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Abstract— This paper reviews soft errors in SRAM at 

ground level, focusing on neutron-induced soft error rates 

(SER) and muon-induced single event upsets (SEUs) across 

different SRAM technologies. The study explores SER 

characterization methods for terrestrial environments using 

accelerator facilities, presenting new findings on muon-

induced SEUs in 12-nm FinFET, 28-nm, and 65-nm planar 

SRAMs. 
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I.  INTRODUCTION 

Soft errors caused by cosmic rays are increasingly 
recognized as a threat to the reliability of integrated 
circuits, particularly as Society 5.0 seeks to develop highly 
reliable systems. These errors pose a significant challenge, 
especially for AI systems, which are being integrated into 
critical applications such as autonomous driving and 
nursing robots. As a result, there has been a growing focus 
on assessing the reliability of neural networks and their 
hardware, with extensive studies conducted in this area 
(e.g., [2-7]). A comprehensive survey of this research 
domain can be found in [8].  

In the terrestrial environment, soft errors are caused by 
alpha particles from packaging materials and neutrons 
from cosmic rays. Alpha particles, as ionized radiation, 
directly generate electron-hole pairs, while neutrons induce 
soft errors indirectly through reactions with transistor 
materials, producing charged secondary particles like 
protons and alpha particles. These particles create electron-
hole pairs, and the collected charge at the transistor's drain 
causes a temporary glitch, leading to soft errors. A glitch in 
a combinational circuit is called a single event transient 
(SET), while one that upsets memory is called a single 
event upset (SEU). Alpha-induced soft errors can be 
reduced with low-emission packaging, but neutrons, which 
are harder to block, remain a major source of soft errors in 
terrestrial environments.  

Digital System-on-Chips (SoCs) consist of SRAMs, 
flip-flops (FFs), and combinational logic. SRAMs are 
known to be the most sensitive components [9], so the 
focus here is on SEUs in SRAM. However, when SRAMs 
are protected by error-correction codes (ECC), FFs become 

the most vulnerable [9]. If radiation-hardened FFs are used 
[1], SETs can become a serious concern. In this case, SETs, 
including the more problematic single event multiple 
transients (SEMTs) [10], propagate through logic gates, 
making them very difficult to mitigate [11]. 

In recent years, neutrons have been identified as a 
major cause of soft errors in integrated devices, leading to 
extensive research and development focused on mitigating 
neutron-induced errors. Recent studies [12] highlight that 
muons are a potential source of soft errors in terrestrial 
environments. There are two types of muons: negative and 
positive. Muons could comprise a significant portion of 
ground-level secondary cosmic rays, accounting for about 
three-quarters of the total cosmic ray flux. According to 
[13], a sharp increase in muon-induced SEUs is 
predicted when the critical charge—the threshold charge 
required to cause an SEU—reaches a certain point. As 
transistors continue to shrink and operate at lower voltages, 
concerns about muon-induced soft errors are growing. 

This paper examines neutron-induced soft error rates 
(SER) in SRAM for terrestrial environments, focusing on 
SER characterization methods using accelerator facilities. 
Additionally, we present recent findings on muon-induced 
SEUs in 12-nm FinFET, 28-nm, and 65-nm planar SRAMs. 

 

II. NEUTRON 

Neutrons have long been a major source of SEUs, and 
numerous measurement results have been reported. For 
instance, the effects of low-voltage operation, including 
subthreshold operation, have been analyzed [14-17]. One 
study experimentally demonstrates a sudden increase in 
SER when secondary protons deposit sufficient charge to 
cause SEUs [15]. Additionally, the angular dependency of 
neutron irradiation on error patterns has been observed 
(e.g., [18, 19]), as these patterns significantly influence the 
effectiveness of ECC. 

Acceleration tests using spallation neutron beams with 
energy spectra similar to terrestrial neutrons are commonly 
used to estimate SERs. However, as noted in JESD89B 
[20], only a few facilities offer suitable neutron spectra. 
Another method in [20] uses the four-parameter Weibull 
function to fit SEU cross-section data from (quasi-)mono-
energetic neutron or proton sources. This approach, 
however, requires at least four data points at different 
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energies, making it costly. To address this issue, we have 
developed a new method for estimating terrestrial SER 
[21]. This approach uses a one-time irradiation test with 
any neutron source, combined with Monte Carlo 
simulations using tools like the Particle and Heavy Ion 
Transport code System (PHITS) [22] and Geant4 [23]. 
Applying this method, we estimated the terrestrial SER for 
65-nm bulk SRAM across various conditions and facilities, 
finding that the ratio between the minimum and maximum 
estimated SERs was 1.8. This method allows using any 
neutron source for SER evaluation, helping to alleviate the 
beamtime shortage at atmospheric neutron facilities. 

We examined the effect of irradiation direction on SEU 
cross sections in 65-nm bulk SRAM. The number of SEUs 
from board-side quasi-monoenergetic neutron irradiation 
was 20% to 30% lower than those from the plastic package 
side [24]. Monte Carlo simulations revealed that the SER 
for plastic package-side irradiation was nearly double that 
of board-side irradiation. The simulations also showed that 
the material composition in front of the memory chip 
significantly influences SER. Specifically, hydrides, such 
as plastic, significantly increase SER due to the higher 
production of secondary H ions from neutron-hydrogen 
elastic scattering [24, 25]. 

Recent devices have become more sensitive to neutrons 
with energies below 10 MeV, whereas the acceleration 
factor is typically based on the number of neutrons above 
10 MeV. For 65-nm SRAM, the SER contribution from 
low-energy neutrons is estimated to be less than 6% in the 
terrestrial environments of New York and Tokyo [26]. In 
this case, excluding neutrons below 10 MeV in the 
acceleration factor calculation during accelerated neutron 
tests, as per the JESD89 standard, may still yield 
reasonably accurate SER estimates, as noted in [27]. 
However, for 12- and 28-nm SRAMs, low-energy neutrons 
in the 1 to 10 MeV range contribute approximately 18% to 
the total SER, which could result in significant estimation 
errors. For these advanced nodes, a lower energy threshold, 
such as 2 MeV for 12-nm SRAM, is more suitable for 
accurate SER estimation [28]. 

III. MUON 

We conducted both positive and negative muon 
irradiation experiments on SRAMs at J-PARC MUSE. 
While several studies have reported on positive muon 
irradiation (e.g., [12]), [29, 30] are the first to explore 
negative muon irradiation, making our experiments 
groundbreaking. The results for 65-nm SRAMs [29-34] 
confirm that muons can indeed induce soft errors, with 
negative muons having a greater impact than positive 
muons. This is attributed to the physical process where 
negative muons are captured by atomic nuclei, leading to 
increased error rates. 

Following the 65-nm experiments, we conducted 
positive and negative muon irradiation experiments on 28-
nm, 20-nm, and 12-nm SRAMs [35, 36, 37]. While similar 
observations were made as with the 65-nm SRAMs, we 
did not observe a significant increase in the SEU cross 
section. As transistor structures shift to FinFET, the 
sensitive volume decreases due to its 3D architecture, 
leading to reduced charge deposition. This trend is 
consistent with neutron-induced SEUs [37]. However, 
when the supply voltage is lowered, the SEU cross section 

for positive muons increases significantly in 12-nm SRAM. 
This suggests that once the critical charge drops below a 
certain threshold, muon-induced soft errors originating 
from direct ionization could become dominant, as 
discussed in [13] through simulations. 

IV. CONCLUSION 

This paper discussed soft errors in SRAM at ground 
level. First, we examined neutron-induced soft error rates 
(SER) in SRAM in terrestrial environments, with a focus 
on SER characterization methods using accelerator 
facilities. Next, we presented recent findings on muon-
induced SEUs in 12-nm FinFET, 28-nm, and 65-nm planar 
SRAMs. 

Future work includes further validation of the proposed 
neutron-induced SER characterization method [21], which 
combines simulations with a one-time irradiation 
experiment using an arbitrary neutron source, applied to 
more advanced transistors and SOI devices. For muons, we 
are investigating the impact of high-speed muons passing 
through chips, as their numbers far exceed those of muons 
stopping in chips. Another issue to be addressed is the 
challenge of defining the sensitive volume in 3D 
transistors for a wide LET range of ions and muons [38, 
39]. 
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