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Abstract—Memristor crossbar arrays have been studied as
hardware accelerators for the efficient inference and learning of
neural networks, eliminating the need to load network weights
from memory. Conversely, FPGAs also facilitate the implemen-
tation of weight-memory-less neural networks by embedding
weights within the combinational circuit. However, to the best
of our knowledge, there have been no studies that quantitatively
compare the inference performance of memristor crossbar arrays
and FPGAs under identical conditions. In this paper, we examine
the inference performance of neural networks implemented
with crossbar arrays and FPGAs, focusing on inference latency
and energy per inference. Experimental results show that the
crossbar-based implementation achieves slightly lower latency
and significantly reduces energy consumption compared to the
FPGA implementation. Notably, the energy difference ranges
from 10.4 to 22.0X in our test scenarios involving small neural
networks with layers possessing tens of inputs and outputs.

Index Terms—neuromorphic computing, memristor crossbars,
neural networks, analog circuits, FPGA

I. INTRODUCTION

The human brain is highly efficient in terms of energy
consumption, performing complex tasks with relatively low
power demand. For example, the most powerful supercomput-
ers consume orders of magnitude more power than the human
brain to accomplish similar tasks. Thus, designing computer
systems that mimic brain architecture could lead to highly
energy-efficient computing.

Motivated by this, neuromorphic computing has drawn a
significant amount of attention. Specifically, the implementa-
tion of neural networks using crossbar arrays with memristors
has been intensively studied [1]–[6]. Crossbar arrays can
perform power-efficient computation of matrix-vector products
in the analog domain [5]. Additionally, parallelism enables
fixed-time matrix-vector products regardless of matrix size,
suggesting efficient neural network inference with crossbar ar-
rays and enabling large-scale neural network implementation.

Memristor crossbars offer dual functionality—computation
and memory by storing matrix values as conductance values.
Spatially deploying networks on these arrays eliminates mem-
ory access for parameters and the need to program memristors,
and significantly reduces power consumption. This brain-
inspired spatial neural network deployment eliminates memory
requirements and avoids memristor endurance issues.

On the other hand, the memory-less digital computing
architecture can be achieved through specialized multipliers
with one fixed operand representing individual weights. This
weight-embedded combinational circuit implementations with

spatial unfolding has been explored in [7], [8], using bina-
rized weights and activations. LogicNets [9] presents another
notable approach by aggressively reducing the number of
neuron inputs and activation bit-widths to suit FPGA hardware.
These implementations are compatible with FPGAs, as FPGAs
are well-suited for small-quantity hardware implementations
dedicated to special purposes. While ASICs might offer better
energy efficiency, the design and fabrication costs make ASIC
implementations impractical.

Then, a simple question arises: which is more efficient,
a crossbar-based analog neural network or an FPGA-based
digital weight-memory-less neural network? Both crossbar
arrays and FPGAs enable the updating of network parameters
after manufacturing, making them potential alternatives. To
answer this question, we compare the performance of these
two implementations in this work. In order to ensure a fair
comparison, we endeavor to align the inference accuracy of
both implementations. To our knowledge, this is the first work
to quantitatively compare the performance differences between
crossbar arrays and FPGAs, each targeting the weight-memory-
less architecture. This evaluation is pivotal for the prospective
spatial unfolding of the entire network.

The rest of this paper is organized as follows: Section II
reviews related works. Section III explains the neural network
implementations whose performance is compared. Section IV
describes how the implementations are evaluated and com-
pared. Section V presents the comparison results, accompanied
by a discussion. Finally, Section VI concludes our work.

II. RELATED WORKS

The memristor is a two-terminal device that was theorized
in 1971 [10]. Leveraging the property of the memristor, along
with Ohm’s law, it is capable of both storage and computation.

Memristor crossbar-based neural network implementations
are studied in [1]–[6]. R. Hasan et al. present a memris-
tor crossbar array implementation where network parameters
are trained in software [1]. The authors of [3]–[5] propose
implementations in which network parameters are trained
within the circuits. Such implementations are expected to
be more tolerant of device variations and faults than those
where parameters are trained in software [5]. Actual hardware
implementations are also demonstrated, for example, in [3],
[6]. In addition to matrix computation, other computations,
such as the activation function, can be implemented as analog
hardware. F. Kiani et al. suggest that such implementations can



Fig. 1. Crossbar-based neural network implementation assumed in this study.
The characteristics of the activation circuit are presented at the right top.

improve throughput more than implementations where periph-
eral circuits are implemented in digital circuits, since no A/D
conversion is required. We thus consider an A/D conversion-
less implementation in this work. Meanwhile, T. M. Taha et
al. assert that neural networks utilizing memristor crossbar
arrays outperform traditional setups like CPUs or GPUs [11].
However, conventional architectures consume a lot of power
for memory access, and thus the performance superiority over
memory-less digital architecture is unknown.

In the case of FPGA-based implementation, model param-
eters are often quantized to small bits to reduce storage and
speed up computation. The binarized neural network (BNN) is
an extreme version of this idea, which constrains parameters
and activations to either +1 or -1 [12]. These networks can
be mapped to parameter-embedded combinational circuits on
FPGAs, eliminating the need to load parameters from memory
[8]. However, BNNs often suffer from accuracy degrada-
tion. Y. Umuroglu et al. propose LogicNets for low-latency
combinational circuit implementation, which is based on the
equivalence of artificial neurons with quantized inputs/outputs
and truth tables. However, the generality of LogicNets with
aggressive fanin reduction has not been confirmed since only
two benchmarks have been tested. Given these considerations,
we have chosen to use a fixed-point representation for our
FPGA implementation in the following sections.

III. CIRCUIT STRUCTURES FOR COMPARISON

A. Crossbar-based neural network

Fig. 1 shows the diagram of the circuit that composes one
neural network layer. This circuit consists of the following
analog components, where the magnitudes of voltages and
currents represent values such as activations: memristor cross-
bar arrays, input buffers, subtraction circuits, and activation
function circuits. Fig. 1 also explains how a multi-layer neural
network is organized. The network is composed by connecting
single-layer circuits (as shown in Fig. 1) in serial and/or
parallel configurations, according to the network structure.

1) Circuits: A memristor crossbar array, enclosed by the
blue dotted line in Fig. 1, consists of memristors and can
calculate dot-products of an input vector and a matrix. Let
V be the vector of input voltages in the row direction, and I
be the vector of output currents in the column direction. Then,
we have I = GV by Ohm’s law and Kirchhoff’s law, where G
is the conductance matrix of the crossbar array. This enables
the calculation of fully connected layers in neural networks

On the other hand, since the conductance of a memristor
cannot take a negative value, a negative weight must be
represented using two memristors combined with a subtraction
circuit. This approach to realizing negative weights is widely
used, e.g., in [2], [4], [5]. The subtraction circuit, enclosed
by the green dotted line in Fig. 1, consists of two op-amps
and three resistors. This circuit performs current-to-voltage
conversion and subtraction, and the same circuit is used in [2],
[4], [5]. Rf controls the gain of current-to-voltage conversion.

The circuit enclosed by the red box in Fig. 1 represents the
input buffer used in this work due to its simplicity. This input
buffer is responsible for injecting the voltage signals into the
memristor crossbar array.

The circuit, enclosed by the purple dotted line in Fig. 1,
represents the activation function circuit used in this work.
It was adopted for its simplicity and ability to represent a
sigmoid-like function. The output of this circuit is connected
to the input buffer to facilitate a multi-layer structure. Fig. 1
includes the input-output characteristic of this circuit.

2) Parameter mapping: To map the parameters to the con-
ductances of the memristors, we employed the same method
as presented in [13]. In this method, the parameter matrix
is decomposed into positive and negative parts, and these are
mapped to the conductance of memristors representing positive
and negative weights, respectively. For more details, please
refer to [13].

B. FPGA-based digital weight-memory-less neural network

In the FPGA implementation, neural networks are spatially
expanded and implemented as combinational circuits, enabling
a memory access-less operation. The network parameters
are embedded within the circuit, and numerous multipliers
are present with fixed values for one of the two inputs,
interconnected by adders. This design contrasts with ordinary
implementations, where a limited number of multipliers are
temporally shared and can accept arbitrary values for both in-
puts. An essential point to mention here is that logic synthesis
tools propagate these constant values throughout the circuit,
automatically leveraging them for logic minimization.

All calculations in our FPGA implementation are performed
using fixed-point numbers. The activation function is imple-
mented as a piecewise linear function, replicating the input-
output relationship of the analog activation circuit, depicted
in red in Fig. 1. This implementation of the activation func-
tion helps achieve similar inference accuracy, ensuring a fair
comparison.



IV. EVALUATION SETUP

A. Network configuration

We use the MNIST dataset [14] to evaluate the performance
of neural network inference, as it is widely used in related
work. To reduce simulation time, the size of the input images
was reduced from 28x28 to 8x8. The network has 10 outputs,
and the index of the highest value is considered the inference
result. We tested three different networks, whose structures
are listed in Table I. All of them are composed of three fully
connected layers. The PyTorch framework is used to learn
the network parameters. The input-output characteristic of the
activation function circuit shown in Fig. 1 is used as the
activation function during training.

B. Operational amplifier design

Op-amp is a key circuit component affecting the inference
performance significantly. This section explains and validates
its design.

1) Baseline design: We first design a baseline op-amp that
will be used in the subtraction circuits and input buffers,
specifically for the NCSU 45 nm FreePDK [15]. Additional
circuit tuning for OA1, OA2, and OA3 will be performed later.
Fig. 3 shows the schematic. We refer partially to the design
procedure outlined in [16].

We used L = 90nm for all transistors to cope with
high power supply voltage and to mitigate channel length
modulation. First, we determined the capacitance of Cc to
attain a phase margin, such that Cc is 22% of the load
capacitance of the op-amp; here, a 64 × 60 crossbar array
is considered as the load. Then, we determined the current
bias I5 from the value of Cc, and the target slew rate is set to
1.0V/ns. Assuming that Vdd = 0.8V, Vss = −0.8V and the
input range is ±0.6V, the W s of transistors M3, M4, M5 and
M8 were determined to ensure they are in saturation region.
Also, assuming that the required bandwidth is 5GHz, the size
of transistors M1 and M2 was determined.

The size of transistor M7 determines how much output
current can be provided by the op-amp. We observed that
the subtraction circuit would fail if an insufficient amount of
current flows. Therefore, we estimated the required current by
simulating the circuit with some test patterns. The result shows
that a current of 200µA should be enough, and accordingly,
we determined the size of M7. W of M6 is determined by
WM6 = 2WM4

WM7

WM5
.

2) Optimizing OA1, OA2 and OA3: We optimized the op-
amps OA1, OA2, and OA3 in Fig. 1 with circuit simulations.
To simplify the process, we simulated one layer of a crossbar
array-based neural network, which includes input buffers, a
memristor crossbar array, and subtraction circuits. The op-
timization metrics are the time for the outputs to converge

TABLE I
NETWORK STRUCTURES USED FOR EXPERIMENTS.
Network configuration # of neurons in each layer

Net1 64 → 60 → 15 → 10
Net2 64 → 30 → 30 → 10
Net3 64 → 20 → 45 → 10

TABLE II
DETERMINED OP-AMP PARAMETERS.

Op-amp Parameters

OA1 I5 = 24.2µA, WM1 = WM2 = 2.49µm,
WM3 = WM4 = 0.422µm, WM5 = WM8 = 0.279µm

OA2 I5 = 48.4µA, WM1 = WM2 = 1.25µm,
WM3 = WM4 = 0.845µm, WM5 = WM8 = 0.559µm

OA3 I5 = 96.9µA, WM1 = WM2 = 0.624µm,
WM3 = WM4 = 1.69µm, WM5 = WM8 = 1.12µm

Fig. 2. Latency and energy with individual OA3 (top) and OA1 (bottom)
designs. On the left, the bias current I5 is swept. On the right, the output
current I7 of OA3 is swept. The red dots represent the selected designs.

(referred to as latency) and energy consumption, which is
calculated as the integration of power dissipation until output
convergence.

First, we tuned the op-amp OA3 in subtraction circuits. We
first changed the bias current I5 while keeping the current
flowing in M7 (referred to as I7) unchanged by adjusting
transistor sizes. We next fixed I5 and changed I7. Fig. 2 shows
the results, where the red points represent the selected designs.
From the left figure, 96.9 µA was determined to be the best
value for I5. While the best value was 100µA for I7, since
the effect on latency and energy is small, we chose the value
200µA, which was derived during the initial op-amp design
process. We next tuned OA1 and OA2 in the same method
and determined I5 and I7. The determined parameters are
listed in Table II. We chose I7 = 200µA, WM6 = 6.97µm,
WM7 = 2.31µm, and Cc = 24.2 fF for all op-amps.

Note that the optimal parameters may vary slightly depend-
ing on the crossbar size, but we use the same op-amps even
when differently-sized crossbars are used.

C. Crossbar model

We employed a model for the crossbar in which the wiring
is accomplished using column-direction and row-direction
adjacent wiring layers, as defined in [15]. For accurate sim-
ulations, both wire resistance and capacitance are considered,
as depicted in Fig. 4. The resistance was derived from the
sheet resistivity provided in [15], and the wire capacitance was
determined using the formula presented in [17]. The parasitic
capacitance of the memristors was also taken into account,
with a value of 0.14 fF, referring to the parasitic capacitance
of a via-switch as reported in [18]. The chosen values are:



Fig. 3. Op-amp schematic.

Fig. 4. Assumed crossbar
model. Memristors are located
at the intersections marked by
black circles, sandwiched be-
tween the crossing metal lines.

R1 = R2 = 0.250Ω, C1 = C2 = 8.89 × 10−18 F, and
Caf1 = Caf2 = 5.59× 10−18 F.

D. Performance metric evaluation

We compare the inference latency, energy per inference,
and inference accuracy. The following will explain how we
evaluate those metrics.

1) Memristor crossbar-based analog implementation: The
inference latency, energy per inference, and inference accuracy
are evaluated through SPICE simulation, using Xyce [19]. We
employ the memristor model published in [20], which is also
utilized in [4]. The range of memristor resistance in this work
spans from 50 kΩ to 10MΩ.

The inference accuracy is assessed by connecting the inputs
to a series of voltage sources that represent the network inputs
and performing DC operating point analyses. We evaluate
the accuracy using 500 images randomly selected from the
MNIST test dataset.

Transient analyses are then performed using a small number
of test images (10 images) to measure the inference latency
and energy consumption per inference. The inference latency
is defined as the time until all the outputs of the circuit
converge after the input voltages are given. The convergence
here is defined such that the difference between V (t) and the
final value of V (t) is less than 10 % if the final value is greater
than 0.1 V, or the difference is less than 0.01 V if the final
value is smaller than 0.1 V.

2) FPGA-based digital implementation: To make the com-
parison fair, we design the FPGA-based implementation so
that the inference accuracy would be close to that of the
crossbar-based implementation. The necessary and sufficient
numbers of bits in the integer and fractional portions of
the fixed-point expression are experimentally derived. The
target device is Zynq UltraScale+ MPSoCs (XCZU7CG-
2FBVB900E). This device is chosen because of its large
number of LUTs and DSPs, while it uses a more advanced
technology of 14/16 nm than the 45 nm assumed for the analog
implementation.

The network is implemented in Verilog as a combinational
circuit. Logic synthesis, placement, and routing were executed
with Vivado, aiming for the minimum delay implementation
by incrementally adjusting the given delay constraint at 1-ns
intervals. A post-implementation simulation is conducted to
make the power report more accurate. Energy consumption

TABLE III
COMPARISON RESULTS. (I.F) IN FPGA IMPLEMENTATION REPRESENTS

THE NUMBERS OF INTEGER AND FRACTION BITS, RESPECTIVELY.
NUMBERS IN PARENTHESES IN THE ENERGY COLUMN REPRESENT THE

ENERGY NORMALIZED BY THE CROSSBAR-BASED DESIGN.

Network Implementation Accuracy Latency Energy
[%] [ns] [nJ]

Net1 Crossbar 86.6 27.7 3.69 (1.00)
FPGA (6.7) 86.6 40.0 81.3 (22.0)

Net2 Crossbar 86.2 36.6 4.14 (1.00)
FPGA (7.6) 87.6 39.0 43.1 (10.4)

Net3 Crossbar 84.6 24.6 3.01 (1.00)
FPGA (5.6) 84.6 39.0 38.5 (12.8)

is calculated from the power reported by Vivado, where the
IO power is excluded, and the static power is assumed to be
one-third of the dynamic power to make the comparison fair.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Comparison

The inference accuracy, latency, and energy of each neural
network implementation are listed in Table III. The bit widths
of the integer and fractional parts used in the FPGA imple-
mentations are also shown in Table III.

In terms of the inference latency, the crossbar-based im-
plementation was 1.07 to 1.59 times faster. The energy
consumption per inference is calculated by multiplying the
power dissipation by the latency. While both implementations
achieved similar latencies, the FPGA-based implementation
consumed 10.4 to 22.0 times more energy than the crossbar-
based implementation, which means the crossbar-based imple-
mentation consumes much less power.

B. Discussion on energy in differently-sized layers

The above comparison indicates that both methods can
achieve similar inference latency and that the crossbar-based
implementation can surpass the FPGA-based implementation
in terms of inference energy. However, it is unclear how
different networks can affect the superiority of the crossbar-
based implementation in inference energy. This section
investigates energy differences in the case where a fully-
connected layer with various numbers of inputs and outputs
is implemented in both methods. With a proper pipeline
structure, energy should increase proportionally to the number
of layers in both implementations so that the discussion will
focus on layer size.

In the crossbar-based implementation, the input buffers,
subtraction circuits, and activation function circuits consume
power. Supposing m and n are the numbers of inputs and
outputs of the layer of interest, respectively, the energy for one-
layer processing is estimated to be the sum of m×(energy of
input buffer) and n×{(energy of subtraction circuit) + (energy
of activation function circuit)}. On the other hand, the latency
is influenced by the parasitic capacitance and could increase
in proportion to n ·m. To estimate the energy consumption
for large m and n, we conducted simulations of the crossbar
array varying m and n from 10 to 70 by 10 and calculated the
energy consumption. The calculation of energy consumption



Fig. 5. Plot of Er(m,n). The red ’X’ represents the point (58, 58),
where Er exceeds 10.

was done by integrating the power from the start time to
the convergence time, where the integral interval corresponds
to the latency definition. Note that these simulations did
not include activation function circuits. Using the calculated
energies, we performed fitting to Exb = a·m+b·n+c·m·n+d,
where a, b, c, and d are fitting coefficients. The results are
a = 4.5 × 10−12, b = 6.1 × 10−12, c = 2.2 × 10−13,
d = −1.0 × 10−11, with the coefficient of determination
R2 = 0.96, meaning that the quadratic expression of Exb is
appropriate in the crossbar-size range of interest.

The FPGA energy is estimated with a similar approach. We
create various Verilog designs with varying (m, n) between
10 to 70 and perform synthesis, placement, and routing. The
bit width is I=4 and F=4 for all designs. These designs do
not include activation functions similar to the crossbar case.
The clock frequency for each design is chosen such that it
approaches its maximum possible value with trial and error.
We then simulated each design using random inputs and
estimated their energy consumption based on the switching
activity data obtained from these simulations. Finally, we fitted
the estimated energy consumption to EFPGA = a·m+b·n+c·
m·n+d. The results are a = −2.8×10−12, b = −1.3×10−11,
c = 4.3× 10−12, d = 4.0× 10−11, with R2 = 1.00.

To compare the effects of increasing m and n on the
energy consumption, Er(m,n) = Efpga(m,n)/Exb(m,n) is
illustrated on Fig. 5. The red point (58, 58) marks the point
where Er exceeds 10. We can see Er(m,n) is increased as the
m and n become larger. This originates from the fact that the
dependence of Efpga on m ·n is higher than that of Exb. This
result suggests that the crossbar-based implementation is more
energy-efficient than the FPGA-based implementation when
the size of a layer is large. Here, the Er value is somewhat
different from Table III because the activation function circuits
are not considered in this subsection.

VI. CONCLUSION

We compared the performance of weight-memory-less neu-
ral network implementations using memristor crossbar arrays
and FPGAs, maintaining the same inference accuracy. The
crossbar-based implementation excelled in latency, being 1.07
to 1.59 times faster, and it was also more energy-efficient,
consuming 10.4 to 22.0 times less energy. We found that the

energy consumption of the crossbar-based implementation is
less dependent on the product of the number of inputs and
outputs than the FPGA-based implementation. This suggests
that for larger neural network layers, the crossbar-based im-
plementation could be more and energy-efficient. Our future
work includes validating our findings on larger and various
types of networks.
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