
Constructing Application-level GPU Error Rate
Model with Neutron Irradiation Experiment

Kojiro Ito, Hiroaki Itsuji, Member, IEEE, Takumi Uezono, Member, IEEE, Tadanobu Toba, Masatoshi Itoh,
Masanori Hashimoto, Senior Member, IEEE

Abstract—This work explores GPU application factors that
dominantly characterize SDC and DUE cross sections obtained by
neutron irradiation experiments. We evaluate correlation coeffi-
cients between the cross sections and application metrics obtained
from profiler outputs and fault injection results. Experimental
results with six applications show that “warps per block” is a
primary factor for both SDC and DUE. The DUE cross section
modeling is improved by the secondary factor of L2 hit rate.

I. INTRODUCTION

Soft errors have attracted attention as one of the causes
of malfunctions in electronic equipment. GPUs having many
cores are the most advanced systems fabricated in state-of-the-
art technology, and they are known to be particularly suscep-
tible to soft errors [1]. Soft errors in HPC and safety-critical
systems can lead to silent data corruption (SDC) and detectable
uncorrected error (DUE). Therefore, GPU soft error resiliency
assessment is required [2]. On the other hand, application-level
GPU soft error tolerance evaluation is currently insufficient.
One of the reasons is that a lot of internal information is
kept secret in commercial GPUs. For simulation-based error
tolerance evaluation of a GPU application, information such as
soft error rate, error pattern, and error propagation rate of each
circuit element is required. However, the information available
on commercial GPUs is limited to memory size and rough
program operation principles. For example, information on the
scheduler for allocating parallel threads, instruction cache, and
pipeline registers is unavailable. As a result, fault injection is
only performed for limited resources such as registers. Fault
injection using an open-source GPU design has also been
done. However, it is based on old NVIDIA G80, and the
simulation accuracy is problematic because it is a model that
assumes operation based on public information [3]–[5].

A hardware irradiation experiment is a more direct method
of evaluating soft-error tolerance than simulation. This method

This work was supported in part by the Japan Science and Technology
Agency, Program on Open Innovation Platform with Enterprises, Research
Institute and Academia (JST-OPERA) Program under Grant JPMJOP1721.
The neutron irradiation test was performed with the Grant-in-Aid for Scientific
Research (S) from Japan Society for the Promotion of Science (JSPS) under
Grant JP19H05664.

Kojiro Ito was with the Department of Information Systems Engineering,
Osaka University.

Hiroaki Itsuji, Takumi Uezono, and Tadanobu Toba are with Center for
Sustainability - Production Engineering and MONOZUKURI, R&D Group,
Hitachi, Ltd.

Masatoshi Itoh is with Cyclotron and Radioisotope Center, Tohoku Univer-
sity.

Masanori Hashimoto is with the Department of Communications and
Computer Engineering, Kyoto University.

irradiates a device with high-density radiation using an ac-
celerator to observe soft errors with high frequency. In the
irradiation experiments, the soft error rates of each memory
visible to programmers have been measured [6]. The soft error
tolerance when running applications with different parallelisms
and instruction types have been measured [7]. Irradiation
experiments have the advantage of reproducing the errors
that actually occur. However, the cost is much higher, and
consequently, it is more difficult to obtain a significant number
of data than simulation.

Therefore, we construct a model that can estimate various
GPU applications in this study. To build the model, we conduct
irradiation experiments and obtain application information.
The irradiation experiments are conducted on multiple appli-
cations with different numbers of parallelism and instruction
types. The application information is obtained from the profiler
and fault injection results. The model variables are selected
from the application information by examining the correlation
between the results of the irradiation experiments and the
application information. The coefficients in the model are
determined by regression analysis. The model accuracy is
evaluated by examining the error between the irradiation ex-
periment and the model. Since this estimation model takes only
the application information as input, it is possible to estimate
the error rate without conducting irradiation experiments for
each application as long as the GPU hardware is the same.

The rest of this paper is organized as follows. Section II
reviews related work regarding neutron irradiation and fault
injection to GPUs. Section III describes the setup and result
of the neutron irradiation experiment. Section IV constructs
application-level error rate estimation models and discusses
their accuracy. Finally, Section V concludes the discussion.

II. RELATED WORK

A. Neutron irradiation experiments

1) Memory: D. A. G. G. de Oliveira et al. measured the
cross sections of the L2 cache, shared memory, and registers
[6]. The experimental results show that the cross section of
shared memory is larger than that of L2 cache and registers.
This is related to the fact that shared memory is closer to the
core and then has a larger cell area to pursue speed.

Also, they explain whether the bit flips that occur can be
corrected by ECC [6]. Single error correction, double error
detection (SECDED) ECC is available for high-end class
GPUs. SECDED ECC corrects SBUs and MCUs, but MBUs
cannot be corrected. They show that the probability of MBU

979-8-3503-7123-9/22/$31.00 ©2022 IEEE

20
22

 2
2n

d
Eu

ro
pe

an
 C

on
fe

re
nc

e
on

 R
ad

ia
tio

n
an

d
Its

 E
ff

ec
ts

 o
n

C
om

po
ne

nt
s a

nd
 S

ys
te

m
s (

R
A

D
EC

S)
 |

97
9-

8-
35

03
-7

12
3-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
R

A
D

EC
S5

59
11

.2
02

2.
10

41
25

77

Authorized licensed use limited to: Kyoto University. Downloaded on October 08,2024 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

occurrence is less than 10% with SECDED ECC, indicating
that most of the bit flips that occur in memory elements can
be corrected if ECC applies to the GPU of interest.

2) Scheduler: P. Rech et al. investigate the error tolerance
of block schedulers and thread schedulers that allocate blocks
and threads by changing the number of blocks and threads in a
program [8]. They report that the soft error rate increases as the
number of warps increases, possibly because of the increase in
usage of the warp scheduler, registers, internal registers, logic
gates, and so on. On the other hand, increasing the number
of blocks also increases the soft error rate, but the increase
is almost negligible in the case of large block sizes. Since
the number of SMs is limited in the existing architecture, the
large block size makes the internal resources reused, and the
resource usage does not increase much.

3) GPU application: C. Lunardi et al. evaluate soft error
tolerance for multiple applications and multiple GPU types
[7]. The error rates of SDC and DUE vary depending on
applications and GPU types, respectively. Therefore, it is
helpful to measure the error propagation rate of the application
by fault injection to estimate the SDC rate. On the other hand,
the DUE rate is highly dependent on the type of GPU, which
could be difficult to estimate by fault injection.

The impact of ECC on SDC and DUE is also reported [7],
[9]. ECC is very beneficial in SDC. On the other hand, for
DUE, an increased error rate is observed when ECC is applied.
DUE detection due to uncorrectable errors is more common
than the DUE decrease, thanks to error correction.

Our previous work [10] reports that SDCs originating from
visible memory elements are comparable to SDCs originating
from other invisible components. [6] suggests the impact of
instruction cache error on DUE since larger programs tend to
have the larger DUE cross section.

B. Fault injection

Fault injection is performed using SASSIFI [11] and NVBit
[9], [12], [13]. SASSIFI and NVBit inject bit flips in general-
purpose registers to measure architectural vulnerability factors
(AVFs) [14], where AVFs represent the probability that a bit
flip occurring in a register will result in an SDC or DUE. Since
there are many registers in GPUs, registers are considered
to have a significant relationship with SDC and DUE rates.
Therefore, AVF has been evaluated in many papers. However,
error injection tools are incapable of fault injection except for
some resources such as memory elements and instructions.

FlexGrip and GPGPU-sim exist for open-source GPUs [3],
[4]. The RTL is available and hence fault injection to the
scheduler and pipeline registers is performed [15], [16]. On
the other hand, the evaluation accuracy is uncertain because
the model is based on a very old GPU, the NVIDIA G80, and
other public information [5].

III. NEUTRON IRRADIATION EXPERIMENT

Fig. 1 shows the experiment environment. Six NVIDIA
P2000 GPU cards are fixed at a distance of about 1 to 1.5
m from the host PCs using PCI-Express extension cables, and
the GPUs are irradiated with neutron beams. The power supply

�����

����
	
����
	

��������

���

�		���������	��� ��������

�
��	���

�
��
�����

����	��

��

������	����	���

��
	�

����� �

������

��������

���

����!"�	
���

"�
��
	

����

Fig. 1. Irradiation setup.

����� �����	
�� ���	
�� 	����� ���
���� ��������	

������
		�	���
� ������
		�	���
�

��
		�	���
��

����� ��
�����!�"

�

�

�

�

#

�

�

$

%

Fig. 2. Measured cross sections of GPU applications. Error bars represent
one standard deviation.

unit to drive the host PC is outside the irradiation room with
a 5-m extension cable because of its low neutron tolerance.
Similarly, the storage unit for the host Linux OS is also located
outside of the irradiation room with a USB extension cable.

We performed a quasi-monoenergetic neutron irradiation
experiment at the Cyclotron and Radioisotope Center (CYRIC)
at Tohoku University [17] similarly to [10]. A 70-MeV proton
source produces the neutron beam, and the neutron beam has
a flux peak at the energy near 70 MeV.

We used the six programs below for the experiment.

mmu32: matrix multiplication with shared memory. One
block handles a 32 × 32 matrix.

quicksort: recursive quick sort. Each block uses one thread,
and then parallelism efficiency is very low.

mergesort: merge sort. Parallelism efficiency is higher than
quicksort.

sha256: hash function consisting of integer computations.
vectoradd: parallel addition. Each thread performs one ad-

dition only.
mmucublas: matrix multiplication with CUDA library. GPU

utilization efficiency is very high.

mmu32, quicksort, mergesort, vectoradd, and mmucublas are
sample codes provided by NVIDIA. sha256 is taken from [18].

Fig. 2 shows the SDC and DUE rates for each application
obtained from the irradiation experiments. The SDC and
DUE cross sections of mmu32 and vectoradd are high, while
quicksort and sha256 have small cross sections. Thus, SDC

Authorized licensed use limited to: Kyoto University. Downloaded on October 08,2024 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

and DUE cross sections vary concerning applications.

IV. MODEL CONSTRUCTION AND EVALUATION

A. Model construction strategy

This work considers the following three models aiming
to find a model with the minimum-maximum error. In the
model construction, we use leave-one-out cross-validation for
regression analysis since the number of samples, i.e., the
number of applications, is limited in this work.

Model 1:
We identify a primary factor characterizing the ap-
plication error rate from the available application
information. Then, Model 1 is expressed as

y = a1 × PrimaryFactor + b,

where a1 and b are model parameters. This work
regards the factor with the highest correlation to the
measured error rate as the primary factor.

Model 2:
Model 2 takes two factors of application information,
the first factor being the same as Model 1.

y = a1×PrimaryFactor+a2×SecondFactor+b.

The second factor is selected such that the correlation
between the estimate of Model 2 and the measured
error rate improves significantly. We may test multi-
ple second factors as different models of Model 2.

Model 3:
Model 3 consists of three factors.

y = a1 × PrimaryFactor + a2 × SecondFactor1

+a3 × SecondFactor2 + b,

where SecondFactor1 and SecondFactor2 are the
factors selected in Model 2 construction. We test all
the combinations of the second factors.

B. Application information

This work evaluated application information listed in Ta-
ble VII. The prefix ”AVF:” shows the architectural vulnera-
bility factor obtained by injecting bit flips into registers with
NVBit. The other factors are obtained by NVIDIA profiler
[19]. The prefix ”INST:” shows the proportion of instruction
type. The prefix ”stall ” means the proportion of stall reason.

1) Memory size and efficiency: Table I lists the number
of registers and the size of shared memory used in the GPU
applications. The size of the used L2 cache is the same for
all the programs in this study because the input data of each
program coming from the DRAM is larger than the L2 cache
size. ”register per thread” represents the number of blocks per
thread, ”register per block” represents the number of registers
in a block, and ”dispatched registers” represents the number
of registers allocated to the GPU simultaneously. Since the
number of registers used is determined per thread, a program
with a large number of threads has a large number of registers.
The shared memory is used only in mmu32, mergesort, and
mmucublas.

TABLE I
USED MEMORY SIZE.

program register register dispatched shared memory
per thread per block registers [KB]

mmu32 30 30,720 491,520 128
quicksort 30 30 3,840 0
mergesort 16 4,096 262,144 128
sha256 56 224 224 0
vectoradd 8 8,192 131,072 0
mmucublas 120 15,360 460,800 384

TABLE II
MEMORY EFFICIENCY.

program gld gst shared L2 hit
efficiency efficiency efficiency

mmu32 100.0% 100.0% 70.0% 88.0%
quicksort 12.5% 5.0% 0.0% 99.9%
mergesort 80.5% 82.2% 27.1% 32.2%
sha256 3.1% 3.1% 0.0% 99.3%
vectoradd 100.0% 100.0% 0.0% 100.0%
mmucublas 100.0% 100.0% 47.9% 73.5%

Table II shows memory efficiency. ”gld efficiency” and
”gst efficiency” represent the throughput efficiency of
load and store between the DRAM and L2 cache, and
”shared efficiency” represents the throughput efficiency of
load and store for the shared memory. When the memory
throughput is low, the memory remains in the standby state
without being used, which increases the possibility of bit
upsets during the standby state and may elevate the error rate.
”L2 hit” indicates the hit ratio of the L2 cache. A higher hit
rate means that the value in the L2 cache stays for a longer
time, and it may degrade the error immunity.

2) Scheduler related metrics: Table III shows the number
of blocks, the number of warps, and their execution efficiency.
”blocks” denotes the number of blocks in the application.
Blocks are allocated to SMs. When the number of blocks in
the application is larger than the number of available blocks,
the unallocated blocks are kept in the wait state. Then, when
the other blocks finish their operations, a block in the waiting
state is newly allocated.

”warps per block” is the number of warps in a block,
and ”dispatched warps” is the total number of warps in the
allocated blocks, excluding the waiting blocks. There is a warp
scheduler in SM, and threads in warps are allocated to cores
by the warp scheduler. Therefore, the number of warps in a
block affects the operation of the warp scheduler.

”sm efficiency” is the percentage of time when at least
one warp is running in an SM. If the number of blocks
in an application is less than the number of available SMs,
sm efficiency decreases due to idol SMs. Also, programs that
need to wait for synchronization with other blocks or warps
are considered to degrade sm efficiency.

”warp execution efficiency” represents the average number
of threads in a warp. A warp consists of a maximum of
32 threads. When the number of threads is small or is not
divisible by 32, the warp is composed of fewer than 32
threads, resulting in lower warp execution efficiency. ”eli-

Authorized licensed use limited to: Kyoto University. Downloaded on October 08,2024 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

TABLE III
SCHEDULER RELATED METRICS.

program blocks warps dispatched sm warp execution eligible warps
per block warps efficiency efficiency per cycle

mmu32 200 32 512 99.1% 100.0% 1.89
quicksort 100,000 1 128 51.3% 7.6% 0.08
mergesort 64 8 512 99.3% 83.5% 3.18
sha256 1 1 4 12.6% 3.1% 0.06
vectoradd 49 32 512 46.8% 100.0% 2.27
mmucublas 30 4 120 90.6% 100.0% 9.38

TABLE IV
PROPORTIONS OF INSTRUCTIONS.

program INT/ LDG/ LDS/ PREDI CONT MOVE
FLOAT STG STS CATE ROL

mmu32 46.4% 2.2% 43.5% 1.1% 3.3% 0.4%
quicksort 43.1% 11.6% 0.0% 14.2% 8.6% 19.7%
mergesort 27.7% 0.5% 13.1% 15.9% 10.8% 11.4%
sha256 72.7% 10.2% 0.0% 4.7% 7.2% 4.8%
vectoradd 52.2% 13.0% 0.0% 4.4% 8.7% 4.4%
mmucublas 88.3% 2.2% 7.6% 1.3% 0.5% 0.1%

gible warp per cycle” is the number of warps allocated in
each active cycle. Programs with high eligible warp per cycle
have high execution efficiency because warps are allocated
frequently.

3) Instruction proportion: Table IV shows the percentage
of instructions of each application. INT/FLOAT are integer
and floating-point operations, LDG/STG are load/store from/to
DRAM, and LDS/STS are load/store instructions from/to
shared memory. PREDICATE is instructions that calculate
and assign the value of the predicate register. CONTROL is
instructions for branching, jumping, and function calls, and
MOVE is an instruction used for initializing and assigning
variables.

In sha256, which executes complex formulas, and mmu-
cublas, which performs optimized matrix multiplication pro-
vided in libraries, the proportion of INT/FLOAT instructions is
large. Meanwhile, in sorting programs, PREDICATE for com-
parison, CONTROL for branching, and MOVE for handling a
large number of variables are frequently executed.

4) Stall: Table V shows the stall rates of the applications.
”inst fetch” occurs when the next assembly instruction has
not been fetched, and ”exec dependency” occurs when the
input required for the execution of the instruction is not ready.
”memory dependency” is a stall originating from memory
operations, and ”sync” is a stall where the warp is wait-
ing for synchronization. ”constant memory dependency” is
a stall related to the constant memory operations providing
constants. ”pipe busy” is a stall caused by a busy pipeline.
”not selected” is a stall caused by warp deactivation because
another warp is to be executed.

5) AVF: Table VI shows the AVFs when the register values
are flipped by 1 bit using NVBit, an architecture-level fault
injection tool. The number of fault injections is more than
10,000 for all applications. The AVF results are categorized
into masks that do not affect the output values, SDCs with

different output results, and DUEs such as crashes and hangs.
SDC is considered to occur when a register value is being
computed, or when a wrong address is accessed when loading
or storing a value. On the other hand, registers are also used to
calculate load/store addresses and jump destination addresses,
which may cause access to prohibited memory or prohibited
addresses, and thus DUE is considered to occur.

C. Constructed models

1) Model 1: Table VII lists the correlation coefficients
between the cross sections of SDC and DUE measured in the
irradiation experiments and the GPU application information,
in the order of the absolute value of the correlation coeffi-
cient with the cross section of SDC. A higher correlation
coefficient means a more significant contribution to the soft
error rate. Table VII shows a solid correlation between the
cross sections of SDC and DUE, meaning that SDC-vulnerable
applications are often DUE-vulnerable. The correlation coef-
ficient of warps per block is high for both SDC and DUE.
Therefore, we choose warps per block as the primary factor.
Apart from that, the correlation coefficients of dispatched warp
and warp execution efficiency are high, suggesting that the
number of warps is related to the soft error rate. Also, there is a
correlation to gld efficiency and gst efficiency. This indicates
that load and store between DRAM and L2 cache likely affect
SDC and DUE. On the other hand, the correlation coefficient
of AVF is minimal, indicating that the AVF results have little
impact on the soft error rate.

Table VIII shows the SDC cross sections estimated by
Model 1 and their errors. The largest error is 39.7 % for
sha256. This indicates that the SDC cross section could be
mostly estimated with only one factor of warps per block.
The correlation coefficient of the estimates is 0.930.

Table VIII also shows the estimated DUE cross sections and
errors. The largest error is 211.0 % for quicksort. Considering
that the next largest error is 42.9 % for sha256, only the
estimation error for quicksort is very large. In other words,
soft error rates other than quicksort are correlated with warps
per block, but the correlation with warps per block is low for
quicksort. This result indicates that there may be other appli-
cation information besides warps per block that significantly
impacts the soft error rate in the case of quicksort.

2) Model 2: For all the available application information
factors, we picked up one factor as the second factor, and
evaluated the correlation of the model estimate to the measured
SDC cross section. However, all the remaining factors did not

Authorized licensed use limited to: Kyoto University. Downloaded on October 08,2024 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

TABLE V
STALL METRICS.

program inst exec memory sync constant memory pipe not
fetch dependency dependency dependency busy selected

mmu32 3.4% 37.1% 11.2% 32.4% 0.5% 1.5% 1.2%
quicksort 15.3% 21.4% 52.9% 3.1% 1.4% 0.3% 0.0%
mergesort 4.6% 22.1% 21.4% 41.9% 0.0% 0.6% 1.3%
sha256 14.5% 12.4% 68.4% 0.0% 0.0% 1.3% 0.0%
vectoradd 16.6% 15.7% 37.5% 0.0% 11.8% 0.4% 1.7%
mmucublas 5.6% 6.0% 4.8% 14.7% 0.6% 4.4% 54.0%

TABLE VI
AVF OBTAINED BY 1-BIT FAULT INJECTIONS TO REGISTERS.

program mask SDC DUE
mmu32 52.2% 38.7% 9.1%
quicksort 39.0% 27.6% 33.4%
mergesort 15.5% 4.6% 79.9%
sha256 8.1% 78.6% 13.2%
vectoradd 11.3% 51.5% 37.1%
mmucublas 27.9% 22.2% 49.8%

TABLE VII
CORRELATION COEFFICIENTS TO SDC AND DUE.

Corr. Coef. Corr. Coef.
(SDC) (DUE)

(SDC cross section) 1.00 0.96
warps per block 0.98 0.96
(DUE cross section) 0.96 1.00
dispatched warps 0.80 0.89
gld efficiency 0.76 0.80
gst efficiency 0.75 0.80
warp execution efficiency 0.75 0.80
stall constant memory dependency 0.70 0.59
register per block 0.62 0.62
stall memory dependency -0.45 -0.49
INST: MOVE -0.44 -0.51
INST: LDS/STS 0.44 0.53
INST: PREDICATE -0.42 -0.37
stall exec dependency 0.42 0.46
register per thread -0.41 -0.45
blocks -0.37 -0.55
sm efficiency 0.31 0.39
shared efficiency 0.31 0.39
INST: INT/FLOAT -0.23 -0.31
stall pipe busy -0.16 -0.17
stall sync 0.14 0.33
L2 hit 0.14 -0.07
stall not selected -0.13 -0.18
AVF: DUE -0.13 -0.03
stall inst fetch -0.09 -0.24
INST: CONTROL -0.09 -0.02
eligible warps per cycle 0.06 0.06
shared memory -0.05 -0.02
INST: LDG/STG 0.02 -0.15
AVF: SDC 0.00 -0.04

help improve the model-estimate correlation. This suggests
that warps per block mostly explains SDC error rate, and the
impact of other factors is not significant.

As for the DUE error rate, we found two factors that im-
proved the model-estimate correlation, as shown in Table IX.
The correlation coefficients are 0.984 for DUE AVF and 0.969
for L2 hit, and they are larger than the correlation coefficient
of 0.926 for Model 1. On the other hand, the maximum error

TABLE VIII
SDC AND DUE ESTIMATION RESULTS (MODEL 1).

warps per SDC cross section DUE cross section
block estimate error estimate error

mmu32 32 4.8E-09 14.2% 6.0E-09 12.1%
quicksort 1 1.7E-09 -7.9% 1.6E-09 211.0%
mergesort 8 2.3E-09 -3.5% 2.1E-09 -37.2%
sha256 1 1.9E-09 39.7% 1.4E-09 42.9%
vectoradd 32 4.2E-09 -11.8% 5.7E-09 -2.9%
mmucublas 4 1.8E-09 -22.7% 1.6E-09 -21.0%
corr. coeff. 0.930 0.926

TABLE IX
DUE ESTIMATION RESULTS (MODEL 2).

Second factor DUE AVF L2 hit
estimate error estimate error

mmu32 5.1E-09 -6.2% 6.1E-09 12.8%
quicksort 1.1E-09 113.7% 7.6E-10 44.1%
mergesort 3.1E-09 -5.0% 3.8E-09 16.0%
sha256 7.3E-10 -27.4% 1.2E-09 21.5%
vectoradd 6.2E-09 6.3% 5.1E-09 -12.9%
mmucublas 1.7E-09 -15.6% 1.6E-09 -20.0%
corr. coeff. 0.984 0.969

is 113.7% when DUE AVF is added and 44.1% when L2 hit
is added, where both of them are better than the maximum
error of Model 1, 211.0%. Comparing DUE AVF and L2
hit, the correlation coefficient is larger for DUE AVF, but
the maximum error is smaller for L2 hit. DUE AVF is an
application factor that affects the DUE cross section, but it is
not sufficient to explain the DUE error of quicksort. Instead,
L2 hit has a higher contribution to quicksort. Comparing the
maximum errors, 113.7% with DUE AVF added and 44.1%
with L2 hit added, L2 hit could be a more appropriate second
factor because the maximum error of DUE AVF is substantial.

3) Model 3: We applied Model 3 to DUE estimation,
where, according to the results above, warps per block, DUE
AVF, and L2 are used for Model 3 construction. Table X
lists the values estimated by Model 3 and their errors. The
total correlation coefficient is 0.971. The maximum error is
95.0 % for quicksort. Compared to Model 2 with DUE AVF,
the maximum error is smaller in Model 3. The correlation
coefficient is larger in Model 3 compared to Model 2 with
L2 hit. This is because the L2 hit reduces the maximum
error of quicksort, and DUE AVF improves the accuracy of
most applications. On the other hand, the maximum error of
Model 3 is 95.0%, while that of Model 2 with L2 hit is 44.1%.
Therefore, Model 2 with L2 hit could be more suitable for

Authorized licensed use limited to: Kyoto University. Downloaded on October 08,2024 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

TABLE X
DUE ESTIMATION RESULTS (MODEL 3).

estimate error
mmu32 5.8E-09 7.1%
quicksort 1.0E-09 95.0%
mergesort 4.1E-09 25.2%
sha256 8.5E-10 -15.9%
vectoradd 5.3E-09 -8.6%
mmucublas 1.7E-09 -17.1%
corr. coeff. 0.971

estimating the DUE cross section than Model 3.

D. Discussion

This work showed that warps per block strongly affected
the soft error rate. This observation is consistent with [8],
which investigated the effect of the scheduler. However, as the
number of warps changes, the number of registers, memory
efficiency, and stall rate also change accordingly. Therefore,
even if the correlation with warps per block is high, we could
not conclude that the root cause is the scheduler since warps
per block could be a factor that associates with and represents
other factors. On the other hand, from VII, the correlation
coefficients to the percentage of branch and jump instructions
are small for both SDC and DUE. This indicates that the
soft error rate of GPU applications may be little affected by
instructions, which is different from the expectation of [6].

V. CONCLUSION

This work investigated GPU application factors that char-
acterize SDC and DUE cross sections obtained by neutron
irradiation experiments with six applications. We obtained a
number of metrics that characterize the applications using
profiler outputs and results of fault injection to registers. The
model construction results show that ”warps per block” is a
primary factor in modeling both SDC and DUE cross sections,
and L2 hit improves DUE estimation.

REFERENCES

[1] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerability
on gpgpu microarchitecture,” in 2011 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 2011, pp. 226–235.

[2] A. Lotfi, S. Hukerikar, K. Balasubramanian, P. Racunas, N. Saxena,
R. Bramley, and Y. Huang, “Resiliency of automotive object detection
networks on gpu architectures,” in 2019 IEEE International Test Con-
ference (ITC). IEEE, 2019, pp. 1–9.

[3] K. Andryc, M. Merchant, and R. Tessier, “Flexgrip: A soft gpgpu
for fpgas,” in 2013 International Conference on Field-Programmable
Technology (FPT). IEEE, 2013, pp. 230–237.

[4] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software. IEEE, 2009, pp. 163–174.

[5] D. Kirk et al., “Nvidia cuda software and gpu parallel computing
architecture,” in ISMM, vol. 7, 2007, pp. 103–104.

[6] D. A. G. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation
and mitigation of radiation-induced soft errors in graphics processing
units,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 791–804,
2015.

[7] C. Lunardi, F. Previlon, D. Kaeli, and P. Rech, “On the efficacy of ECC
and the benefits of FinFET transistor layout for GPU reliability,” IEEE
Transactions on Nuclear Science, vol. 65, no. 8, pp. 1843–1850, Aug
2018.

[8] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of
gpus parallelism management on safety-critical and hpc applications
reliability,” in 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2014, pp. 455–466.

[9] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2018.

[10] K. Ito, W. Liao, M. Hashimoto et al., “Characterizing neutron-induced
sdc rate of matrix multiplication in tesla p4 gpu,” Proceedings of
European Conference on Radiation and Its Effects on Components and
Systems (RADECS), 2019.

[11] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“Sassifi: An architecture-level fault injection tool for gpu application
resilience evaluation,” in 2017 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS). IEEE, 2017, pp.
249–258.

[12] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “Nvbit: A
dynamic binary instrumentation framework for nvidia gpus,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 372–383.

[13] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft error resilience of deep residual networks for object recognition,”
IEEE Access, vol. 8, pp. 19 490–19 503, 2020.

[14] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. IEEE, 2003, pp. 29–40.

[15] B. Du, J. E. R. Condia, and M. S. Reorda, “An extended model to
support detailed gpgpu reliability analysis,” in 2019 14th International
Conference on Design & Technology of Integrated Systems In Nanoscale
Era (DTIS). IEEE, 2019, pp. 1–6.

[16] J. E. R. Condia and M. S. Reorda, “Testing permanent faults in pipeline
registers of gpgpus: A multi-kernel approach,” in 2019 IEEE 25th
International Symposium on On-Line Testing and Robust System Design
(IOLTS). IEEE, 2019, pp. 97–102.

[17] Y. Sakemi, M. Itoh, T. Wakui et al., “High intensity fast neutron beam
facility at cyric,” 2014.

[18] “Cudasha256,” 2021. [Online]. Available: https://github.com/Horkyze/
CudaSHA256

[19] “Profiler user’s guide,” 2021. [Online]. Available: https://docs.nvidia.
com/cuda/profiler-users-guide/index.html

Authorized licensed use limited to: Kyoto University. Downloaded on October 08,2024 at 10:18:38 UTC from IEEE Xplore. Restrictions apply.

