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ABSTRACT
Artificial intelligence (AI) edge devices often feature numerous stor-
age units and sequential logic circuits, making them vulnerable to
soft errors. For reliable and critical edge AI applications, assessing
System-on-Chip (SoC) reliability in advance is essential. Here, there
are two cases: a self-designed SoC (white-box), or a commercial
off-the-shelf (COTS) chip (black-box). This study uses alpha particle
irradiation results on our 22nm AI SoC as a golden reference to
estimate soft error impacts, injecting faults across the entire chip
in the white-box case and into the accessible memory and regis-
ters in the black-box case. The results demonstrate a high degree
of consistency between the white-box case and golden reference,
meaning that pre-silicon reliability assessment is feasible. As for
the black-box case, the proportion of memory in the SoC remains
unchanged and is still significantly larger than that of registers, and
hence the simulation results between black-box and white-box are
not substantially different.
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1 INTRODUCTION
The rise of Artificial Intelligence (AI), especially through convo-
lutional neural networks (CNNs), has increased the demand for
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high-performance computing units capable of parallel multiply-
and-accumulate operations. Deploying AI models on-chip neces-
sitates significant on-chip logic circuits and storage, and hence
traditional units using floating-point or single-precision integers
are resource-intensive and not ideal for edge computing devices
[1]. Multi-precision (MP) neural networks (NNs), using quantized
data precision, offer a solution to reduce memory requirements for
efficient edge AI applications [2], though memories and sequential
cells still consume over 50% of resources in AI edge devices [3, 4].

Recent applications of Deep Neural Networks (DNNs) include
safety-critical ones, such as autonomous driving, and then the re-
liability of DNN and its hardware platform is drawing attention.
Soft error, which is primarily caused by cosmic rays in a terrestrial
environment and caused by protons and heavier ions in a space en-
vironment [5], is the dominant error source during the intermediate
device lifetime. Besides, it is known that memories and sequential
cells are sensitive to radiation [5]. Therefore, AI accelerators, which
inherently include a lot of storage, are threatened by soft errors.

When designing reliability-aware or reliability-demanding sys-
tems, it is crucial to model and estimate the impact of soft errors
considering all the errors occurring in core components (e.g., proces-
sor core) and non-core components (e.g., AI accelerator). Especially,
with the growing trend of integrating hardware AI accelerators into
edge devices as peripherals [6, 7], there is a need for comprehensive
reliability analysis of these core and uncore components [8] from
a comprehensive view [9]. However, as most components in com-
mercial off-the-shelf (COTS) platforms are either inaccessible or
accessible only at limited timings [10, 11], they can only be treated
from a black-box or semi-black-box view, making it challenging to
accurately estimate the system disturbance due to soft errors. More-
over, a few studies construct designs from a white-box perspective
and precisely estimate soft errors at the component level, but they
do not model the entire large-scale AI System on Chip (SoC) and
analyze its reliability at a system level [12]. Overall, analyzing the
reliability of AI SoCs from a white-box perspective and evaluating
the consistency between the white-box and black-box cases is very
important. Additionally, the accuracy of the white-box estimation
itself also needs to be validated.

Therefore, departing from previous studies with black-box test-
ing (e.g., [10, 11]) that often leaves many units inaccessible, this
work targets our custom (i.e., white-box) AI SoC fabricated in a
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22nm technology. Using the experimental results of alpha parti-
cle irradiation to our white-box SoC as a golden reference, this
work investigates how accurately soft error impact can be esti-
mated without irradiation experiments by white-box and black-box
fault injection (FI) analyses. Specifically, the white-box case injects
faults into the entire gate-level netlist, and the black-box case in-
jects faults into the memories and registers visible to programmers
and accessible via, for example, a debugger. The white-box FI is
supposed to reproduce the malfunctions observed in the alpha ir-
radiation experiment and provide their category-wise error rates.
We demonstrate the correlation between the actual measurement
and white-box simulation. As for the black-box case, we show how
many and what kind of errors can be reproduced by injecting faults
into the memory and registers visible to programmers. In other
words, we reveal howmany and what types of errors originate from
the memories and registers that are not disclosed to SoC users. In
addition to these, we share our findings regarding the vulnerable
components in our SoC and provide insights helpful to improve
system reliability. Highlights of this paper are:

• Silicon Measurement-based Discussion: The study fo-
cuses on a 22nm AI SoC prototype highly optimized for
energy-efficient computation, combining pre-silicon and
post-silicon measurements to evaluate AI SoC reliability and
radiation effects comprehensively. The discussion is secured
by solid silicon results of the latest AI SoC.

• Intensive Black-box and White-box Fault Injection:
The differences between black-box and white-box systems
are explicitly evaluated in the context of COTS designs. We
confirm that white-box fault injection accurately replicates
actual irradiation results, and the black-box case similarly
maintains a comparable level of estimation for edge AI SoC
in our tests. Besides, it is important to note that when the
Error Correction Code (ECC) is applied to memory and reg-
ister files accessible in the black-box case, the significance of
internal flip-flops (FFs) increases. This is expected to widen
the discrepancy between white- and black-box scenarios.

2 RELATEDWORK
2.1 Soft Error Estimation from Black-box and

White-box Views
In recent years, black-box and white-box soft error analyses have
been applied in the field of hardware design, particularly in the
design of AI SoCs. Lotfi et al. evaluate the resiliency of NN-based
automotive object detection running on a GPU through neutron
beam experiments [13]. However, their fault injection experiment
is limited to NN weights and input images, meaning that only black-
box analysis is performed. On the other hand, Cheng et al. conduct
an in-depth analysis of their custom AI SoC implemented on a flash-
FPGA with neutron irradiation and fault injection [3]. However,
their fault injection setup does not directly correspond to white-box
or black-box analyses.

Furthermore, in assessing the reliability of these approaches, the
study by Balasch et al. on COTS platform components through
black-box testing highlights the increased complexity and chal-
lenge of fault injection in low-cost devices [14]. This underscores
the difficulty of the black-box method in real-world applications.

Conversely, Fiji-FIN [12], a comprehensive fault injection frame-
work, is proposed for testing AI models on IoT devices, particularly
effective in pinpointing vulnerable spots in Quantized NNs (QNNs).
While it assesses the vulnerability of QNN accelerators to various
errors, its focus remains limited to the component level without
considering overall SoC reliability.

2.2 Reliability of Hardware Designs Targeting
AI Applications

Assessing reliability is essential in critical applications, such as au-
tonomous vehicles and medical devices. Various studies have been
carried out to evaluate their vulnerability to radiation-induced
faults. Some studies reveal that not all soft errors critically impact
NNs. For instance, research on Tensor Processing Units (TPUs) indi-
cates that most errors marginally affect convolution output, thereby
preserving the accuracy of CNN-based detection and classification
in embedded applications, even under high error rates from atmo-
spheric neutrons [10]. Similarly, an analysis of the ARM Cortex-M7
platform shows that MobileNet CNNs are more prone to soft errors
in configurations with higher bit-width precision, with activation
precision being especially susceptible [11]. Additionally, studies in-
volving flash-based FPGAs demonstrate that while microcontroller
memory is significantly vulnerable to neutron-induced faults, AI
models exhibit notable fault tolerance [3]. It is also reported that
lower data precision, such as FP16 in matrix multiplication, en-
hances reliability compared to higher precisions like FP32/64 [15].
Moreover, reducing precision in CNNs can lower memory usage
and vulnerability, though it potentially increases the severity of
errors [16]. Also, DNNs, crucial for object detection in autonomous
vehicles, are susceptible to random hardware faults in GPUs [13].
Existing chip-level safety mechanisms, such as ECC and parity,
effectively detect transient faults, but the authors suggest a need
for more robust strategies to address permanent faults.

These conclusions suggest that weight and activation memories
and data-path computation are inherently robust in AI applications.
In addition, fault injection to the weight and activation memories
is easy. Meanwhile, assessing the effects of the remaining FFs, such
as finite state machine (FSM), FIFO, counters, and pipeline registers,
which are not usually disclosed to SoC users and are highly depen-
dent on individual chips, is indispensable for reliability-demanding
applications. It is crucial to reveal the opportunity and limitations
of black-box fault injection.

3 CASE STUDY FRAMEWORK
In this work, we build a RISC-V-based SoC prototype that includes
anMP accelerator with a flexible data flow featuring high data reuse
and low-latency characteristics for both pre-silicon and post-silicon
soft error evaluation. Additionally, a fault injection framework is
developed to evaluate the soft error impact in pre-silicon phase.

3.1 AI System-on-Chip Framework
As shown in Fig. 1, our AI processor is architecturally built around
four key components: 1) A RV32IMAC RISC-V processor with a 2-
stage pipeline. It is equippedwith 64KB Instruction Tightly-Coupled
Memory (ITCM), 64KB Data TCM (DTCM), and an affluent set of pe-
ripherals such as UART, QSPI flash, and JTAG. 2) AMatrixConv unit
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Figure 1: System-on-Chip Framework. The memories and
registers in yellow are accessible in the black-box case.

designed for convolution and matrix computation requirements,
supporting various layer and kernel sizes. It internally comprises a
total of 16 Near-Memory Engines (NMEs), 256KB weight buffers,
and 128KB activation buffers. 3) A Pooling unit, supporting both
max pooling and average pooling. 4) A Digital Phase-Locked Loop
(DPLL), providing clock outputs ranging from 100 MHz to 1.2 GHz.
Besides, our chip has 89,045 FFs.

To enhance efficient interaction between the RISC-V core and
the MatrixConv unit and Pooling unit, as well as access to external
memory, on-chip data scheduling is facilitated through an AXI
interconnect on the processor. Correspondingly, this interconnect
includes two channels. One channel is introduced for configuring
the MatrixConv unit and Pooling unit, and the other is used for
data transmission to enable efficient access to external memory.
The RISC-V core directly interfaces with an FSM in the accelerator
via Control Status Registers (CSRs). Furthermore, the DMA units in
the MatrixConv unit and Pooling unit are designed to automatically
fetch data from external sources based on CSR values configured
by the core. Regarding clock sources, our processor architecture
primarily consists of two distinct clock domains. Specifically, the
accelerator operates at a standard frequency of 600 MHz at 0.9V,
while the RISC-V core runs at 100 MHz.

Our design, incorporating a high-performance MP accelerator,
features high-performance arithmetic units and high data reuse.
Based on the traditional Radix-8 Booth (R8B) algorithm and the
booth-based MP multiplier design mentioned in [4], we construct
an R8B-based MP multiplier with three configurable precisions
(3b/6b/8b) as the basic computation unit. To enhance computational
parallelism, we construct 32 MP multipliers within each NME for
parallel computation. Within the constraints of the chip area bud-
get, we architect 16 NMEs. This configuration allows for variable
input weight data counts of 32, 32, and 64 for 8b, 6b, and 3b data
types, respectively, with 16 designated output channels to form the
data flow. As shown in Fig. 2, within each NME, the computation
units are directly connected to the weight memory. This data flow

Figure 2: Data Flow in MatrixConv Unit.

Figure 3: Simulation-based Fault Injection Framework.
accommodates three types of data streams: 1) pipeline data flow for
activations, 2) near-memory data flow for weights, and 3) stationary
data flow for outputs. Each NME can process 64 bytes per clock cy-
cle. The basic arithmetic unit is the MP multiplier, supporting three
different precisions (3b/6b/8b). Furthermore, to achieve high data
reuse, each weight memory updates data every 1-to-16 cycles, with
all NMEs alternating data updates. This means that each weight can
be reused 1-to-16 times depending on the configuration. Moreover,
since the pipeline stage is 16, activation data can also be reused
1-to-16 times. Besides, weight memories sum up to 256KB while
activation memories total 128 KB. The memory size is determined
based on the size of prevalent AI models and the number of on-chip
PEs. Besides, it should be noted that not only memory sizes but
also memory read/write patterns affect the soft error rate.

3.2 Developed Fault Injection Framework
The FI process is designed to evaluate the soft error rate of our
design in both white-box and black-box scenarios. To assess the
overall reliability of our SoC, we develop a fault injection frame-
work that operates on Synopsys VCS, as illustrated in Fig. 3. It
is important to note that while the black-box approach typically
involves injecting faults into COTS platforms via debuggers, our
simulation-based framework also simulates this aspect of black-
box FI. This is achieved by limiting the FI targets, which will be
discussed in the next subsection.

In the general parts on the left, the cross-section data for memory
and FFs plays a crucial role. This data, representing the likelihood
of these units being affected by a radiation particle strike, serves as
a benchmark for FI simulations. In the radiation community, ‘cross-
section’ refers to the effective area where a striking particle can
cause an upset, a key parameter in evaluating semiconductor device
reliability. This data, linked to the chip fabrication process, remains
constant in specific radiation environments. We use this cross-
section data to set the behavior for data bit-flips. The lists of memory
and FFs include all available units for FI and are referenced during
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Table 1: Accessible Ranges in White- and Black-Box Cases.
White-Box Black-Box

FF Memory FF Memory
RISC-V 17176b 128KB 2620b 128KB

MatrixConv 45644b 384KB 793b 384KB
Pooling 26225b 0 607b 0
Total 89045b 512KB 4020b 512KB

bit-flip executions. The back-end netlist is utilized to construct the
basic testbench.

Furthermore, to simulate bit-flip operations effectively, the Direct
Programming Interface (DPI) allows integration with foreign lan-
guages, like C and C++, with the simulator. We develop the FI API
for backdoor access to memories/FFs, using a hybrid programming
approach with C++ and System Verilog. Additionally, in randomly
injecting errors, the timing is determined by a random function,
ensuring consistent cross-section values for memories/FFs.

In terms of design-specific parts on the right, since our system
includes a processor, we also require a C-language compiler to build
AI applications. Additionally, to facilitate the monitoring of the en-
tire system, we develop a host software application based on C++.
This application can directly configure and retrieve runtime data
from the testbench and can monitor and debug the entire system.
For example, after the SoC crashes, we can interrupt the SoC and
read register and memory values using an open-source On-Chip
Debugger, OpenOCD [17]. By and large, this simulation environ-
ment not only allows for injecting errors randomly throughout the
entire system to assess its reliability but also enables pinpoint FI to
analyze which components within the system are more vulnerable.
Besides, as our simulation only focuses on function, all components
are simplified with fast functions.

3.3 White- and Black-box Case Definition
Typically, COTS platforms do not grant full access to all on-chip
components. Namely, only part of the components can be accessed.
Therefore, it increases the difficulty of estimating the soft error
impact, specifically from the system level. To better understand the
difference from different standpoints, we define the following two
cases for FI: 1) white-box case, all components can be accessed; 2)
black-box case, only I/DTCM, CSRs, and General Purpose Registers
(GPRs) in RISC-V core, and memories and CSRs in the accelerator
can be accessed. In black-box cases, the internal logic cannot be
accessed (e.g., FSM). The accessible memory and registers in the
black-box case are colored yellow in Figs. 1 and 2. Besides, all
memory components and FFs do not have any error detection and
correction mechanisms. The amount of accessible components of
white-box case and black-box case is detailed in Table 1.

4 EXPERIMENTS
In our study, the primary aim is to ascertain the reliability and
accuracy of the estimated soft error impact for AI SoC in black-
box/white-box cases. For this, we employ the SoC running an
MP VGG16 network with 71.17% TOP-1 accuracy under ImageNet
dataset for both alpha irradiation experiment and fault injection
simulation. Alpha experimental results are regarded as a golden
reference, and FI simulation results are analyzed on the basis of the
definitions of white- and black-box cases mentioned in Section 3.3.

Figure 4: Experimental Setup for Alpha Irradiation.
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Figure 5: Measured Error Cross-Sections in SRAM and FF.
During the execution of NNs, not all errors lead to critical con-

sequences. We categorize errors into four classes, based on the
severity of their impact: 1) minor Silent Data Corruption (mSDC),
where the classification outcome for an image remains correct
despite unexpected intermediary outputs; 2) critical SDC (cSDC),
where there is an incorrect classification result; 3) minor Detectable
Unrecoverable Error (mDUE), the accelerator fails to respond or
malfunctions but it can be restarted without power cycling; and 4)
critical DUE (cDUE), which involves the RISC-V core either run-
ning out of control or crashing and requires the system rebooting.
Notably, we do not observe any cSDCs in the experiment due to
the high inherent reliability of MP NNs and the limited amount of
irradiated particles.

4.1 Post-Silicon Alpha Irradiation Experiment
4.1.1 Setup. To assess the robustness of our AI SoC and build a
golden reference by measuring actual silicon operations, we design
and fabricate a 22nm ASIC chip and conducted alpha irradiation ex-
periments. This approach aims for a comprehensive analysis from a
post-silicon perspective without omitting radiation physics and cir-
cuit operations, thereby forming a golden reference for comparing
the white- and black-box cases.

Fig. 4 depicts the experimental setup employed for the irradiation
experiment. We perform an irradiation experiment using an 8kBq
Am-241 alpha source with a 2.4mm diameter, where the distance
between the alpha source and the chip is varied to control the
number and energy of alpha particles reaching transistors in the
chip. We prepare a single board featuring our self-developed AI
SoC. To begin with, we perform a simple test to estimate the error
cross-sections of each type of memory and FFs. Fig. 5 shows the
measured data, which is used as reference data in Section 4.2. Note
that such cross-section data of basic storage elements could be
provided from a foundry to industry.

Furthermore, we select 100 images from the dataset for verifying
chip operation and classification accuracy. The testing of 100 images
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Table 2: Event Statistics in Alpha Irradiation Experiment.
Distance
(mm)

Execution
Mode

Fluence
(n/cm2) mSDC mDUE cDUE

25 ITCM 7.8516e+09 168 387 244
50 ITCM 7.5936e+09 84 166 106
75 ITCM 6.6845e+09 55 116 69
25 FlashXIP 6.3114e+09 142 208 2
50 FlashXIP 7.7358e+09 91 134 1
75 FlashXIP 7.9577e+09 43 49 2

is regarded as one event to make event statistics intuitive. We
employ the serial port and JTAG port to track all errors. The serial
port is used for monitoring mSDC, cSDC, and mDUE. JTAG is
employed to monitor cDUE. When the system crashes, JTAG dumps
all core register data through the OpenOCD interface. All logs are
recorded in the software backend.

4.1.2 Results. During the initial round of the experiment, we ob-
serve that the system has a relatively high likelihood of system
crash, with the majority of errors originating from the ITCM. Con-
sequently, we introduce an additional operating mode called Flash
Execute-In-Place (FlashXIP), where code can be executed directly
on the external flash memory. This mode contrasts with the ITCM
mode, where the program is first copied to the on-chip ITCM SRAM,
and then the code is executed on the ITCM. Note that FlashXIP
operation can be regarded as the chip implementation in which
ECC is applied to ITCM, and correct instructions are always given1.

Table 2 presents the statistical breakdown of events, accompanied
by fluence data for all 6 cases, which span a range from 6.3114e+9
n/cm2 to 7.9577e+9 n/cm2. Fluence is defined as the number of
irradiated particles per cm2. The results for our chip under ITCM
mode and FlashXIP mode suggest that the ITCM is markedly more
susceptible to error accumulation than the accelerator. This is evi-
denced by a substantial 98.8% reduction in cDUEs from ITCMmode
to FlashXIP mode. In the RISC-V core, the integrity of instruction
data within the ITCM is pivotal for application stability. Accumula-
tion of errors within these regions could precipitate a system crash.
This result suggests ECC adoption for reduced system crash rate.

Our alpha experiment highlights that the memory in the RISC-V
core is more vulnerable compared to the AI accelerator. Moreover,
the majority of mDUEs in the accelerator are due to bit flips in the
I/DTCM detected by JTAG. In contrast, bit-flips in the memories
of the AI accelerator have a minimal impact, as they seldom result
in misclassifications. Ultimately, the implementation of error miti-
gation strategies will depend on the specific requirements of the
application, the criticality of the system, and the desired level of
reliability needed to safeguard against potential faults.

4.2 Fault Injection Simulation
Table 3 lists FI experimental results of our AI SoC. Even while oper-
ating in FlashXIP mode, the system still exhibits a high probability
of generating mDUEs. Basically, our observations show that almost
all mDUEs originate from bit-flips in DTCM. This is because the
configuration information it contains is repeatedly invoked, making
it insensitive to the timing of FI. This behavior is explained by the

1Rigidly speaking, even ECC and bit interleaving are applied to SRAMs, the output
can be wrong at a very low probability due to multiple bit upsets.

Table 3: Event Statistics in Fault Injection Simulation.
Simulated

Distance (mm)
Execution

Mode
Fluence
(n/cm2) mSDC mDUE cDUE

25 ITCM 8.8137e+08 19/20 45/47 33/33
50 ITCM 1.7636e+09 17/20 43/46 30/30
75 ITCM 2.8392e+09 22/25 51/52 27/27
25 FlashXIP 2.5352e+09 46/51 71/72 2/2
50 FlashXIP 2.9648e+09 28/32 44/46 2/2
75 FlashXIP 4.2891e+09 18/20 21/22 1/1

*/* is black-box/white-box

running RISC-V program. The execution code for the NN model,
including the functions to divide the model into multiple chunks,
and any code used for data processing, NN forward, is stored in
ITCM. Meanwhile, the foundational information of the NN model,
including network weight size, activation function parameters, in-
termediate data, etc., is stored in DTCM.

Fig. 6 shows the origins of error components in ITCM execution
mode according to the recorded log files. cDUEs are mainly caused
by single-bit upsets (SBUs) in ITCM, mDUEs are mainly caused
by ITCM and DTCM, and mSDCs are mainly caused by memory
components in the AI accelerator. Also, the bit-flips of FFs only
account for a tiny part of these error events.

Bit-flips in FFs cause only mDUEs in our fault injection experi-
ment while, in theory, they can cause cDUEs as well. We observe
that bit-flips result in mDUEs only when they occur at specific spa-
tial and temporal points during operation. FFs typically refresh their
values at each clock edge, often nullifying the impact of bit-flips.
This tendency is especially notable in the FFs within data paths.
Furthermore, since FFs constitute a relatively small proportion of
the SoC, and a bit-flip in an FF must occur at a precise moment
to trigger a cDUE, the probability of this happening is quite low.
Therefore, we do not observe any cDUEs caused by bit-flips in FFs
in our experiment.

Additionally, our statistical analysis reveals that most mSDCs
are caused by bit-flips within the memories of the accelerator. This
is partly because the accelerator memory volume is 384KB, mak-
ing up 75% of the total system memory capacity and significantly
exceeding the FFs in volume. Furthermore, another FI result ob-
tained using GPUs shows that the cSDC probability for individual
weight memory upsets is only 0.00492%; therefore, bit-flips within
the accelerator memory predominantly lead to mSDCs. This result
is consistent with the observation in [3] that the error propaga-
tion probability to misclassification is very low due to the inherent
redundancy of NN computation. After a rough estimation, the cross-
section of cSDCs should be less than 6.8e-10cm2 at 2.5mm distance,
two orders of magnitude less than other error types.

4.3 Discussion on White-box/Black-box Soft
Error Estimation

Fig. 7 shows the event cross-section, which is the number of ob-
served errors divided by the total alpha fluence. Both white- and
black-box fault injection simulations exhibit a strong correlation
with those from the post-silicon irradiation experiments as depicted
in Fig. 8. It can be observed that the results of fault injection in the
white- and black-box cases are relatively reliable.
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Figure 8: Post-silicon Cross-section vs. Pre-silicon Cross-
section.

Both simulation and experimental findings indicate that the
I/DTCM are the weakest components in the entire SoC. Further-
more, due to the fact that FFs account for only about 2% of the entire
SoC, and a significant part of FFs is used for caching AI model data,
coupled with the inherent high reliability of AI models, there is not
much difference in the results of experiments in both white-box
and black-box cases. Thus, for COTS platforms targeting AI appli-
cations, if FI into memory at any given time point is supported,
the assessment of soft error impact remains quite reliable even
in black-box cases. Besides, assuming the FI of memory compo-
nents in the accelerator cannot be accessed, the mSDCs reproduced
in the black-box FI could decrease significantly. Also, if the FI of
ITCM/DTCM cannot be realized, the cDUEs cannot be observed.

Meanwhile, if the memory in COTS platforms contains error
detection or correction mechanisms (e.g., ECC, Parity), then the
aforementioned analysis no longer applies. Additionally, we con-
struct a special case where only errors are injected into FFs with
a simulation distance of 2.5mm, and cDUEs are not observed in
our limited simulation time. The rough estimate of the cDUE cross-
section caused by FFs should be less than 2.17e-11 cm2.

5 CONCLUSION
This paper provides a comprehensive evaluation of the reliability of
a 22nm AI SoC from both pre-silicon and post-silicon perspectives.
The post-silicon alpha experimental results are built as a golden

reference. To analyze the difference between pre-silicon white-box
and black-box views, we define two different scenarios. Additionally,
all these results reveal that the ITCM/DTCM, which store the static
program data, NN model information, and cache data, are the most
vulnerable component in the AI SoC. Also, we discover that when
using FlashXIP as the processor execution mode, the critical errors
in the system are due to the non-responsiveness of AI tasks, mainly
caused by the upsets in DTCM. Besides, the FI experiment on the
NNs shows that the MP NN is considerably more reliable than other
system components, and hence, bit-flips in accelerator memories
concerning the NN data have almost no impact on the system. On
the other hand, the white-box and black-box simulation results are
both in line with each other. The comparison indicates that this
conclusion applies only to COTS platforms without error detection
or correction mechanisms, as it shows that the soft error impact on
black-box AI COTS platforms can be well estimated as long as the
fault injection can operate on any memory at any given time.
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