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ABSTRACT

Soft errors from cosmic rays are a significant concern for

reliability-critical applications such as autonomous driving and

supercomputers. In this paper, we review soft error rate (SER)

estimation for SRAM, the most sensitive component in digital logic

chips, and explore how machine learning can assist in SRAM SER

characterization.We propose an efficient discriminator construction

method for single-event upset (SEU) using active learning

and adaptive hyperparameter tuning in the learning algorithm.

This method iteratively labels samples through technology

computer-aided design (TCAD) simulations, determining whether

an upset occurs for an unlabeled sample with the lowest confidence

in prediction. Our approach eliminates the need for empirical

modeling based on tacit knowledge, systematically building a

model while reducing the training data needed to achieve sufficient

event-wise accuracy. Experiments with a 12-nm SRAM show that

the training data required to achieve the same accuracy was reduced

by 41% for 80% accuracy and by 31% for 85% accuracy. Finally, we

discuss future directions and challenges in advanced nano-sheet

and CFET transistors.

CCS CONCEPTS

• Hardware → Transient errors and upsets; • Computing

methodologies→ Active learning settings.
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1 INTRODUCTION

With the miniaturization, low-voltage operation, and high

integration of VLSI, radiation effects have become a significant

problem, especially for applications demanding high reliability, such

as self-driving cars. In terrestrial environments, neutron-induced

soft errors have emerged as a primary reliability concern, while in

space applications, protons and heavier ions also pose serious risks.

To improve the reliability of these devices, evaluating the

impact of soft errors has become critical. Soft errors refer to

temporary malfunctions that occur when one or more bits stored

in memory are flipped. This phenomenon is primarily caused by

radiation-induced electron-hole pair generation within the device,

leading to charge collection at the drain and causing its potential

to fluctuate abnormally. A single-event upset (SEU) occurs when a

bit flip is triggered by a single particle strike on a device, such as

in static random access memory (SRAM). Various methods have

been developed to estimate the soft error rate (SER), with most

approaches based on Monte Carlo simulations [1, 11, 12, 22].

These methods perform particle transport simulations, precisely

modeling particle-atom interactions, ion transportation, and charge

deposition within devices using tools such as GEANT4 [3] or PHITS

[17]. Themost accurate estimationmethods, such as [1], incorporate

technology computer-aided design (TCAD) device simulations for

each charge deposition event to determine whether bit upsets

occur. However, estimating SER with TCAD simulations presents

a challenge, as each simulation can take considerable time, often

exceeding ten hours to complete. Moreover, because Monte Carlo

methods rely on random sampling, a large number of trials are

needed to achieve adequate statistical accuracy.

Following the Monte Carlo particle transport simulation,

the sensitive volume (SV) method [20] is commonly used to

determine whether bit upsets occur, due to its simplicity. The

basic single sensitive volume (SSV) approach identifies a bit

upset by checking if the charge deposited in the SV exceeds

a defined critical charge value. However, this approach often

depends on an empirically determined SV and an estimated critical

charge threshold. Consequently, without empirical knowledge or

measurement data, it becomes challenging to estimate SER with

confidence. Furthermore, even when SER is accurately estimated,

the event-wise accuracy, namely the discrimination accuracy for

each charge deposition event, remains low. This issue will be

discussed in detail in Section 2.

To address this problem, machine learning has been integrated

with TCAD simulations [6, 7]. In this approach, TCAD simulation
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data and corresponding deposited charges across multiple sensitive

volumes (MSVs) are prepared as training data, and then the

discriminator is constructed. However, applying this method

presents challenges, as generating sufficient training data (e.g., over

1000 samples) is difficult due to the slow speed of TCAD simulations.

Furthermore, the method in [7] was validated only on 65-nm SOI

devices, whereas FinFETs are currently prevalent as state-of-the-art

technology, making experimental validation for FinFETs essential.

This paper proposes an SEU discriminator construction method

incorporating active learning and adaptive hyperparameter tuning.

Compared to standard machine learning approaches, the proposed

method reduces the amount of training data required to achieve

sufficient accuracy. In this study, we apply the method to

12-nm FinFET SRAM, demonstrating its superiority in accuracy

over conventional SV methods and its reduced training data

requirements compared to typical machine learning approaches.

Experimental results show that the number of training samples

needed to achieve 80% and 85% accuracy was reduced by 41% and

31%, respectively, whereas conventional SSV and MSV methods

suffer from low accuracies of 57% and 68%, respectively.

2 MOTIVATION

For planar MOSFETs, the sensitive volume has traditionally been

empirically allocated to the drain of the off-state NMOS, with a

sub-micron depth. The charge collection efficiency, which is defined

as the ratio of charge collected at the drain to the total deposited

charge, varies depending on the location of the charge deposition

(an example will be shown later in Fig. 7). Therefore, assigning a

single sensitive volume is a significant approximation. Additionally,

for the FinFET structure, there is no established consensus in the

literature regarding sensitive volume allocation.

Despite the issues mentioned, the SSV method is commonly used

because the SER can be reproduced by adjusting the critical charge

threshold value [2]. Even with suboptimal SSV locations and sizes,

fitting the critical charge value can mask these inaccuracies. In

such cases, the SER may be reproduced, but the SEU occurrence

for individual particle events cannot be accurately predicted.

Consequently, event-wise accuracy cannot be expected with the

SSV method.

Event-wise accuracy is crucial for estimating multiple cell upsets

(MCUs) because a single particle can cause upsets in adjacent SRAM

cells. Accurately estimating MCUs requires considering the spatial

location of the particle track across multiple cells. However, the

SSV method is not well suited for this purpose.

As an improvement, MSV methods are also used in the literature.

To account for the spatial distribution of charge collection efficiency,

multiple SVs with varying collection efficiencies are allocated. The

total collected charge is then estimated as the sum of the products

of the charge collection efficiency and the deposited charge in each

SV. However, even the MSV method has an issue to be addressed.

Fig. 1 shows the charge collection efficiency at three locations in

Fig. 7 as a function of the amount of deposited charge. The details

of the TCAD model will be explained in Section 4. Fig. 1 reveals

that the charge collection efficiency nonlinearly depends on the

amount of charge. Therefore, it is difficult to construct an MSV

model that can cover a wide range of charge deposition events.

Figure 1: Relationship between deposited charge and charge

collection efficiencies at points A–C in Fig. 7.
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Figure 3: Proposed discriminator training with Monte Carlo

simulation and active learning.

This issue is especially critical when considering that neutrons in

the terrestrial environment and protons in space involve nuclear

reactions producing various ions. Therefore, we conclude that the

machine learning approach in [6, 7] offers promising potential.

3 PROPOSED SEU DISCRIMINATOR

CONSTRUCTIONWITH ACTIVE LEARNING

3.1 Problem Definition

Fig. 2 shows the SER estimation method supposed in this work.

The Monte Carlo particle transport simulation generates event

data, each containing information on the charge deposited in

devices. Each charge deposition event is then processed by the SEU

discriminator to count SEUs and calculate the SER.More specifically,

the charges deposited in multiple volumes within an SRAM cell

serve as input features for the discriminator.

This work explores an efficient SEU discriminator construction

method using TCAD simulations. Our goal in this paper is to

maximize event-wise SEU inference accuracy without relying on

empirical or experimental knowledge, while remaining constrained

by the limited number of feasible TCAD simulations.
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3.2 Proposed Method

3.2.1 Overview. To construct an SEU discriminator, we need to

prepare a set of charge deposition data labeled based on SEU

occurrence or non-occurrence. These labels are annotated using

TCAD simulations. As discussed earlier, the number of TCAD

simulations is limited, so careful selection of events for TCAD

simulation is essential. This selection has two requirements: (1) the

events should encompass diverse but plausible scenarios, and (2) the

events should be mutually exclusive, maximizing the information

available for training.

For the first requirement, we perform Monte Carlo particle

transport simulations to generate a range of diverse events that

can realistically occur. These Monte Carlo simulations are notably

faster than TCAD simulations. For the second requirement, we

use active learning to strategically select event data for additional

labeling by TCAD simulation. However, the active learning-based

selection initially does not perform well. To address this, we filter

out events where an SEU is unlikely to occur. This filtering step is

essential, as most particles, particularly neutrons and protons, do

not cause SEUs. Without this filtering, the training data would be

heavily biased, limiting the efficiency of early-stage training.

3.2.2 Detailed Procedure. Fig. 3 illustrates the proposed active

learning-based training flow for the SEU discriminator. First, the

Monte Carlo particle transport simulation is run to obtain a diverse

dataset comprising incident particle information and the deposited

charge in each SV. We assign multiple SVs [21] within a single

transistor to enhance discrimination accuracy, with the method

for determining these volumes detailed in Section 5.1. Generally,

increasing the number of SVs allows for more precise modeling but

requires larger training datasets. The particle transport simulator

outputs information on incident particles, including particle type,

energy, incident position, and direction vector, along with the

charge deposited in each SV within the MSVs.

Secondly, we calculate 𝑄estimate, representing the collected

charge estimated by summing the product of the charge deposited

in each SV and its charge collection efficiency (see Section 5.1). We

then filter out events where estimate 𝑄estimate is below a specified

threshold. This threshold is set sufficiently lower than the critical

charge to ensure an almost negligible likelihood of SEU occurrence.

Thirdly, the filtered data are given to the proposed active learning

procedure. Fig. 4 shows the internal flow of active learning. We

iteratively choose the event data, label it with TCAD simulation,

and enrich the training dataset. We then train the discriminator

using the available training dataset in each iteration. Next, all

the unlabeled data are given to the current discriminator to

compute the confidence of the discrimination. In the active learning

scheme, the least confident event should be added to the training

dataset since the accuracy of the discriminator is expected to

improve near the least confident event data. Here, this is a binary

classification task, so we define the confidence of prediction by how

far 𝑃 (0, non-upset) or 𝑃 (1, upset) is from 0.5.

Another important consideration is updating hyperparameters

in the machine learning algorithms. In the early stages, the

available training data is limited, allowing only a small model to be

constructed. However, as the training data grows, a largermodel can

Training Data
(label + deposited charge)

Rest of data
(deposited charge w/o label)

Training

Discriminator

Others

Least Confident
Sorting by confidence

TCAD

Adding

Max

Min

C
onfidence

Prediction

Update of HPs

ParticleLabeling

Figure 4: Internal flow of active learning with on-demand

TCAD labeling and adaptive tuning of hyperparameters.

be built, contributing to improved classification accuracy. Therefore,

we periodically update the hyperparameters during the iterations.

We also need to address the initial iteration, specifically

the selection of event data for labeling. Through experimental

investigation of various selection methods, we found that randomly

selected data performswell, largely due to the previouslymentioned

filtering process. Therefore, in this work, we randomly choose the

initial dozen events.

4 DUT AND SIMULATION SETUP

In this paper, we selected a 12-nm SRAM chip in a resin package

mounted on a PCB as the device under test (DUT), where each

SRAM cell consists of six FinFETs. We used PHITS [17] as the

particle transport simulator and the Hyper Environment for

Exploration of Semiconductor Simulation (HyENEXSS) [10] for

the TCAD simulations.

The left figure of Fig. 5 shows the 3D structure of the

SRAM cell used in the TCAD simulation. The gray areas

represent silicon, while the white areas represent electrodes. The

electrode arrangement corresponds to the layout of a high-density

six-transistor SRAM bit cell [5]. Since cross-sectional views of

1x-nm FinFET transistors observed via transmission electron

microscopy (TEM) are tapered [8], each fin is approximated by three

stacked cuboids. Note that the simulation area is larger than an

actual SRAM bit cell. The electrical characteristics of the SRAM cell

were calibrated following the method described in [19]. A supply

voltage 𝑉DD is applied to the side of the N-well, and the substrate

bottom is connected to GND. This model simulates bit-flipping

behavior by performing transient analysis after electron-hole pairs

are generated due to particle incidence.

Additional input information for each event data must be

prepared for the TCAD simulation. As mentioned in Section 3, the

dumped data contain information on particle type, energy, incident

position, and direction vector. This information is used to deposit

charge in the TCAD model. The amount of charge is proportional

to the particle’s linear energy transfer (LET), which depends on

particle type and energy. We used The Stopping and Range of Ions

in Matter (SRIM) code [23] for LET calculations.

Fig. 6 illustrates the chip-level DUT configuration used in PHITS,

with SRAM transistors modeled according to Fig. 5. The SVs are

positioned around the off-state NMOS, as it is the most sensitive

transistor within the SRAM cell [14]. Detailed SV allocation will be

discussed in Section 5.1. In this model, terrestrial neutrons irradiate
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Figure 5: 3D TCAD simulation model of 12-nm FinFET

6T-SRAM cell. The red rectangle represents the cell boundary.

The right figure explains sensitive volume allocation.
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Figure 6: Constitution of the 12-nm board modeled in PHITS

simulation.

the board from the package side, based on the ground-level neutron

spectrum [15, 16]. The deposited charge data are recorded each

time a particle enters the SVs.

5 EXPERIMENT

5.1 Multiple Sensitive Volume Allocation

When constructing the SEU discriminator, we allocate multiple

sensitive volumes within an SRAM cell, with the charge deposited

in each volume serving as an input feature. However, allocating

volumes in insensitive regions is ineffective. To identify sensitive

regions, we deposited a point charge of approximately 0.5 fC,

comparable to the critical charge in similar generations [18], at

various locations within the silicon of the off-state NMOS (including

the substrate) and performed mixed-mode TCAD simulations. We

then calculated the charge collection efficiency, defined as the

charge collected by the drain divided by the deposited charge.

Fig. 7 shows the spatial distribution of charge collection efficiency

at various points near the off-NMOS region. The right figure in Fig. 5

illustrates the entire SV, defined by a charge collection efficiency

exceeding a threshold of 0.05. The first layer from the top is the fin,

the second and third layers are silicon wrapped in shallow trench

isolation (STI), and the fourth layer is part of the substrate. This

volume was then divided into MSVs, as indicated by the lines in

Fig.5. The first to third layers were each divided into eight volumes,

and the fourth layer into 16 volumes, resulting in a total of 40

volumes. Using the charge collection efficiencies of these volumes,

𝑄estimate in Fig.3 is calculated. Note that this division is just an

initial trial, with its optimization left for future work.

5.2 Data Preparation

We obtained the event data and filtered them by setting the𝑄estimate

threshold at 0.1 fC, which is several times smaller than the critical

Source Gate Drain
A

B
C

Figure 7: Charge collection efficiency around an off-state

NMOS transistor obtained by TCAD simulation.

charge, as shown in Fig. 3. After filtering, the total number of

events was 716. The proposed method annotates labels with TCAD

simulation on the fly for active learning. However, applying this

on-the-fly annotation to all comparison methods would lead to

redundant TCAD simulations for the same events, resulting in

inefficiencies. To prevent this, we preprocessed all event data

with TCAD simulations and stored the results in advance. During

training, label annotation is based on these pre-executed TCAD

simulation results. Here, the TCAD simulations were performed

with 𝑉DD = 0.8V, which is the nominal voltage for this SRAM bit

cell. Out of the total samples, 242 resulted in upsets, accounting for

33.8% of the data.

5.3 Discriminator Construction

We selected LightGBM [9] as the machine learning algorithm for

the discriminator. The amounts of charge deposited in each SV

shown in Fig. 5 are provided to LightGBM as features. LightGBM is

a type of Gradient Boosting Decision Tree (GBDT) algorithm, which

is widely used in machine learning tasks, including classification.

We chose LightGBM because its training process is faster than that

of other GBDT algorithms. Additionally, we tested other machine

learning algorithms, such as random forests and neural networks,

and found that LightGBM performed better in terms of accuracy,

especially when the training data were limited. Results for the

neural network model will be presented later.

During LightGBM training, we need separate training and test

samples to prevent overfitting. We split the available data with

a training-to-test ratio of 8:2, ensuring that the ratio of upset to

non-upset samples is consistent across both sets.

In the first learning loop of Fig. 4, ten event dumps are randomly

selected for label annotation and used as the initial training data.

The active learning process is then repeated until all event data are

labeled.

Additionally, for every ten new training samples added, the

hyperparameters are updated according to the following procedure:

(i) Split the current training data into stratified 5-folds with

randomness.

(ii) Explore hyperparameters using Optuna [4]. For each fold,

construct a discriminator using the other four folds and

evaluate its accuracy on the selected fold.

(iii) Repeat step (ii) 100 times and adopt the hyperparameters with

the highest average accuracy across the 5-folds.
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Table 1: LightGBM hyperparameters.

Parameter name Lower limit Upper limit log

learning_rate 0.01 0.2

lambda_l1 1e-8 10.0 True

lambda_l2 1e-8 10.0 True

num_leaves 2 256

feature_fraction 0.01 1.0

bagging_fraction 0.01 1.0

bagging_freq 0 10

min_child_samples 0 10

Here, Optuna is an automatic hyperparameter optimization

framework based on Bayesian optimization. The hyperparameters

targeted for tuning and their ranges are listed in Table 1. The

“log” column in the table indicates whether the parameter is scaled

in the logarithmic domain. To obtain performance statistics, the

discriminator is constructed 100 times using each construction

method, with shuffling between training and test data.

5.4 Results

Fig. 8 shows the accuracy of the discriminator constructed by

the proposed method as a function of the number of training

samples, comparing it with various construction methods. The

accuracy of the proposed discriminator is plotted as a solid blue

line, with the blue-filled area representing its standard deviation.

“AL” indicates that active learning is applied, while “Non-AL”

indicates that it is not, meaning event data for labeling are selected

randomly. Additionally, “HPupdate” indicates that hyperparameters

are updated according to the above procedure, while “HPfix”

indicates that hyperparameters are fixed, using the values obtained

when steps (i)–(iii) are performed with all training data and kept

constant throughout the iterative process.

As shown in the figure, both active learning and hyperparameter

updating contribute to improved accuracy, especially when the

amount of training data is small. Table 2 lists the number of training

samples required to reach various accuracy levels. For example, the

amount of training data needed to achieve 0.8 accuracy is reduced

by 41% when both active learning and hyperparameter updating are

enabled, compared to using neither. For 0.85 accuracy, the reduction

is 31%. Additionally, it can be observed that hyperparameter

updating contributes more to reducing the required training data

than active learning.

For further comparison, we constructed the discriminator using

neural networks with active learning and hyperparameter updating,

represented by the green line in Fig. 8. The number of layers, the

number of neurons per layer, the learning rate, the number of

epochs, and the batch size were all tuned. The ReLU activation

function was used in the hidden layers, while the output layer used

a sigmoid activation. As shown, LightGBM provides more accurate

predictions.

Furthermore, the accuracies of the conventional MSV and SSV

methods are shown by the dotted red and purple lines, respectively.

By sweeping the LET of an ion injected directly above the drain,

the critical charges for MSV and SSV are set to the charge amount

generated by the ion with the minimum LET that induces a bit

Figure 8: Accuracy of discriminators as a function of the

number of training data. The area filled in blue represents

the standard deviation for AL&HPupdate.

Table 2: Accuracy and required number of training data.

Accuracy AL & AL & Non-AL & Non-AL &

HPupdate HPfix HPupdate HPfix

0.75 43 78 41 89

0.775 59 100 64 114

0.8 88 135 108 149

0.825 133 176 164 194

0.85 215 262 288 311

flip in the TCAD simulation. The MSV method improves accuracy

by 11% compared to SSV. Notably, the 68% accuracy achieved by

the MSV method is reached by the proposed method with only 18

training samples.

In addition, the F-score, defined as the harmonic mean of

precision and recall, is also evaluated as an additional performance

metric for the discriminator. Fig. 9 shows the F-scores of the

discriminators. Similar to accuracy, both active learning and

hyperparameter updating contribute to improvements in the

F-score.

Finally, we discuss the runtime for constructing the discriminator.

The average time required for a single TCAD simulation is

approximately 12 hours on a Gen10 Xeon server. For 160 labeled

event samples as training data, this translates to 1,920 hours. Even

with 16 simulations running in parallel, it would still require five

days. Therefore, the 30–40% reduction in training data achieved by

the proposed method, as shown in the previous section, is highly

significant. In contrast, the total time required to construct the

proposed discriminator, including hyperparameter updates, is less

than 30 minutes, and SER estimation takes only a few seconds. Thus,

the runtime overhead from active learning and hyperparameter

updating is well justified, given the substantial reduction in TCAD

simulation time.
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Figure 9: F-score of discriminators.

6 CONCLUSION AND FUTURE DIRECTION

In this paper, we proposed an SEU discriminator construction

method featuring active learning and periodic hyperparameter

tuning, designed to enhance both the accuracy and efficiency of

SEU discrimination. A key advantage of the proposed method

is that it systematically constructs the discriminator without

requiring empirical determination of the SV and critical charge.

We applied this method to a 12-nm FinFET SRAM using LightGBM.

Experimental results demonstrate that both active learning and

hyperparameter updating effectively reduce the amount of training

data needed, achieving reductions of 41% and 31% when targeting

80% and 85% discrimination accuracy, respectively.

Let us discuss future work and directions. An urgent future task

is to validate the proposed SER estimation using measurement data.

We have irradiation data for neutrons, protons, and alpha particles,

and reproducing these results is the next objective, with a particular

focus on simulating MCU occurrences.

An important research direction is to extend the proposed

method to account for particles striking multiple transistors within

a cell. As noted in [7], such events alter sensitivity to charge

deposition, and considering this factor is expected to improve

event-wise SEU classification. In this context, GAA and CFET

structures are likely to encounter these events more frequently due

to their vertical proximity. Establishing SER estimation applicable

to GAA and CFET structures is critically important for ensuring

chip reliability.

Another approach to addressing the TCAD simulation time issue

is to accelerate TCAD simulations. Recent work in [13] seeks to

speed up TCAD simulations usingmachine learning.With sufficient

acceleration, TCAD could be directly integrated into the Monte

Carlo flow or used for generating training data in SEU discriminator

construction, both of which are expected to enhance accuracy and

improve estimation speed.
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