
Logic Locking over TFHE

for Securing User Data and Algorithms
Kohei Suemitsu Kotaro Matsuoka Takashi Sato Masanori Hashimoto

Dept. Communications and Computer Engineering, Kyoto University

Abstract—This paper proposes the application of logic locking
over TFHE to protect both user data and algorithms, such
as input user data and models in machine learning inference
applications. With the proposed secure computation protocol,
algorithm evaluation can be performed distributively on honest-
but-curious user computers while keeping the algorithm secure.
To achieve this, we combine conventional logic locking for
untrusted foundries with TFHE to enable secure computation. By
encrypting the logic locking key using TFHE, the key is secured
with the degree of TFHE. We implemented the proposed secure
protocols for combinational logic neural networks and decision
trees using LUT-based obfuscation. Regarding the security anal-
ysis, we subjected them to the SAT attack and evaluated their
resistance based on the execution time. We successfully configured
the proposed secure protocol to be resistant to the SAT attack in
all machine learning benchmarks. Also, the experimental result
shows that the proposed secure computation involved almost no
TFHE runtime overhead in a test case with thousands of gates.

I. INTRODUCTION

Data and algorithms have substantial value in real-world

applications such as medical and commercial sectors. Consider

a scenario involving a medical enterprise and an algorithm-

driven company. The medical enterprise owns a dataset, while

the company has a data mining algorithm. The company

prefers not to disclose its proprietary algorithm, and the

medical enterprise is reluctant to share its dataset due to its

potential sensitivity. This impasse can be resolved through

a private function evaluation (PFE) protocol, allowing the

medical enterprise to receive the result of the data mining

algorithm running privately on its dataset.

In two-party PFE problem, Party P1 holds a private function

f and optionally, a private input x1. Conversely, Party P2

holds a different private input, x2. The goal is for both parties

to independently calculate the value of f(x1, x2) without

third-party involvement. Subsequently, one or both parties

can obtain the value of f(x1, x2), with no capacity to infer

additional information beyond their specified outputs. PFE,

a special case of secure computation, diverges significantly

from standard secure function evaluation (SFE) as the func-

tion f is public in SFE, but confidential in PFE. Existing

literature on PFE protocols, on the other hand, often restricts

permissible functions to specific types. We focus on functions

implemented by arbitrary circuits and discuss general-purpose

PFE protocols. A common PFE protocol approach utilizes

Universal Circuits (UC). UC refers to a sequence of circuits

U = {Un}n∈N, each of which can take as input a circuit C
of size n and a valid input x, and output C(x) ← Un(C, x).
A limitation of UC-based PFE protocols is that a Boolean UC

has an optimal size |Un| = Θ(nlogn) [1]. Thus, when the

circuit size is large, the size increase resulting from UC usage

renders UC-based PFE impractical.

2-LUT

3-LUT

3-LUT

input

truth table

TFHE

i1
i2
i3

i4

i5
i6

i1
i2
i3

i4

i6
i5

output

Fig. 1: Conceptual overview of the proposed LUT-based

logic locking over TFHE. The inputs i1 to i6 and the logic

locking keys, which are truth table values, are encrypted. The

encrypted output value is obtained without decryption.

In this paper, we propose a general-purpose secure com-

putation approach combining logic locking with conventional

secure computation methods like Fast Fully Homomorphic

Encryption over the Torus (TFHE) [2] and garbled circuit

[3]. Logic locking, initially developed as a countermeasure for

untrusted IC foundries [4], is used to obscure the algorithm.

Earlier literature lacked formalism delineating the precise

security level a logic locking scheme should provide. However,

[5] shows that several programmable logic-based methods

[6]–[9] can be modeled within a UC security framework,

indicating logic locking could facilitate a more efficient PFE

implementation compared to UC.

Fig. 1 illustrates our proposed secure computation method,

which protects both the algorithm (e.g., machine learning

models) and user data by using logic locking to safeguard

the algorithm and evaluating it in an encrypted form using

TFHE. Notably, the logic locking key, represented as a binary

sequence, is encrypted with the model owner’s private key,

providing mathematical security assurance. This is a stark

departure from conventional logic locking methods used for

untrusted foundries. Here, it should be mentioned that our

main idea could be implemented using garbled circuits, while

we assume TFHE as the underlying technique in this paper.

Also, it is important to mention that the proposed method

is a general-purpose secure computation approach including

sequential circuits, while its significance is discussed with

combinational circuit-based machine learning in this paper.

Meanwhile, as logic locking attacks have been thoroughly

studied, methods such as SAT attack and its extensions [10],

979-8-3503-9354-5/24/$31.00 ©2024 IEEE

6C-2

600

20
24

 2
9t

h 
A

si
a 

an
d 

So
ut

h 
Pa

ci
fic

 D
es

ig
n 

A
ut

om
at

io
n 

C
on

fe
re

nc
e 

(A
SP

-D
A

C
) |

 9
79

-8
-3

50
3-

93
54

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
A

SP
-D

A
C

58
78

0.
20

24
.1

04
73

83
1

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 

http://crossmark.crossref.org/dialog/?doi=10.1109%2FASP-DAC58780.2024.10473831&domain=pdf&date_stamp=2024-04-03


[11] could be applied to the proposed secure computation.

Thus, resistance to these attacks is crucial. This work focuses

on LUT-based logic obfuscation, as suggested by [12], [13],

stating that the number of LUTs and the replacement strategy

for LUTs can effectively enhance attack resistance.

Contributions: In brief, our contributions are as follows:

1) We introduce logic locking over TFHE as a novel general-

purpose secure computation approach that protects both

the algorithm and user data. The proposed protocol facil-

itates two-party private function evaluation (PFE) [14].

2) We suggest encrypting the logic locking key with TFHE.

Traditional logic locking relies on tamper-proof chip

protection to shield secret key values from attackers. Yet,

even with this safeguard, a malicious third party with

access to the locked circuit’s oracle could acquire the

correct key. Encrypting the logic locking key renders it

theoretically inaccessible to any third party, even those

with physical system access.

3) Our experiments confirmed that obfuscated algorithms

withstanding the SAT attack could be achieved with an

acceptable overhead concerning TFHE execution time.

4) We conducted a security analysis under the honest-but-

curious (HBC) model, wherein participants comply with

the protocol and unauthorized information acquisition is

prevented, substantiating our protocol’s security. Further-

more, we explored countermeasures for scenarios extend-

ing beyond the HBC model and carried out experiments

to assess their efficacy.

The rest of this paper is structured as follows. Section II

provides background information on TFHE, logic locking, and

SAT attacks for deobfuscation. Section III details the proposed

secure computation protocol, encompassing the protocol def-

inition, logic locking procedure, and security analysis. Sec-

tion IV presents the experimental results. Finally, Section V

concludes the paper.

II. BACKGROUND

A. Fast Fully Homomorphic Encryption over the Torus: TFHE
Homomorphic Encryption (HE) is a unique form of encryp-

tion allowing computations on encrypted data without needing

decryption [15]. Depending on the types of functions allowed

for computation, HE can be classified into various types.

Notably, Fully Homomorphic Encryption (FHE) supports the

evaluation of arbitrary functions through a process known as

bootstrapping, proposed in Gentry’s seminal work [16]. This

technique is used to mitigate the noise produced within the

ciphertexts during computations.

TFHE [2], [17] is one kind of FHE and can evaluate

arbitrary Boolean circuit over encrypted ciphertexts. One key

advantage of TFHE is its swift bootstrapping time relative

to other Fully Homomorphic Encryption (FHE) schemes. For

example, TFHE’s bootstrapping time approximates 10 ms,

whereas schemes like BGV with HElib can take minutes

[18]. Owing to the efficient bootstrapping process per logical

operation, the evaluation time of logic functions in TFHE, fre-

quently represented as combinational logic circuits, is directly

proportional to the number of logic operations (gates). This

feature is highly advantageous for efficient computations.

(a) original circuit

K0

K2

K1

(b) XOR-based obfuscation

K0

(c) MUX-based obfuscation

2-LUT

K K
0 1 2 3

KK

(d) LUT-based obfuscation

Fig. 2: Logic locking.

B. Logic Locking and SAT attack
Logic locking [4] is a technique used to protect Intellectual

Property (IP) from untrusted foundries. In this approach,

additional logic gates, known as key gates, are inserted into

the original function, as depicted in Fig. 2. These key gates

are controlled by a logic locking key, which is stored in on-

chip memory. The key gates employed in logic locking often

include XOR/XNOR gates [4], [19]–[21], MUX gates [20],

[22]–[24], or look-up tables [12], [25], [26]. Only when the

correct logic locking key is applied, does the Integrated Circuit

(IC) function correctly. Therefore, attackers attempt to steal the

logic locking key to gain access to the function.
The SAT attack [10] is a potent technique for retrieving the

logic locking key. It works by iteratively eliminating incorrect

keys using Distinguished Input Patterns (DIPs) – specific

inputs that yield different outputs for different keys. Through a

series of iterations, all incorrect keys can be eliminated within

seconds to minutes, even for large circuits. After identifying

each DIP, a new constraint is added to the SAT solver’s

satisfiability problem. This continues until the solver cannot

find a satisfying assignment. At this stage, any key that

meets all previous DIPs is considered the correct key for the

obfuscated circuit.

C. LUT-based Obfuscation
LUT-based obfuscation employs Look-Up Tables (LUTs) as

key gates in logic locking [8], [12], [13]. LUTs are commonly

used in FPGAs to implement arbitrary combinational logic

functions, with their truth-table values provided externally. In

LUT-based obfuscation, these truth-table values serve as the

logic locking key.
In this work, we utilize Look-Up Tables (LUTs) for ob-

fuscation due to several reasons. Firstly, LUT-based logic

locking demonstrates the potential to be modeled within a

Universal Circuit (UC) security framework as suggested in [5].

Secondly, as mentiond in [12], compared with other techniques

(e.g., XOR and MUX), LUTs can expand the truth-table size

exponentially with increased inputs. Furthermore, LUTs, in

replacing the original logic gates and locking the Integrated

Circuit (IC), preserve only a portion of the original design,

whereas XOR gate locking maintains the entire original design

while introducing key gates. Thirdly, in conventional LUT-

based obfuscation, logic locking for supply chain attacks

6C-2

601
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



with large LUTs results in significant design overhead in

power, performance, and area during silicon implementation,

as reported in [6]. However, the proposed method presents

the algorithm using logical expressions and evaluates the

logic circuit virtually using TFHE on computers. Therefore,

considerations related to silicon-related overheads, such as

power, and area, are deemed unnecessary in this context.

III. PROPOSED SECURE COMPUTATION PROTOCOL: LOGIC

LOCKING OVER TFHE

A. Definitions

The principal protocol considered in this paper is two-party

private function evaluation (PFE) [14]. Subsequent sections

provide thorough explanations of the protocol.

Definition of data owner and model owner: We define

the “data owner” as a user possessing their own computing

resources and input data, while the “model owner” refers to

an individual who possesses the protected algorithm (e.g., a

machine learning model). In the context of inference services

using machine learning, the model owner typically holds the

machine learning model that requires protection. Both the data

and model owners aim to perform their respective operations

with minimal disclosure of information about each other.

B. Assumptions for The Proposed Protocol.

we consider the honest-but-curious (HBC) model, assuming

that the attacker is either on the side of the data holder or

the algorithm holder. This model places limitations on their

behavior, implying that they are expected to act honestly but

may still be curious about the other party’s information.

C. Proposed Protocol

The protocol of the proposed logic locking over TFHE

consists of eight phases, as depicted in Fig. 3, and each phase

is explained in the following.

1) keyGen: the model owner generates a set of secret key

sk and public key pk.

2) Transmit: the model owner transmits pk generated in

step 1 to the data owner.

3) Obfuscate: the model owner obfuscates the function f
by LUT-based obfuscation.

4) Encryption: the model owner encrypts the truth table of

LUTs with the secret key sk and transmits the obfuscated

function, which consists of the encrypted truth tables and

a circuit netlist, to the data owner. The data owner also

encrypts the input data with the public key pk
5) Evaluation: the data owner evaluates the encrypted data

by evaluating the obfuscated function using the TFHE

ciphertexts and the circuit netlist.

6) Mask: The result obtained in step 5 is still encrypted,

and hence it must be decrypted by the model owner who

possesses the secret key sk. However, if it is sent to

the model owner directly, the evaluation result will be

leaked. Therefore, the encrypted result is masked with,

for example, one-time pad.

7) Decryption: the model owner decrypts the masked en-

crypted result using his secret key sk and transmits the

masked result to the data owner.

Data Owner Model Owner

1. KeyGen

secret key

public keypublic key
2. Transmit

Algorithm

Obfuscated Algorithm
3. Obfuscate

Obfuscated Algorithm

Encrypted input

5. Evaluation
Encryped result

Masked
Encrypted result

6. Mask

7. Decrypt

Masked
Encrypted result

Masked result

8. Demaskresult

4. Encrypt

input

Masked result

Fig. 3: Proposed protocol.

8) Demask: the data owner demasks the masked result in

step 7 and obtains the result.

D. Procedure of Logic Locking over TFHE

In this section, we explain the procedure of logic locking

over TFHE using Fig. 1.

1) Derive a logical expression of the algorithm to be kept

secure.

2) Map the algorithm, formulated as a logical expression, to

a LUT-based structure with function determined by LUT

truth table values. Leveraging established techniques from

FPGA logic mapping and minimization can facilitate this

process.

3) Encrypt the truth table values using the secret key.

Experimentally, circuits solely composed of LUTs are of-

ten SAT attack-resilient. Despite the multiplexer overhead

introduced by LUT-based logic mapping, we mitigate this by

converting some LUTs into primitive logic gates in the mapped

circuit, reducing primitive logic gate count and improving

TFHE evaluation time. This partial LUT mapping approach

is evaluated in Section IV.

E. Security Analysis

In this section, we analyze the security of the proposed

logic locking scheme over TFHE. We begin by discussing

the assumptions made in the security analysis. Following that,

we describe various potential attack methods that could be

employed against the logic locking scheme over TFHE.

1) Assumptions of security analysis: We assume that the

data owner, having physical access to the computational re-

source and the locked algorithm, cannot decipher the function

due to the model owner’s exclusive access to the secret key.

The data owner masks the encrypted result using techniques

such as a one-time pad, requiring decryption by the model

owner, who is unaware of the decrypted result. Under the

HBC model, the security of encrypted data, including input,

logic locking key, and all results, depends on the difficulty

6C-2

602
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



of decrypting ciphertexts in TFHE’s Chosen-Plaintext Attack

(CPA) setting. The robustness of LWE-based FHE schemes,

founded on established hardness assumptions, safeguards the

encrypted data.

2) Possible attack methods: We infer that only the model

owner knows the decrypted result, and potential attacks are

confined to methods excluding decryption of the logic locking

key. In the HBC model, the data owner may query to gain

the model owner’s algorithm. Thus, we consider the SAT

attack [10]―noted as the most potent against logic locking

methods in Section II-B―as a possible method. If the SAT

attack demands considerable execution time, it will likely fail.

In addition to the above, we should also consider the

oracle-less attack. A notable example of an oracle-less attack,

specifically dedicated to LUT-based obfuscation, is found in

[27]. However, [27] assumes that the original circuits are

synthesized for ordinary logic gates, and that some of the

gates are replaced with LUTs afterwards. On the other hand,

the proposed method starts with the circuit fully consisting of

LUTs. Therefore, the attack efficiency is unclear. Moreover,

reproducing this attack poses challenges due to the lack of

details about which learning model should be used to predict

the truth table. Addressing this issue is one of our future work.

3) Remark: When the function is obfuscated, it conceals the

type of machine learning model used, reducing the likelihood

of successful model extraction attacks. Also, numerous queries

might alert the model owner to a potential attack.

4) Attack beyond HBC model and potential countermea-
sure: Our protocol may be vulnerable to malicious data

owners beyond the HBC model, who could send the encrypted

logic locking key to the model owner for decryption. Several

countermeasures can be considered:

i) For every inference, re-synthesize the algorithm to gener-

ate a different LUT-based circuit and change the key pair.

This makes any decrypted logic locking key fragments

from previous circuits invalid. Although key generation

and circuit re-synthesis are costly for the model owner,

they aren’t always necessary as obfuscated circuits are

highly resistant to SAT attacks. Additionally, the small

output size of many inference models reduces the decryp-

tion size of the logic locking key per malicious inference

query, further decreasing the required update frequency.

This update frequency will be experimentally evaluated

in the next section. The feasibility of circuit re-synthesis

for this purpose will be addressed in future work.

ii) Enable verifiable computation in TFHE. This would allow

the model owner to verify whether the masked encrypted

result is malicious. We anticipate TFHE will support

this feature. Alternatively, garbled circuits could replace

TFHE, as they already support verifiable computation.

IV. EXPERIMENTS AND RESULTS

In this section, we conduct experimental evaluations of the

proposed logic locking over TFHE, focusing on both security

and performance aspects. For security evaluation, we measure

the execution time required to infer the correct key using SAT

attack as a metric, as discussed in Section III-E. Regarding

NN structure

Dataset

Logic expression

obfuscate (Sec. III.D)

obfuscated circuit TFHE
evaluation

SAT attack

train NN w/
LogicNets [31]

logic circuit

synthesize w/ ABC [32]

Fig. 4: Experiment flow.

performance evaluation, we measure the execution time of

TFHE and investigate the performance overhead introduced

by the logic locking mechanism.

A. Experimental Setup

We conducted evaluations on a system with an Intel Core i9-

10850K 10-core CPU @ 3.60GHz, 32GB RAM, and Ubuntu

20.04.2 LTS.

For security assessment, we employed the Satisfiable Mod-

ulo Theories (SMT)-attack tool [11] that integrates theoretical

solvers, facilitating complex modeling and stronger attacks.

Consistent with previous works [6], [8], we set a timeout of 5

days. If the solvers fail to identify the correct key within this

duration, we deem the attack as unsuccessful, confirming our

method’s security.

We utilized the Iyokan [28] framework for evaluating a

cryptographic logic circuit using TFHE, adopting its default

80-bit security parameters [17]. To our knowledge, Iyokan

provides the fastest execution time among TFHE frameworks.

We tested our method using a decision tree and Combi-

national Logic Neural Networks (CLNNs). The decision tree

model was trained with the UCI heart disease dataset [29]

using Python’s scikit-learn library [30], converted to a 14-bit

integer representation, and manually translated to a Verilog

format logic expression. CLNNs represent neural networks

as logic circuits, embedding the neural network parameters

directly within the logic circuit, a distinct characteristic of

this representation. For CLNNs, we employed LogicNets [31]

to encapsulate all neural network operations and weights

into logical expressions, output in Verilog format. We tested

two tasks from [31]: Jet Substructure Classification (JSC)

and Network Intrusion Detection (NID). These models were

selected to demonstrate the proposed protocol’s secure infer-

ence capabilities for machine learning models, although it is

applicable to other general algorithms.

B. Procedure and Implementation of Experiments

Fig. 4 outlines the experimental procedure validating our

secure computation protocol for CLNNs. We first trained

sparsely-connected, activated-quantized MLPs for the tasks

mentioned earlier using LogicNets PyTorch library. The train-

ing process involved 1000 epochs, a mini-batch size of 1024,

the ADAM optimizer, and a step-decay learning rate schedule

starting at 0.1. Subsequently, we automated the logic expres-

sion generation in Verilog format from the trained network

using a custom Python script. LogicNets’ output was then

mapped to 2-LUT and 3-LUT using Yosys-ABC [32].

6C-2

603
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



(a) NID-S (b) JSC-S

Fig. 5: Execution times of SAT attack and TFHE for different logic locking key bits.

Open-circle dots correspond to the strategy that selects LUTs near the primary output.

Fig. 6: TFHE runtime overhead vs.

circuit size with 100% LUT mapping.

TABLE I: Details of the chosen benchmarks.
Name Neurons (or Nodes) In Out Accuracy Circuit sizes

NID-S 593, 100 593 1 89.01% 50
NID-M 593, 256, 128, 128 593 1 89.62% 1,116
NID-L 593, 100, 100, 100 593 1 86.98% 860
JSC-S 64, 32, 32, 32 16 5 67.34% 4,056

DT 11 17 1 86.6% 206

Table I details the benchmarks used. Circuit sizes are com-

puted based on logic gates, considering gate type-dependent

TFHE execution time. In TFHE, NOT gates have negligible

impact on execution time, while 2-input MUX gates require

double the evaluation time compared to 2-input logic gates

like AND and OR. Thus, we calculate the circuit size as 2 ×
(# of 2-input MUX gates) + (# of 2-input logic gates).

For partial LUT mapping, we select LUTs from the pre-

mapped circuit. We re-synthesize the circuit with Yosys-ABC

[32], keeping selected LUTs and integrating AND, NAND,

OR, and NOT gates. Two selection strategies are employed:

random selection and near-output selection. For each logic

locking key bit, we conducted five trials, four using random

selection and one near-output selection.

The SAT attack tool [11] requires bench format netlists for

obfuscated and original circuits. We used a custom Python

script to convert Verilog to bench format. TFHE evaluation

was done using Iyokan [28] with the obfuscated netlist input.

C. Security Analysis against SAT attack

Fig. 5 displays the SAT attack execution times on obfuscated

NN circuits for NID-S and JSC-S tasks, illustrating variations

with the number of logic locking key bits. Evidently, the SAT

attack time extends with more key bits. For the NID-S task,

three-fifths of the 128-bit obfuscated circuits resisted the SAT

attack. In 144 and 176-bit instances, all obfuscated circuits

timed out during the SAT attack. In the JSC-S task, the SAT

attack timed out for obfuscations of 512 bits or more. When

the JSC-S circuit was entirely mapped with LUTs, the logic

locking key reached 15,584 bits, suggesting that such large-

scale obfuscation is unnecessary for SAT attack resistance.

The SAT attack resistance varies based on the LUT replace-

ment selection. For example, the SAT attack time for the 88-

bit NID-S task exhibited a three-order-of-magnitude difference

among five trials. The strategy selecting LUTs near primary

outputs (open-circle dots) outperformed the random selection

strategy (filled-circle dots), aligning with [33]’s report.

TABLE II: Execution times of SAT attack.
Name 88-bit key 144-bit key

NID-M 1.248× 103 s Timeout

NID-L 6.847× 103 s Timeout

DECISION-TREE 0.3109 s Timeout

Table II shows the SAT attack times for three other bench-

mark circuits. For these, we applied the LUT selection strat-

egy choosing LUTs near primary outputs. These benchmarks

achieved resistance to the SAT attack with 144-bit obfuscation.

D. Runtime Performance of TFHE

Fig. 5 shows the variation in TFHE execution time with

respect to logic locking key bits on NID-S and JSC-S tasks.

The execution time increases linearly with the key bits as the

circuit size expands linearly. Moreover, on the JSC-S task,

the LUT selection strategy choosing LUTs near the primary

output yields a shorter TFHE execution time than the random

selection strategy. This suggests that concentrating LUTs near

primary outputs allows more logic synthesis flexibility, leading

to smaller circuits.

We evaluated the overhead from LUT-based obfuscation,

including the TFHE execution time for the original unobfus-

cated circuit (zero key bits). In the NID-S circuit with only

LUTs (176 key bits), the runtime overhead is 4.08×. For 144-

bit obfuscation, the overhead decreases to 3.65×, and all five

trials resist the SAT attack.

For the JSC-S task with only LUTs (15584-bit obfuscation),

the overhead is 5.00×, mostly independent of circuit size as it

arises from LUT overhead over primitive gates. Interestingly,

for 512-bit obfuscation, the overhead is 0.877×, indicating

that the obfuscated circuit’s TFHE execution time is shorter

than the original circuit’s due to fewer LUTs. The logic

synthesis tool uses heuristics, as logic mapping is NP-hard,

so the observed reduction in circuit size could be due to such

side effects. Thus, our experiments empirically show that an

obfuscated algorithm representation, resistant to SAT attacks,

can be achieved with minimal overhead, potentially obscured

by logic synthesis result volatility.

Fig. 6 shows the overhead of LUT-based obfuscation in

TFHE runtime for various circuit sizes with ISCAS bench-

marks and others mentioned in the paper. It indicates that

the overhead remains between 3 to 5 times, suggesting the

obfuscation overhead is independent of circuit size.

6C-2

604
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



Fig. 7: Resilience against the SAT attack to partial leakage of

logic locking key from full LUT-based circuit (JSC-S).

E. Resilience to Partial Leakage of Logic Locking Key

As mentioned in Section III-E4, the proposed protocol

may be vulnerable to attacks beyond the HBC model. One

countermeasure is to generate a new LUT-based circuit with

a fresh pair of public and secret keys by re-synthesizing the

algorithm for each inference. However, this carries substantial

computational costs. Hence, we evaluated the tolerance to

logic locking key leakage against SAT attacks.

Fig.7 shows that even with 15,072 leaked key bits, the SAT

attack remains unsuccessful for the JSC-S task, with five trials

conducted using random key-bit selection. Fig.7 suggests that

updating cryptographic keys and obfuscated circuit is needed

only after every 3,000 inferences, as five bits, equivalent to

inference output bits, leak per inference. The high resistance

of the full-LUT circuit to SAT attacks allows for less frequent

updates. A similar pattern was observed with the smaller NID-

S task circuit, where 32-bit key leakage was deemed tolerable.

For both JSC-S and NID-S tasks, the required logic locking

key bits under partial key leakage (512 for JSC-S and 144 for

NID-S) are consistent with the results in Fig. 5.

V. CONCLUSION

In this study, we present a novel approach for protecting

both user data and algorithms in two-party PFE scenarios. We

introduce logic locking to obscure the algorithm, and TFHE

for processing encrypted user data using the encrypted logic

locking key. Our method’s security has been analyzed under

the honest-but-curious model. We applied this approach to

machine learning inference applications, specifically combina-

tional logic neural networks (CLNNs) and decision trees. Our

experiments demonstrate that the prepared benchmarks resist

SAT attacks. Further, we found that an obfuscated algorithm

representation resilient to the SAT attack can be achieved with

minimal TFHE runtime overhead.

ACKNOWLEDGEMENT

This work is supported by JST CREST Grant Number

JPMJCR19K5, Japan.

REFERENCES

[1] L. G. Valiant, “Universal circuits (preliminary report),” in Proc. ACM
symposium on Theory of computing, 1976.

[2] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

[3] A. C.-C. Yao, “How to generate and exchange secrets,” in Symposium
on Foundations of Computer Science, 1986.

[4] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of
integrated circuits,” in Proc. DATE, 2008.

[5] P. Beerel, M. Georgiou, B. Hamlin, A. J. Malozemoff, and P. Nuzzo,
“Towards a formal treatment of logic locking,” Cryptology ePrint
Archive, 2022.

[6] G. Kolhe et al., “Security and complexity analysis of LUT-based
obfuscation: From blueprint to reality,” in Proc. ICCAD, 2019.

[7] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Interlock: An
intercorrelated logic and routing locking,” in Proc. ICCAD, 2020.

[8] S. D. Chowdhury, G. Zhang, Y. Hu, and P. Nuzzo, “Enhancing SAT-
attack resiliency and cost-effectiveness of reconfigurable-logic-based
circuit obfuscation,” in Proc. ISCAS, 2021.

[9] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in Proc. HOST, 2019.

[10] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. HOST, 2015.

[11] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “SMT attack:
Next generation attack on obfuscated circuits with capabilities and
performance beyond the SAT attacks,” IACR TCHES, pp. 97–122, 2019.

[12] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using
reconfigurable logic barriers,” IEEE Design & Test of Computers, 2010.

[13] K. Juretus and I. Savidis, “Reduced overhead gate level logic encryp-
tion,” in Proc. GLSVLSI, 2016.

[14] V. Kolesnikov and T. Schneider, “A practical universal circuit con-
struction and secure evaluation of private functions,” in International
Conference on Financial Cryptography and Data Security, 2008.

[15] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[16] C. Gentry, A fully homomorphic encryption scheme. Stanford Univ.,
2009.

[17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
Proc. ASIACRYPT, 2016.

[18] V. Shoup and S. Halevi, “Bootstrapping for HElib,” Cryptology ePrint
Archive, Report 2014/873, Tech. Rep., 2014.

[19] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proc. DAC, 2012.

[20] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu,
and R. Karri, “Fault analysis-based logic encryption,” IEEE Trans.
Computers, vol. 64, no. 2, pp. 410–424, 2013.

[21] Y. Xie, C. Bao, Y. Liu, and A. Srivastava, “2.5 D/3D integration
technologies for circuit obfuscation,” in Proc. MTV, 2016.

[22] J. B. Wendt and M. Potkonjak, “Hardware obfuscation using PUF-based
logic,” in Proc. ICCAD, 2014.

[23] S. M. Plaza and I. L. Markov, “Solving the third-shift problem in IC
piracy with test-aware logic locking,” IEEE TCAD, vol. 34, no. 6, pp.
961–971, 2015.

[24] Y.-W. Lee and N. A. Touba, “Improving logic obfuscation via logic cone
analysis,” in Proc. LATS, 2015.

[25] S. Khaleghi, K. Da Zhao, and W. Rao, “IC piracy prevention via design
withholding and entanglement,” in Proc. ASP-DAC, 2015.

[26] B. Liu and B. Wang, “Embedded reconfigurable logic for ASIC design
obfuscation against supply chain attacks,” in Proc. DATE, 2014.

[27] K. Shamsi and G. Zhao, “An oracle-less machine-learning attack against
lookup-table-based logic locking,” in Proceedings of the Great Lakes
Symposium on VLSI 2022, 2022, pp. 133–137.

[28] K. Matsuoka, R. Banno, N. Matsumoto, T. Sato, and S. Bian, “Virtual
secure platform: A five-stage pipeline processor over TFHE,” in Proc.
USENIX Security, 2021.

[29] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.
[30] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[31] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “LogicNets: co-

designed neural networks and circuits for extreme-throughput applica-
tions,” in Proc. FPL, 2020.

[32] C. Wolf, “Yosys open synthesis suite,” 2016.
[33] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “LUT-

lock: A novel LUT-based logic obfuscation for FPGA-bitstream and
ASIC-hardware protection,” in Proc. ISVLSI, 2018.

6C-2

605
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 1000
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 4.83300
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1000
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 4.83300
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


