primary control inputs from the control
module. The input data, including weight data and activation data,
is fed into the Weight buffer and Activation buffer, respectively.
The WT FSM and Data FSM modules manage the input data from
the buffers and control the main computation on the PE Array.
The Delay CTR and MAC CTR also manage computation on the
PE Array. The processed data in the PE Array is accumulated by
the Accumulation module via the Temporal buffer and outputs the
computation results to the Direct Memory Access module via the
Output module.
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Figure 4: Architecture of CNN accelerator. White boxes are
main processing modules.

To construct Petri nets that monitor the control flow, we first
organize event sets from the specifications. Table 1 details the event
sets, their corresponding IDs for Petri nets, and the event assign-
ment types used. Fig. 5 displays 14 generated Petri nets, each corre-
sponding to an event set. Transition labels correspond to the event
labels in Table 1. For example, the Petri net for CONV_3 includes
three defined events. This net features a path initiating with the
first transition (12) and includes recurring transitions (13, 14). Black
transitions indicate branches, with the bottom transition firing at
the final loop, signifying the completion as the token moves to the
rightmost place.

Logic synthesis for the CNN accelerator, along with 14 Petri nets,
was conducted on the Kintex UltraScale FPGA with part xcku035-
fbva900-1-i using the Vivado tool. The CNN accelerator used 20,936
LUTs and 17,739 FFs, and the 14 Petri nets used 2,050 LUTs and
1,045 FFs. These 14 Petri nets are just candidates, and a part of
them will be selected as detectors. Additionally, we investigated the
impact on the maximum operating frequency. While the maximum
operating frequency in the original design was 119 MHz, it dropped
to 118 MHz when the error detectors were added. The speed impact
of Petri net-based error detectors was negligible.

4.2 Gaussian blur in canny edge detection

To examine applicability of our method in general image processing,
we focus on Gaussian blur in Canny edge detection. The architec-
ture of Gaussian blur (Gaus.) is illustrated in Fig. 6. Gaus. processes
the input image data according to the AXI4-Stream protocol. AXI4-
Stream consists of a signal for data transmission (data) and control
related signals (user, valid, last, ready). Gaus. receives input images
with dimensions of 64 X 48. The input of AXI4-Stream is acquired
by the receiving module (AXIS recv.), then processed by the main
processing module (Gaussian blur calc.) via First-In, First-Out (FI-
FOs). Subsequently, the module (AXIS send) outputs the calculation
result according to the AXI4-stream protocol. This process executes
in a pipeline with per-clock-per-pixel-processing [38].

Table 2 indicates the monitored event sets, their associated IDs,
and the used event assignment types. Three Petri nets have been
generated, each corresponding to a ID. The three modules operate
synchronously for pipeline processing. By including signals from
each module within the event set, the synchronous operation of
the three modules is monitored.

In logic synthesis, 581 LUTs and 577 FFs for Gaus., and 493 LUTs
and 329 FFs for 3 Petri nets are utilized in the Zyng-7000 FPGA
with part xc7z020clg484-1. The FPGA differs in convolutional layer
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computation and Gaussian blur, it essentially does not affect the
error detection performance of Petri nets.

4.3 Advanced encryption standard (AES)

As a distinct example from the aforementioned two image process-
ing techniques, we target Advanced Encryption Standard (AES)
encryption, which requires high reliability. The architecture of the
AES encryption system implemented is depicted in Fig. 7, as de-
scribed in [39]. Our focus was to construct a Petri net that targets
the sequential encryption of five 128-bit plaintexts.

Table 3 details the monitored event sets. Using the Vivado tool,
the AES encryption system and its seven associated Petri nets were
synthesized, targeting the Zynq-7000 FPGA. 2,525 LUTs and 2,331
FFs for AES enc., and 281 LUTs and 205 FFs for 7 Petri nets are
utilized.
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Table 1: Monitored event sets, their corresponding IDs, and used event assignment types in Conv.

ID Event set with Event Label (#) Type
Initiation of processing (1), updating of horizontal counter for activation data (2), retrieval of data cube (3),
CONV_1 completion of data cube retrieval (4), writing to FIFO buffer (5), completion of convolution calculation for the data cube (6), 2
conclusion of all computations (7).
CONV_2 Initiation of processing (8), permission for data cube computation (9), initiation of data cube computation (10), updating of data cube (11). 2
CONV_3 Initiation of processing (12), retrieval of activation data from a specific position (13), updating of vertical counter for activation data (14). 23
CONV_4 Initiation of processing (15), permission for weight data retrieval (16), retrieval of weight data (17). 23
CONV 5 Setting of input channel number (18), setting of output channel number (19), initiation of processing (20), 23
- state change for processing (21), computation of a specific data cube (22), state change for completion (23). ’
CONV 6 Initiation of processing (24), retrieval of weight data corresponding to the activation data cube (25), 5
- updating of a coordinate (26), completion of data cube computation (27), permission for next computation (28).
CONV_7 Initiation of processing (29), retrieval of specific weight data (30), verification of specific weight data retrieval (31). 2,3
CONV 8 Setting of output channel number to WT FSM (32), initiation of processing (33), state change for weight data acquisition (34), 23
- acquisition of the final weight data (35), completion of weight data acquisition (36), conclusion of all computations (37). ’
CONV_9 Initiation of processing (38), output of specific data (39), completion of specific data output (40). 2,3
CONV_10 Initiation of processing (41), permission for processing from Delay MAC. (42), initiation of primary output (43). 2,3
CONV_11 Initiation of processing (44), output of specific data from Delay MAC (45), primary output of specific data (46). 2,3
CONV_12 Retrieval of the final activation data (47), output of specific data (48), completion of specific data output (49). 24
CONV_13 Initiation of processing (50), retrieval of specific data cube (51), updating of weight data (52). 2,3
CONV_14 Initiation of processing (53), completion of weight data retrieval (54), updating of specific address for activation data (55). 2,3
Table 2: Monitored event sets in Gaussian blur. Table 3: Monitored event sets in AES encryption.
D Event set with Event Label (#) Type D Event set with Event Label (#) Type
Targeting per-line processing, Initiation of processing (1), permission for state
initiation in AXIS recv. (1), initiation in Gaussian blur AES_1 change (2), permission for round update (3), update of 2
GAUS_1 e Lo 2
- calc. (2), initiation in AXIS send (3), completion in round (4).
AXIS send (4). . ) .
AES 2 Initiation of processing (5), permission for state 23
Targeting vertical counters, change (6), reset of per-round S-box (7). ’
update in AXIS recv. (5), update in Gaussian blur calc. (6), . - .
GAUS_2 update in AXIS send (7). Acquisition of specific pixel data L3 AES 3 Ir}l]xtlatlor; of provt“e'stsAmg (5) permlszlorll f?i St?telo 2,3
in AXIS recv. (3). change (9), acquisition of per-round plaintext (10).
Targeting specific pixel data, Irllitliation of process}ng (1 lf) start oflp}'ocessing per-
acquisition in AXIS recv. (9), writing to FIFO in AXIS AES 4 plaintext (12), o o next plaintext (13), 23
recv. (10), acquisition in Gaussian blur calc. (11), completion per-plaintext (14).
GAUS_3 writing to FIFO in Gaussian blur calc. (12), acquisition in 2,3 AES 5 Initiation of processing (15), increment of per-round S-box 23
AXIS send (13), output in AXIS send (14), counter (16), acquisition of S-box for next round (17). ?
completion of per-line processing in AXIS send (15). . ‘ .
. . . Initiation of processing (18), permission to update round
Completion of image processing (16). AES 6 2,3
counter (19), update of round counter (20).
AES 7 Permission for state change (21), state change for 23

5 EXPERIMENTAL RESULTS

5.1 Experimental setup

To assess the efficacy of our error detectors, we perform RTL fault
injection simulations on the three target designs in two cases. In
Case 1, faults are injected into control registers within the target

design, assuming a direct impact of soft errors on the target design.

For experimental efficiency, we limited fault injections to the main
processing module of each design.

In Case 2, faults are injected into the primary control inputs
of the target design, assuming that faults are propagating from
upstream circuits. We intentionally randomized primary control
inputs across ten consecutive cycles. To justify this fault injection
approach, we conducted preliminary experiments involving over
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processing (22).

600 instances of bit-flip fault injections on parts of the control mod-
ules of Conv. and AES enc., resulting in erroneous primary control
inputs appearing for more than 14,512 and 15 cycles on average,
respectively. Similarly, the bit-flip in Gaus. exhibited prolonged
incorrect outputs on AXI4 streams, implying that primary control
inputs can receive similar faults. These results indicate that our
fault injection setup in Case 2 is not excessive but practical.

5.2 Baseline error detection performance

For Case 1 fault injection, Table 4 shows the error detection per-
formance on the three designs, where all Petri nets are utilized.
Nregs(Npizs) indicates the number of control registers and the total
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Table 4: Error detection performance in Case 1: detection
rate DR, error detection latency Lat, and false error detection
for error-free golden operations FP_golden.

Design  Nyegs (Npirs) ~ Ninj. Noe  DR(%) Lat(cycles) FP_golden

Conv. 29 (246) 43,500 31,898 99.5 107.6 No

Gaus. 11 (35) 72,600 53,638 88.0 53.4 No
AES enc. 4(9) 40,000 26,240 95.3 3.8 No

Table 5: Error detection performance in Case 2.

Design  Nipput ~ Ninj. Noe  DR(%) Lat(cycles)
Conv. 8 10,000 9,911 99.9 2.5
Gaus. 4 10,000 9,668 96.3 102.1

AES enc. 2 40,000 18,310 99.9 1.0

number of bits they include, which are targeted for fault injection.
Ninj. indicates the total number of fault injections performed. An
equal number of fault injections were conducted for each target
register within a design. Npog represents the occurrence count of
output errors. Here, the output errors include both incorrect com-
putation results and abnormal termination of processing. In Nog,
87.6% corresponds to incorrect calculation results in Conv., 68.6%
in Gaus., and 81.4% in AES enc., respectively. The remaining per-
centages in each design correspond to abnormal termination of
processing. DR signifies the error detection rate.

When considering DR, Conv. achieved the highest detection rate
of 99.5%, surpassing the other designs due to the larger number of
Petri nets. In contrast, Gaus. exhibited the lowest error detection
rate DR of 88.0%. The number of Petri nets is three, and their diver-
sity might be limited. Considering that the clock cycles for normal
processing are 20,521 cycles for Conv., 8,676 cycles for Gaus., and
432 cycles for AES enc., the Lat is small for all designs, indicating
that the fast error detection is achieved. The DR_TO was 0.1% for
Conv.,, 0.5% for Gaus., and 12% for AES encryption, indicating par-
ticularly excellent for Conv. and Gaus.. The construction method of
Petri nets guarantees FP_golden to be No in every design, ensuring
there are no alarms of error detection during golden error-free
operations.

Table 5 shows the error detection performance in Case 2. Ninpyt
indicates the number of primary control inputs. In Nog, 100.0% cor-
responds to incorrect calculation results in Conv., 98.6% in Gaus.,
and 92.6% in AES enc., respectively, while the remaining percent-
ages indicate abnormal termination of processing. The DR achieved
over 96% in all three designs. Redundancy techniques such as TMR
cannot mitigate faults in primary inputs if each module receives
the same faulty inputs because all modules misbehave identically.
Meanwhile, the proposed error detector detects control-flow distur-
bances from faulty inputs and the resulting incorrect outputs. Along
with short Lat, the DR_TO was 0.0% for Conv., 0.3% for Gaus., and
0.0% for AES encryption. This result indicates fast error detection.

Although Petri net detectors themselves may be affected by soft
errors, they do not interfere with the monitored circuit because a
Petri net detector does not have an output for the monitored circuit.
We empirically confirmed this via bit-flip fault injection in one Petri
net (AES_1). The result shows that faults in the Petri net detector
never affect the monitored circuit.
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Figure 8: Trade-off between area overhead and DR.

5.3 Trade-off between area and DR

Fig. 8(a) depicts the relationship between area overhead and error
detection rate DR, concerning convolutional layer computation.
The area overhead is calculated based on the number of LUTs. The
x-axis represents the thresholds for area overhead. The left-side
bar illustrates the maximum DR at each threshold in Case 1, along
with the subset DR_TO. The right-side bar similarly illustrates DR
and DR_TO in Case 2. The maximum DR at each threshold is calcu-
lated by considering all combinations of Petri nets that satisfy that
threshold. When all 14 Petri nets are utilized, the area overhead is
approximately 9%. In Case 1, the DR gradually increases until reach-
ing this 9%, while decreasing the DR_TO. This indicates efficient
improvement. Meanwhile, a mere 1% of area cost achieves the DR
of 93.7% in Case 1, and 99.9% in Case 2. The DR_TO, consistently
at 0% in Case 2, indicates that an error was detected rapidly.

Similarly, the relationship between the area overhead of Petri
nets and DR in Gaussian blur is shown in Fig. 8(b). For Case 1, The
maximum DR is reached by an area overhead of up to 12%, and
it is observed that the DR does not increase with area overhead
exceeding 12%. In both Case 1 and Case 2, the DR_TO decreases
significantly with over 12% area overhead, indicating a significant
improvement in error detection latency. In Case 2, the DR exceeds
80% already at <3%, gradually improving.

Fig.8(c) shows the result of AES encryption. The area overhead
when using all seven Petri nets is approximately 10%. However, in
Case 1 the maximum DR is reached when the area overhead is <5%,
with DR_TO approximately at 13%. Conversely, it demonstrates
a sharp increase in DR with each 1% increase in area overhead
until <3%. In Case 2, the maximum DR reached 99.9% at <3%, with
DR_TO consistently at 0%, indicating the rapid error detection.

These results demonstrate that the proposed method allows for
effective consideration of adding or removing Petri nets based on
the trade-off between area overhead and error detection rate. This
enables flexible adaptation to circuit area constraints and high error
detection rate requirements.

5.4 Comparison with related work

To comparatively evaluate the proposed method, we implemented
a machine learning-based error detector [29], as a baseline. The
features in the dataset focus on the values of selected signals. For
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Table 6: Results of machine learning-based error detectors
in Case 1 fault injection.

Design Ninj. Nog DR (%) Lat (cycles) FP_golden

Conv. 14,500 10,595 99.8 4152.4 Yes

Gaus. 11,000 8,108 91.7 284.8 No
AES enc. 36,000 23,630 58.4 0.7 No

the convolutional layer computation, we selected 29 registers, 11
registers for Gaussian blur, and 4 registers for AES encryption as
elements of the features. These selected registers are those targeted
for fault injection in Section 5.2. We set the signal value history over
five clock cycles as each individual feature, which is determined to
be the most effective parameter reported in [29]. To prepare a train-
ing dataset, we conducted 600 RTL simulations for convolutional
layer computation, 1,200 for Gaussian blur, and 2,000 for AES en-
cryption. These RTL simulations consist of an equal distribution of
golden and fault injection data, with a ratio of 1:1. We employed the
XGBoost [40] machine learning algorithm to train a model, which
serves as the machine learning-based error detector. We set the hy-
perparameters as follows: learning rate to 0.3, maximum tree depth
to 6, and the number of decision trees to 10. Fault injection was
performed on the same registers as those in Case 1 in Section 5.2.

Table 6 shows the performance of the machine learning-based
error detector. Within Nog, 87.6% corresponds to incorrect calcu-
lation for Conv., 68.2% for Gaus., and 81.4% for AES enc., with the
remainder corresponding to abnormal termination of processing.
The error detection rate for convolutional layer and Gaussian blur is
slightly higher than that of our method. In contrast, when targeting
AES encryption, the error detection rate is below 60%, indicating
low error detection performance even though Lat (latency) is very
short. This is because there are only four registers observed in this
circuit, making it difficult for the machine-learning-based technique
to capture the characteristic signal changes in the fault cases.

However, false errors were detected in the convolutional layer
even during the execution of golden simulations. Therefore,
FP_golden is Yes. In practical scenarios, given the low probability of
soft errors, it is generally assumed that most instances operate error-
free. If FP_golden is Yes, it implies that an error is detected with
each 2 ms execution of the convolutional layer operation, which
is practically unacceptable. On the other hand, with the proposed
Petri net-based error detector, errors are not detected when faults
are not injected.

We remark that our goal is a hardware implementation of soft-
error detectors, which is demonstrated to be possible in our ap-
proach, whereas it is not clear how their machine-learning-based
approach can be implemented using hardware [29]. Implementing
an XGboost model is expected to be more challenging, but it is one
of our future work.

6 CONCLUSION

This paper presented an error detection method based on mon-
itoring control flow-related specifications in hardware accelera-
tors using Petri nets. We successfully developed a comprehensive
methodology for implementing Petri net-based detectors from de-
sign specifications. Our methodology was validated through fault
injection tests on the convolutional layers of LeNet-5, achieving
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a detection rate of 99.5% for register bit-flips with an area over-
head limited to 9%, and detection rate of 99.9% for primary input.
This approach enables comprehensive detection of errors caused
by both bit-flip and input failure while minimizing area overhead.
A notable advantage of our method is the complete absence of false
error detections in error-free operations, making it highly suitable
for practical applications.
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