
1

Avoiding Soft Error-induced Illegal Memory
Accesses in GPU with Inter-thread Communication

Riku Iwamoto1 Masanori Hashimoto2
1Dept. Information Systems Engineering, Osaka University

2Dept. Informatics, Kyoto University

Abstract—A soft error caused by terrestrial neutrons poses
a threat to the reliability of safety-critical systems, such as
self-driving applications. These applications, often comprised of
neural networks, rely on graphic processing units (GPUs) due to
their requirement for massive parallel computation. While neural
networks inherently include redundant computation and possess
a certain level of error tolerance, detectable unrecoverable errors
(DUEs) can be more detrimental than silent data corruption
(SDC), as they can result in temporary service unavailability. This
study specifically focuses on addressing illegal memory access, a
primary cause of DUEs, and proposes a programming method
that can detect illegal addresses. In the single instruction, multiple
threads (SIMT) scheme, the data address is regularly calculated
based on the thread ID, and this regularity is exploited to
identify illegal addresses through inter-thread communication. To
evaluate the effectiveness of the proposed method, fault injection
campaigns were conducted for matrix multiplication, vector
addition, and transposition. The experimental results indicate
that the proposed method resulted in a reduction of the DUE rate
by 17.3%, 86.8%, and 87.1% for these respective operations.

I. INTRODUCTION

Graphics processing units (GPUs) are used to compute
neural networks and high-performance computing (HPC) ap-
plications thanks to their highly-parallel computing capability.
Weather forecasting and automated driving systems require
such high computing power, and the use of GPUs is being
advanced [1] [2]. Neural networks have achieved remarkable
results in several areas, such as object recognition, and are used
in automatic driving systems to detect pedestrians and other
objects. On the other hand, HPC requires long computation
times, which increases the likelihood of faults occurring during
execution. In both cases, the final results can be erroneous if
the values affected by a fault are used. Reliability is, therefore,
a vital metric in HPC systems and safety-critical systems such
as automated systems.

Soft errors are one of the factors that pose a threat to
system reliability. In a terrestrial environment, these errors are
primarily caused by neutrons originating from cosmic rays,
which can invert the stored values in memory elements. While
soft errors are not permanent failures and can be corrected
by rewriting the affected values, they can propagate when
incorrect values altered by soft errors are read and utilized.
This propagation can result in erroneous calculation results or
even program termination.

The effects of soft errors can be categorized into three types:
• Mask: These errors do not have any impact on the

program’s output.

• Silent data corruption (SDC): While the program termi-
nates normally, the resulting output is different from the
expected one.

• Detectable unrecoverable error (DUE): These errors cause
the program to stop or become unresponsive.

The severity of SDC or DUE depends on the nature of the
specific application. Neural networks, for instance, incorporate
redundant computations and exhibit robustness against com-
putational errors [3]. On the other hand, real-time performance
is crucial in automated driving systems, where it is difficult to
tolerate temporal service unavailability. To illustrate the impact
of DUEs in such scenarios, consider an automated driving
system that comes to a halt for one second due to a DUE. If
the vehicle is traveling at 60 km/h, it will cover approximately
16.6 meters during this time. Considering that the standard
distance and time between vehicles traveling at 60 km/h are
approximately 45 meters and 2 to 3 seconds, respectively, the
consequences of the system halting can be significant. In these
applications, the avoidance of DUEs is of utmost importance
to ensure safety.

The vulnerability of certain GPU microarchitectures to soft
errors has been investigated in the literature (e.g., [4]). To
mitigate the impact of SDC, error-correcting code (ECC) is
employed as a memory error correction mechanism capable
of rectifying single-bit errors [5]. By utilizing such memory
protection functions, the effects of SDC can be alleviated.
However, it is important to note that ECC primarily aims
to safeguard the contents written to memory and may not
directly address DUEs resulting from out-of-range memory
accesses with incorrect addresses. Besides, ECC can contribute
to reducing incorrect address computation. Neutron irradiation
experiments conducted on GPUs have revealed that DUEs
caused by memory accesses to incorrect addresses account for
40% to 50% of all DUE occurrences [6]. Hence, implementing
countermeasures to prevent illegal memory addresses is crucial
in order to mitigate DUEs in GPU applications.

Compute Unified Device Architecture (CUDA), developed
by NVIDIA, is a programming language used for developing
GPU applications. In CUDA, programs are executed using a
single instruction multiple threads (SIMT) approach, where
each thread executes the same program in parallel. A com-
mon example is vector addition, where multiple threads are
launched, and each thread computes a single element of the
vector. As the address to be loaded depends on each thread,
CUDA programs typically involve frequent calculations of
thread-dependent addresses.

This paper focuses on addressing out-of-range memory
accesses caused by soft errors and proposes a programming979-8-3503-4135-5/23/$31.00 © 2023 IEEE

20
23

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

O
n-

Li
ne

 T
es

tin
g

an
d

Ro
bu

st
 S

ys
te

m
 D

es
ig

n
(IO

LT
S)

 |
 9

79
-8

-3
50

3-
41

35
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IO
LT

S5
92

96
.2

02
3.

10
22

48
89

Authorized licensed use limited to: Kyoto University. Downloaded on September 12,2023 at 19:12:36 UTC from IEEE Xplore. Restrictions apply.

Listing 1: Example of thread ID usage.
1 int treadID = blockIdx.x * blockDim.x + threadIdx

.x;

2 C[threadID] = A[threadID] + B[threadID];

method to mitigate DUEs by detecting such accesses. The
main contribution of this work lies in providing a software-
level solution that reduces DUE occurrences by verifying the
correctness of memory addresses prior to accessing them. The
proposed method does not rely on redundant computation or
storage; instead, it leverages inter-thread communication for
address checking.

The remaining sections of this paper are organized as
follows. Section II provides an overview of related works. Sec-
tion III discusses the necessary preliminaries concerning GPU
computation and memory. Section IV presents the proposed
method for preventing wrong memory accesses. Section V
presents experimental results demonstrating the effectiveness
of the proposed method in reducing DUEs. Finally, Section VI
concludes the paper.

II. RELATED WORK

M. M. Goncalves et al. propose a method to reduce overhead
by selectively applying fault tolerance techniques to registers
based on their occupation and impact on performance [7].
D. A. G. G. de Oliveira et al. apply an algorithm-based
fault tolerance technique utilizing checksum vectors for matrix
multiplication on GPUs [8]. F. F. dos Santos et al. propose
a reduced-precision duplication-with-comparison method that
executes redundant copies in reduced precision to minimize the
overhead of duplication with comparison [9]. The following
two methods for neural networks are not specifically designed
for GPUs but are applicable to them. G. Li et al. propose using
the value ranges of activations as a symptom to detect SDC-
causing faults. L.-H. Hoang et al. propose utilizing a clipped
ReLU function [10]. The clipped ReLU function returns 0 if
the input x is too large, mitigating the impact of bit flips.
These papers primarily focus on mitigating SDC originating
from register values.

Itsuji et al. propose a software-based technique that con-
currently detects control-logic failures in GPUs by utilizing
signature computation and comparison within a running ap-
plication, while primarily maintaining its throughput [11].
While this work specifically focuses on control-logic failures
in GPUs, its objective is the mitigation of SDC. Existing works
mainly concentrate on SDC mitigation, and to the best of
the authors’ knowledge, explicit research on reducing DUEs
in GPUs has not been conducted. Although some techniques
developed for CPUs (e.g., [12]) may be applicable to GPUs,
their effectiveness should be evaluated specifically for GPU
implementations.

III. PRELIMINARIES

A. CUDA programming

CUDA programs operate through collaboration between the
host (CPU) and the device (GPU). The host side assumes con-
trol over the entire program, including tasks such as launching

functions to be executed on the device side and transferring
data. On the other hand, the device side carries out operations
that leverage the highly parallel computing capabilities of the
GPU. These operations on the GPU are executed in a SIMT
mode, where a single instruction is executed across multiple
threads simultaneously.

The function invoked from the host side running on the
GPU is referred to as a kernel function. When invoking a
kernel function, it is necessary to specify the block and grid
sizes. A block represents a group of threads, while a grid
represents a collection of blocks. Both the block and grid sizes
can be specified using three-dimensional values (x, y, z). Each
thread executes the same program, but built-in variables such
as threadIdx, blockIdx, and blockDim are utilized to calculate
the data address for each thread. This enables operations on
distinct data within different threads. Listing 1 presents an
example code snippet. Since the value of threadID varies for
each thread, each thread can access different addresses and
perform operations using distinct data.

A GPU is composed of multiple modules known as stream-
ing multi-processors (SMs). Each SM encompasses various
components, including the instruction cache, warp scheduler,
warp dispatcher, register file, and CUDA cores. At the software
level, an SM corresponds to a block, and one or more blocks
are assigned to an SM. A warp refers to a group of threads
allocated to a block, with a maximum of 32 threads per warp.
Within a block, each thread is assigned a lane number ranging
from 0 to 31. Instructions are shared among the threads within
a warp during the execution phase. In other words, threads
belonging to the same warp in an SM share a common program
counter and execute the same instructions.

B. GPU memory structure

Since a GPU executes a large number of threads con-
currently, multiple memories are provided to accommodate
the accessible range of each thread. Table I provides an
overview of the available memories and their respective access
restrictions.

• Registers: Registers are memory elements that are exclu-
sively accessible by each thread. The maximum number
of registers can be utilized per thread depends on the
GPU architecture.

• Shared memory: Shared memory is provided for each
streaming multi-processor (SM) and is thus shared among
threads within the same block. It can be shared with the
L1 cache and Texture caches in new GPU architectures.

• Global memory: Global memory is a memory component
accessible to all threads and is commonly used for data
transfer from the host due to its larger size.

• Constant memory: Constant memory is employed to store
constants and can be read via device functions but not
written to. During the execution of kernel functions, the
size of the block or grid is typically stored here. Constant
memory is accessible by all threads.

• Special registers: Special registers store specific variables
such as lane ID and block ID. They are read-only from
threads and serve special purposes.

Authorized licensed use limited to: Kyoto University. Downloaded on September 12,2023 at 19:12:36 UTC from IEEE Xplore. Restrictions apply.

Listing 2: Code example of vector addition.
1 #define NB 5

2 #define LEN 32

3 __global__ void vectorAdd(int *A,int *B,int *C);

4 int main(){

5 // pre-processing

6 vectorAdd<<<NB,LEN>>>(A,B,C);

7 // post-processing

8 }

9 __global__ void vectorAdd(int *A,int *B,int *C){

10 int tid = blockIdx.x * blockDim.x + threadIdx.x

;

11 C[tid] = A[tidy] + B[tid];

12 }

TABLE I: Memory access restrictions.
Memory User write Accessible range
(general-purpose) register OK within a thread
shared memory OK within a block
global memory OK within a GPU
constant memory not allowed within a GPU
special register not allowed unknown

Let us consider Listing 2, which presents the kernel function
vectorAdd, as a code example. In Line 10, registers, special
registers, and constant memory are utilized. Specifically, one
register is used to store the result of the tid calculation.
It is important to note that intermediate calculation results
are also temporarily stored in registers, even though they are
not explicitly shown in the source code. Access to special
registers is required to retrieve the values of blockIdx.x
and threadIdx.x. Copying data from a special register to a
general-purpose register necessitates the use of a dedicated in-
struction known as S2R, which is an instruction in the CUDA
assembly language (SASS). Constant memory is accessed to
retrieve the value of blockDim.x. This particular value of
blockDim.x is shared by all threads created by the kernel
function invoked in Line 6.

In Line 11, both global memory and registers are employed.
Similar to Line 10, registers are utilized to reference tid

and temporarily store intermediate calculation results. Global
memory is accessed to retrieve the values of A[tid] and
B[tid], and also to store the result in C[tid].

IV. PROPOSED METHOD

A. Idea

In CUDA programs, thread IDs are computed using built-in
variables, which are subsequently used to perform similar cal-
culations on different data in each thread. As a result, threads
within the same warp frequently access addresses that are
equally spaced or the same, starting from the thread in lane 0.
Therefore, instead of redundant multiple calculations such as
DMR (Dual Modular Redundancy) and TMR (Triple Modular
Redundancy), where address calculations are repeated in the
same thread, address values can be shared between threads
through inter-thread communication to verify if they have been
altered to invalid values.

Let us consider the example provided in Listing 1. When
accessing the address represented by A[threadID], the
threads within the warp have consecutive thread IDs, result-
ing in consecutive indices. For instance, let us examine the

! " # $ % $! $"&

$" $! #' #(#) " !&

$" $" $" $" $" $" $"&

! " # $ % $! $"&

!"#"$%"

&'(

)**!"&&

+),"

(a) No error case.

! "" # $ % $! $"&

$" $! #' #(#) "" !&

$" %" $" $" $" %" $"&

!"#$! " # $ % $! $"&

"%%&$''

&$($)*$

'+,

(b) Error case.

Fig. 1: Illustration of the proposed address checking, where
address(0) = 0 and d = 1.

addresses accessed when threads with thread IDs 0, 1, and 2
access A[threadID]. Assuming that the array A is of type
int (which is a 32-bit value with a size of 4), and considering
the starting address of the array to be 30, the addresses
accessed by each thread would be 30, 34, and 38, respectively.
In this manner, if the thread IDs are consecutive, the accessed
addresses are aligned at equal intervals. This characteristic is
leveraged to detect errors.

The address accessed by a thread with lane number k can
be calculated using the address address(0) accessed by the
thread with lane number 0. The relationship is given by the
following equation:

address(k) = address(0) + k ⇥ d, (1)

where d represents the size of the value type being loaded.
In the context of inter-thread communication, when a thread
with lane number k receives the address value, denoted as
receive(k), from another thread within the same warp, the
expression for receive(k) is as follows when the number of
threads in a warp is 2n and receive(k) is received from the
thread with lane number 2n � 1� k in the same warp.

receive(k) = address(2n � k � 1),

= address(0) + (2n � k � 1)⇥ d.
(2)

Then, let us consider the sum of Eqs. (1) and (2), sum(k),
as follows.

sum(k) = address(k) + receive(k)

= address(k) + address(2n � k � 1),

= (address(0) + k ⇥ d),

+ (address(0) + (2n � k � 1)⇥ d),

= 2⇥ address(0) + (2n � 1)⇥ d.

(3)

Now, we can observe that sum(k) is a constant value that is
independent of the lane number k. By comparing this constant
with the values obtained from other threads in the same warp,
we can determine whether the address accessed by each thread
is correct.

Fig. 1 illustrates the proposed address checking method. In
this example, we assume that address(0) = 0 and d = 1. If
the address accessed by lane #1 is incorrect and is 11, the sum
of the values from lane #1 and lane #30 would be 41, which
differs from the sum of 31 obtained by the other threads.

B. Overhead reduction

The basic idea presented in this section is to perform one
comparison and exchange operation for each memory access.

Authorized licensed use limited to: Kyoto University. Downloaded on September 12,2023 at 19:12:36 UTC from IEEE Xplore. Restrictions apply.

However, this approach can introduce significant overhead in
programs that have frequent memory accesses. To address
this issue, the following methods are proposed to reduce the
overhead by leveraging multiple addresses and loop unrolling.

1) Multiple arrays: First, let us discuss the handling of
multiple array addresses in a thread. Taking Listing 1 as
an example, as explained in Section IV-A, the address of
A[threadID] can be exchanged between the corresponding
threads in the warp and added together. As a result, the sum
in Eq. (3) becomes a constant value that is independent of
the lane number k. The same approach can be applied to
B[threadID] and C[threadID], but it would involve
repetitive calculations and operations. Therefore, we need a
method to handle multiple addresses simultaneously. In the
following discussion, we will focus on A[threadID] and
B[threadID] for simplicity.

Suppose that the thread with lane number k is access-
ing the address of A[threadID]. Let addrA(k) and
addrB(k) represent the addresses of A[threadID] and
B[threadID], respectively. By utilizing the addresses
addrA(0) and addrB(0) accessed by the thread with lane
number 0 and the size of the data type d, we can express
the sum addrA(k) and addrB(k), denoted as addr(k), as
follows.

addr(k) = addrA(k) + addrB(k),

= addrA(0) + k ⇥ d+ addrB(0) + k ⇥ d,

= (addrA(0) + addrB(0)) + k ⇥ 2d.

(4)

When this value is exchanged with the thread in lane number
2n � 1� k, receive(k) becomes as follows.

receive(k) = addr(2n � 1� k),

= (addrA(0) + addrB(0))

+ (2n � 1� k)⇥ 2d.

(5)

Therefore, the sum of addr(k) and receive(k) is expressed
by

sum(k) = addr(k) + receive(k),

= 2⇥ (addrA(0) + addrB(0)) + (2n � 1)⇥ 2d,
(6)

where sum(k) is a constant independent of k. Thus, even in
the case that a thread uses multiple addresses calculated using
the thread ID, the sum of the addresses in Eq. (6) can be
exchanged between the threads in the warp, and the sum of
the received values can be compared for equality within the
warp.

2) Loop unrolling: Next, consider operations on identical
arrays to which loop unrolling is often applied. Loop unrolling
is a method for speeding up the computation in loops. By
(partially) expanding the loop process, the number of branches
and conditional decisions can be reduced, and the computation
in the loop is speeded up. The following assumes Listing 3, a
code example of partially loop-unrolled matrix multiplication.
First, let us investigate whether the basic idea can be applied
to arrays A and B.

In the program of Listing 3, the thread with (tidx, tidy) =
(n,m) computes the elements (n,m) of the matrix C. Here,

Listing 3: Example code of partially loop-unrolled matrix
multiplication.
1 int tidx = blockIdx.x * blockDim.x + threadIdx.x;

2 int tidy = blockIdx.y * blockDim.y + threadIdx.y;

3 float tmp=0.0f;

4 for (int i=0; i<LENGTH; i+=4){

5 tmp += A[LENGTH*tidy+i] + B[LENGTH*i+tidx];

6 tmp += A[LENGTH*tidy+(i+1)] + B[LENGTH*(i+1)+

tidx];

7 tmp += A[LENGTH*tidy+(i+2)] + B[LENGTH*(i+2)+

tidx];

8 tmp += A[LENGTH*tidy+(i+3)] + B[LENGTH*(i+3)+

tidx];

9 }

10 C[tidx+LENGTH*tidy] = tmp;

LENGTH is a macro constant representing the length of one
side of the square matrix. The value of tidy is common within
the warp.

Denote the array element in the loop as
A[LENGTH*tidy+(i+t)], where t is an index (0 t 3)
specifying the unrolled statements. Noting the address of
A[LENGTH*tidy+(i+t)], the value of tidy is shared
within the warp, and the index is the same within the warp
as it does not contain any tidx. Therefore, the address of
A[LENGTH*tidy+(i+t)] can be compared.

Next, let us consider the address of
B[LENGTH*(i+t)+tidx]. Here, as t increments
by one, the array index value increases by LENGTH.
If the address at t = 0 is addrt=0, the sum is
4 ⇥ addrt=0 + (1 + 2 + 3) ⇥ LENGTH ⇥ d. When
the lane number is k, the sum of addresses sum(k) can be
written as follows.

sum(k) = 4⇥ (addrB(0)⇥ k ⇥ d)

+ 6⇥ d⇥ LENGTH,

= 4⇥ addrB(0) + 6⇥ d⇥ LENGTH

+ k ⇥ (4⇥ d),

(7)

where addrB(0) is the address of B[LENGTH*i+tidx] in
the thread with lane number 0. As before, when exchanging
the values with the thread in lane number 2n�1�k and adding
the received value, the sum becomes a constant independent
of k.

The method introduced in Section IV-B1 and the method
in this section are orthogonal and compatible, allowing them
to be used simultaneously. By summing up all the addresses
of arrays A and B in Listing 3 and comparing their sum for
equality within a warp, the number of comparisons within
the warp is reduced by 1/8, thereby contributing to overhead
reduction.

C. Implementation with CUDA

Thread-to-thread communication uses the
__shfl_xor_sync() and __match_all_sync()

functions available in compute capability 7.0 and above. The
exchange and comparison of values using these methods are
limited to threads in the same warp but have the advantage
that no address calculation is required. Listing 4 shows an
example implementation of address exchange and comparison
using these functions.

Authorized licensed use limited to: Kyoto University. Downloaded on September 12,2023 at 19:12:36 UTC from IEEE Xplore. Restrictions apply.

Listing 4: Implementation example.
1 unsigned long long addr = (unsigned long long) &A

[threadID];

2 unsigned long long receive = __shfl_xor_sync(

__activemask(), addr, WARPSIZE-1, WARPSIZE);

3 unsigned long long sum = addr + receive;

4 int isMatch;

5 __match_all_sync(__activemask(), sum, &isMatch);

In Line 1, the address of A[threadID] is stored in addr.
Line 2 exchanges the value of addr with other threads in the
warp and stores the received value in the variable receive.
In Line 3, the sum of addr and receive is stored in the
variable sum. Line 4 declares the variable that stores the
boolean value of the comparison result. Line 5 compares the
value of the variable sum within the warp.

Next, the functions and constants used in Listing 4 are
explained. The __activemask() function returns the lanes
owned by the warp to which the thread belongs, and when the
N th bit is 1, it indicates that the N th lane exists. WARPSIZE is
a macro constant representing the maximum number of threads
per warp, currently set to 32 for all architectures.

The function __shfl_xor_sync() is a function that
exchanges values with other threads in the warp. The argu-
ments, in order, specify the lanes involved in the exchange, the
values to be exchanged, the lane mask, and the lane width for
exchanging values. The lane mask is a value used to calculate
the lane number of the exchange destination. The destination
lane, destination lane, is calculated by applying the bitwise
XOR operation between the source lane, source lane, and
the lane mask, lanemask, as follows.

destination lane = source lane� lanemask, (8)

where the lanes can be exchanged in reverse order by setting
the lane mask to 31.

The function __match_all_sync() is used to perform
equality comparisons among threads in a warp. The function
takes three arguments: the lanes involved in the comparison,
the values to be compared, and the variables that store the true
and false values. The third argument will be true only if the
values of the second argument are equal across all participating
lanes in the comparison.

V. EXPERIMENTAL RESULTS

In this section, we show the execution results of the pro-
grams that avoid illegal memory accesses by error detection
and re-execution.

A. Experimental setup

The GPU used in the experiments is NVIDIA RTX A4000.
NVBitFI [13] was used for the fault injection experiments.
NVBitFI consists of two programs: a profiler and an injector.
A profiler is a tool for counting the number of instructions in a
dynamic sequence of CUDA programs. The injector uses the
counted instructions to perform fault injection. The injector
injects a fault into the destination register of the specified
instruction. NVBitFI specifies a predefined instruction group

and fault model at runtime. The instruction to inject a fault
is selected from the instructions belonging to the instruction
group. Since the random number threshold is determined based
on the percentage of instructions, the percentage of selected
instructions becomes equal to the percentage of executed
instructions after many fault injections. Four failure modeling
methods are provided: single-bit bit inversion, multiple-bit bit
inversion, fixed at 1, and fixed at 0. We injected single-bit bit
inversion.

Fault injection experiments using NVBitFI were performed
on programs with and without the proposed detection method.
The programs used for the experiments were as follows.
The total number of instructions and the percentage of each
instruction for the programs with and without the proposed
method are listed in Table II. The programs that do not
implement the proposed method start with “n”.

• Matrix multiplication (MxM): This program requires the
most frequent memory accesses among the prepared
programs. Therefore, it has the most load instructions
in Table II. Floating-point instructions are also more
frequent than in other programs.

• Vector addition (vectorAdd): Besides addressing compu-
tation, minimal numerical computation is included. Un-
like other programs, vector addition is one-dimensional
data. Then, the index calculation only uses thread IDs
and thus requires the fewest number of instructions for
address calculation.

• Matrix transposition (Transpose): This program only
loads matrix elements (n,m) and stores them in the
resulting matrix element (m,n). Then, it does not contain
any arithmetic operations except address computation.
Table II shows that the program consists of only IMAD
instructions for address calculation, load/store instruc-
tions (LDG, LEA, ULDC, STG), and move instructions
(MOV, S2R).

B. DUE reduction per one fault injection

We performed approximately 200,000 fault injection experi-
ments using NVBitFI for each program. The results are shown
in Table III. The errors detected and recalculated are counted
as masks.

The results indicate that the proposed method effectively
reduces the number of DUEs for matrix multiplication, vec-
tor addition, and matrix transposition to 58.6%, 12.5%, and
11.9%, respectively. It is noteworthy that the DUE reduction
is more significant in vector addition and matrix transposition
compared to matrix multiplication. In the case of matrix
multiplication, the instructions that resulted in DUEs due to
fault injection were IMAD and VOTEU instructions. The
inclusion of VOTEU instructions through the proposed method
accounted for 11.9% of the DUEs in the matrix multiplication
experiment, which explains the smaller reduction in DUEs for
that particular program. On the other hand, for vector addition
and matrix transposition, only IMAD instructions contributed
to the occurrence of DUEs.

Authorized licensed use limited to: Kyoto University. Downloaded on September 12,2023 at 19:12:36 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Numbers of instructions and proportions of individ-
ual instructions [%]. Programs starting with “n” corresponds
to normal programs without the proposed method.
Program MxM nMxM vectorAdd nvectorAdd Transpose nTranpose
#instructions 451,584 114,688 26,624 14,336 49,152 16,384
FFMA 7.26 28.57 3.84 7.14 0.0 0.0
IADD3 24.72 0.89 15.38 28.75 4.17 0.0
IMAD 21.32 4.46 23.08 0.0 27.08 25
LEA 0.00 0.0 0.0 0.0 0.0 12.5
SHF 0.00 0.89 0.0 0.0 0.0 0.0
MOV 0.00 1.79 0.0 14.29 0.0 12.5
ISETP 4.99 0.0 7.69 0.0 8.33 0.0
LOP3 4.08 0.0 3.85 0.0 6.25 0.0
SEL 2.04 0.0 3.85 0.0 4.17 0.0
SHFL 4.08 0.0 7.69 0.0 8.33 0.0
R2UR 2.04 0.0 0.0 0.0 4.17 0.0
LDG 14.51 57.14 7.69 14.29 2.08 6.25
STG 0.23 0.89 3.85 7.14 2.08 6.25
MATCH 2.04 0.0 3.85 0.0 4.17 0.0
ULDC 0.23 0.89 3.85 7.14 2.08 6.25
BRA 4.76 0.0 0.0 0.0 6.25 0.0
EXIT 0.23 0.89 3.85 7.14 2.08 6.25
BSSY 0.23 0.0 0.0 0.0 2.08 0.0
BSYNC 0.23 0.0 0.0 0.0 0.0 0.0
CALL 0.07 0.0 0.0 0.0 0.0 0.0
S2R 0.91 3.57 7.69 14.29 8.33 25
VOTE 4.08 0.0 3.85 0.0 6.25 0.0
VOTEU 2.04 0.0 0.0 0.0 2.08 0.0

TABLE III: Result of fault injection.
of Relative DUE

Programs executions Mask SDC DUE ratio [%]
MxM 210,000 151,489 52,121 6,390 58.6
nMxM 199,999 26,066 163,553 10,380 100
vectorAdd 209,989 177,725 25,380 6,884 12.5
nvectorAdd 199,987 32,435 105,307 62,245 100
Transpose 199,998 175,866 12,770 11,362 11.9
nTranspose 199,975 17,420 86,704 95,851 100

TABLE IV: Execution time of kernel function.
Runtime[us]

Illegal access detection Not applied Applied Increase
Overhead reduction Not applied Applied ratio
Matrix multiplication 9.82 37.70 13.86 1.41
Vector addition 5.60 6.37 5.92 1.06
Matrix transpose 8.12 8.73 8.45 1.08

C. Runtime overhead

Next, we evaluate the impact of the proposed method on
the execution time of the programs. The execution times of
kernel functions with and without the proposed method were
measured using the nv-nsight-cu-cli profiler. We also
examined the execution time when the overhead reduction
technique discussed in Section IV-B was not applied. The
results, obtained from the gpu__time_duration.sum

metric, are presented in Table IV.
The proposed method resulted in a 1.41x increase in ex-

ecution time for matrix multiplication, a 1.06x increase for
vector addition, and a 1.08x increase for matrix transposition.
The larger overhead in the matrix multiplication program is
due to the higher number of comparisons compared to vector
addition and matrix transposition. Since more comparisons
require frequent exchange and comparison of address values,
it leads to a longer runtime.

We next evaluate the overhead reduction introduced in Sec-
tion IV-B. The runtime of matrix multiplication is reduced by

TABLE V: Overall DUE reduction per program execution.
DUE reduction per

Program program execution [%]
Matrix multiplication 17.3

Vector addition 86.8
Matrix transpose 87.1

63.2%, while those of vector addition and matrix transposition
are reduced by 7.1% and 3.2%, respectively. Vector addition
and matrix transposition require fewer memory accesses per
thread, three for vector addition and two for matrix trans-
position. When the overhead is reduced, both comparisons
are performed only once, resulting in a small reduction in
the number of comparisons. In matrix multiplication, on the
other hand, the number of comparisons per thread is 65 for a
32⇥32 matrix without overhead reduction. When the overhead
is reduced, the number of comparisons is reduced to 9, which
is more effective in reducing the execution time compared to
the vector addition and matrix transposition cases.

D. Overall DUE reduction considering runtime overhead

Soft error occurrences are temporally probabilistic, meaning
that longer execution times increase the likelihood of encoun-
tering soft errors during program execution. To further analyze
this, we calculated the DUE rate per program execution and
examined the DUE reduction rate.

In the case of matrix multiplication, the execution time is
1.41 times longer, and the DUE ratio per fault injection is
0.586 times smaller, resulting in a DUE ratio per execution
that is 0.826 times smaller. This indicates that applying the
proposed method reduces DUE by 16.8%. Similarly, for vector
addition and matrix transposition, the DUE ratios per execu-
tion are 0.133 and 0.128 times, respectively. This corresponds
to DUE reductions of 86.8% and 87.1%, respectively.

VI. CONCLUSION

We proposed a method to avoid DUE caused by incorrect
addresses using inter-thread communication for error detec-
tion and kernel reruns. We applied the proposed method to
three programs and conducted software-level fault injection
experiments and evaluation of execution time. The fault in-
jection experiments demonstrated that the proposed method
successfully reduced the occurrence of DUEs in all programs.
Additionally, we observed that the proposed method increased
the program execution time by 6% to 41%. Furthermore, we
evaluated the reduction in DUE rate per program execution
and found that the proposed method can achieve up to 87.1%
reduction in DUEs.

ACKNOWLEDGEMENT

This work is supported by the Grant-in-Aid for Scientific
Research (S) from Japan Society for the Promotion of Science
(JSPS) under Grant JP19H05664 and by JST CREST Grant
Number JPMJCR19K5, Japan.

Authorized licensed use limited to: Kyoto University. Downloaded on September 12,2023 at 19:12:36 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Renesas, “Surround view,” 2023, https://www.renesas.com/us/en/appli-
cation/automotive/adasautonomous/surround-view.

[2] J. Michalakes and M. Vachharajani, “Gpu acceleration of numerical
weather prediction,” Parallel Processing Letters, vol. 18, no. 04, pp.
531–548, 2008.

[3] M. A. Neggaz, I. Alouani, P. R. Lorenzo, and S. Niar, “A reliability study
on cnns for critical embedded systems,” in 2018 IEEE 36th International

Conference on Computer Design (ICCD). IEEE, 2018, pp. 476–479.
[4] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerability

on gpgpu microarchitecture,” in 2011 IEEE International Symposium on

Workload Characterization (IISWC). IEEE, 2011, pp. 226–235.
[5] A. Lotfi, S. Hukerikar, K. Balasubramanian, P. Racunas, N. Saxena,

R. Bramley, and Y. Huang, “Resiliency of automotive object detection
networks on gpu architectures,” in 2019 IEEE International Test Con-

ference (ITC). IEEE, 2019, pp. 1–9.
[6] F. F. dos Santos, S. Malde, C. Cazzaniga, C. Frost, L. Carro, and P. Rech,

“Experimental findings on the sources of detected unrecoverable errors
in gpus,” IEEE Transactions on Nuclear Science, vol. 69, no. 3, pp.
436–443, 2022.

[7] M. M. Goncalves, I. P. Lamb, P. Rech, R. M. Brum, and J. R. Azambuja,
“Improving selective fault tolerance in gpu register files by relaxing
application accuracy,” IEEE Transactions on Nuclear Science, vol. 67,
no. 7, pp. 1573–1580, 2020.

[8] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6, pp.
518–528, 1984.

[9] F. F. dos Santos, M. Brandalero, M. B. Sullivan, P. M. Basso, M. Hübner,
L. Carro, and P. Rech, “Reduced precision dwc: An efficient hardening
strategy for mixed-precision architectures,” IEEE Transactions on Com-

puters, vol. 71, no. 3, pp. 573–586, 2021.
[10] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience

analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in 2020 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 2020, pp. 1241–1246.
[11] H. Itsuji, T. Uezono, T. Toba, K. Ito, and M. Hashimoto, “Concurrent de-

tection of failures in GPU control logic for reliable parallel computing,”
in 2020 IEEE International Test Conference (ITC), 2020, pp. 1–5.

[12] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante, “Soft-
error detection through software fault-tolerance techniques,” in Proceed-

ings 1999 IEEE International Symposium on Defect and Fault Tolerance

in VLSI Systems (EFT’99). IEEE, 1999, pp. 210–218.
[13] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler, “Nvbitfi:

Dynamic fault injection for gpus,” in 2021 51st Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),
2021, pp. 284–291.

Authorized licensed use limited to: Kyoto University. Downloaded on September 12,2023 at 19:12:36 UTC from IEEE Xplore. Restrictions apply.

