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Abstract— Deep neural networks (DNNs) in safety-critical
applications demand high reliability even when running on
edge-computing devices. Recent works on System-on-Chip (SoC)
design with state-of-the-art (SOTA) hardware artificial intel-
ligence (AI) accelerators and corresponding multi-bit-width
(MBW) convolutional neural network (CNN) generation strate-
gies show that MBW CNNs can effectively explore the trade-off
between network accuracy and hardware efficiency. However,
reliability has not been considered in such trade-off analysis, even
though highly quantized CNNs may elevate the impact of bit flips
in the hardware. Also, the reliability of the microcontroller and
its interface operating with the AI accelerator are not studied.
This work evaluates the reliability of DNN computation in an
SoC that includes a processor, SOTA AI accelerator, and NN
models highly optimized for computation efficiency using a neural
architecture search (NAS) method. Focusing on neutron-induced
soft error, which is the primary source of bit-flip errors in a
terrestrial environment, we perform fault injection and neutron
beam experiments. For these experiments, we prototype the SoC
on a flash-based FPGA platform, in which the configuration
memory is robust to neutron irradiation. Then, we analyze the
experimental data and identify vulnerable components in the
system. Furthermore, we evaluate how the SoC running different
NAS-optimized MBW LeNet5 networks impact the performance,
radiation sensitivity, failure rate of MBW accelerator, and crash
rate of the system on the FPGAs. Our results show that
instruction and data tightly coupled memory (I/DTCM) are the
most vulnerable parts and the control status registers (CSRs)
in our accelerator are the second most vulnerable component.
Moreover, MBW networks have higher susceptibility to critical
errors than single-precision networks, low-precision data are
more likely to affect the classification results, and the high bits
are more sensitive to faults.

Index Terms— Multi-bit-width, CNN, accelerator, NAS, relia-
bility, FPGA, SoC.
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I. INTRODUCTION

EDGE-COMPUTING devices integrating artificial intel-
ligence (AI) computation units are emerging as great

alternatives to old-fashioned devices that are operated by
human labor without automation or advanced technology in
recent years. Nevertheless, deep neural networks (DNNs)
containing hundreds of megabytes of weights [1] are usu-
ally difficult to be deployed into resource-constrained edge-
computing devices straightforwardly. Meanwhile, reliability is
a key foundation even for edging devices as safety-critical AI
applications increase. The reliability of edge devices, as well
as the trade-off between performance and AI accuracy, should
be taken into full consideration.

In most AI applications, the multiply-and-accumulate
(MAC) unit typically handles floating point (FP) or large
bit-width single-precision integer (INT) computations. How-
ever, constructing computation arrays with these require-
ments consumes significant resources, which is unsuitable for
edge-computing devices. Fortunately, taking advantage of the
approximate and resultant quantization-compatible features of
CNNs, NAS methods could be applied for data precision
reduction with limited accuracy loss [2], [3], thereby reducing
the memory footprint and the hardware resource consumption.
Therefore, combing NAS-based methods with MBW MAC
units is a promising direction for resource-constrained edge
applications. Here, based on the approximate characteristics of
CNNs, not all soft errors are catastrophic and greatly impact
the output of neural networks (NNs) [4], [5]. However, highly
precision-reduced NNs mean that each bit needs to carry more
information. Therefore, it is particularly important to analyze
the reliability of these multi-precision networks.

Moreover, in most low-power edging devices, SoCs, e.g., [6]
and [7], basically consist of a microcontroller and its periph-
erals, which is a prevalent trend in current products and
research. For AI applications, the hardware AI accelerator can
be integrated into the SoC as a peripheral [8], [9]. Depending
on the used IPs for the microcontroller and peripherals, black
box testing may be conducted for reliability analysis, and
some errors are not observable or analyzable. In this work,
to comprehensively analyze the reliability of the SoC system,
we adopt an open-source microcontroller (e.g., RISC-V and
MIPS) for white box testing. Besides, in addition to the
reliability of MBW CNNs, it is also essential to analyze the
weak points of the entire SoC with MBW accelerator and build
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high-efficiency error detection and mitigation techniques with
low overhead. Therefore, how to tackle these challenges in
edging devices deserves further exploration.

To answer the questions mentioned above from a white
box side, we perform a case study using a SOTA SoC design
that accepts NAS optimized LeNet5 with MNIST data set and
implemented into Microsemi MPF300T Eval Kit, a flash-based
FPGA. We analyze the reliability of our SoC by fault injection
(FI) and neutron irradiation experiments, aiming to provide
valuable insights and serve as crucial references for future
reliability-aware designs. The configuration memory in the
flash-based FPGA is robust to neutron irradiation compared
with SRAM-based FPGA [10]. Therefore, this FPGA-based
SoC implementation reproduces the susceptibility of any ded-
icated SoC chips as long as the flash-based FPGA chip has
sufficient resources and the board has required peripherals.
Namely, flip-flops and SRAMs in the processor and accelerator
are susceptible, while the hardware functionality defined by
configuration memories is not damaged by irradiation. This
paper aims to analyze the vulnerable parts in MBW CNNs
and the reliability of SoC with the MBW accelerator. The
main contributions are summarized as follows:

• Fault injection environment for SoC: A FI framework
is proposed to inject errors and analyze the error results
automatically with high efficiency.

• System-on-Chip with MBW accelerator: Using an
open-source lightweight RISC-V core as a foundation,
we construct an SoC with an MBW accelerator to create
a practical SOTA AI hardware platform. This platform
serves as a white-box solution for FI and radiation exper-
iments, enabling thorough analysis and optimization.

• Fault injection experiment for MBW Accelerator:
We perform 102.414 million FIs into weights in MBW
LeNet5 models with three different precision configu-
rations and similar operations in CSRs in the MBW
accelerator.

• Neutron experiment for SoC: We proceed with a 4-day
4-configuration neutron experiment. The conclusion is
that the RISC-V core, with the highest cross section
(1.2348e-6 cm2 and 1.7680e-6 cm2 in flash-based FPGA
and SRAM-based FPGA respectively) for critical errors,
is the most vulnerable part of the SoC, and about 72%
events in MBW accelerator are tolerable.

The remainder of this article is organized as follows.
Section II introduces backgrounds regarding NAS, the preva-
lent structure of MBW accelerator, FI framework, and soft
error mitigation techniques. Section III discusses the NAS
optimization and quantization strategy of MBW LeNet5 and
introduces the implementation of the FI environment for our
SoC. Section IV presents the FI experiment to evaluate the
error immunity performance of MBW LeNet5 and analyze
the reliability of the MBW accelerator using architectural
vulnerability factor (AVF)-based metrics. Section V presents
a neutron experiment and analyzes the cross section of the
entire SoC. Section VI discusses our work and related works
in soft error assessment and mitigation techniques. Finally,
section VII concludes this article and mentions a few possi-
bilities for future work.

Fig. 1. A subset of NAS for training MBW CNNs.

II. BACKGROUND

For safety-critical applications, soft errors need to be
detected and alleviated in both hardware and software, and
it is essential to reduce the probability of critical failures.
To make a comprehensive exploration of the reliability of
MBW applications in edging SoC devices, we build an SoC
with an up-to-date MBW accelerator for relevant experiments.
For this purpose, we survey the literature related to MBW NN
training strategies, MBW accelerators, and edging SoC in this
article.

A. MBW CNN Training and Reliability of Reduced Precision

NN is a mathematical model for emulating how the brain
works. NN is typically made up of a large number of neu-
rons. The neurons between every two adjacent layers are
interconnected, forming the basic structure of NN. Never-
theless, unlike traditional NN, CNN includes convolutional
layers as well as pooling layers, where these layers are
connected via sparse connectivity. Although CNN is quite
effective, it still consumes high computational power when
running on high-performance devices. To achieve low latency,
memory overhead, and power consumption, some researchers
have proposed that quantizing weights and activations into
low-precision data (e.g., INT8/4/2) is an effective approach
in edging devices in, e.g., [11] and [12].

In addition, the extremely low-bit quantization NNs
(e.g., binary NN [13]) often sacrifice the accuracy in exchange
for an improvement in energy efficiency [14]. However,
as MBW CNNs maintain the balance between model accuracy
and energy efficiency by assigning appropriate bit widths to
individual layers [15], it is feasible to deploy MBW CNNs
into edge devices. To realize high energy-efficiency design in
resource-limited edge devices, B. Lu et al. propose perfor-
mance predictors that can take energy consumption, inference
latency, and accuracy into consideration [16]. Nevertheless,
searching for the layer-wise bit-width of different layers in
deeper NNs remains challenging to obtain satisfactory NNs
automatically based on the above predictors. Fortunately, NAS
can solve this problem by automatically searching efficient and
low-latency MBW NNs with precision reduction as shown in
Fig. 1, and it also exhibits better performance than uniformly
aggressively-quantized networks [17]. Furthermore, NAS has
exhibited unprecedented performance on large-size NNs, such
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Fig. 2. Multi-bit-width multiply-and-accumulate (a) 2D D&C ST.
(b) SWP ST.

as accuracy-oriented tasks, and size-oriented tasks [18], which
means it is applicable to energy-efficient data processing in
edge devices [19].

Furthermore, to study the impact of data precision,
Basso et al. compare the reliability of FP16, FP32, and FP64
in Matrix Multiplication [20]. They observe that reducing
precision improves not only the GPU performance and effi-
ciency but also its reliability. In [21], Libano et al. deploy
MNIST CNN on FPGAs using FP32, FP16, and INT8. The
experiment shows that reducing the data precision in CNNs
can significantly improve overall reliability. The reliability
improvement comes from small memory usage. Libano et al.
report that binary quantization of weights in convolutional
layers leads to lower vulnerability factors, but increases error
criticality of misclassification [22]. The MBW NNs optimized
by NAS also encounter the increase of error criticality in our
FI experiment.

B. MAC and Dataflow in Multi-bit-Width Accelerator

To support MBW computations, a basic MBW MAC is nec-
essary. A review of multi-precision MAC is presented in [23].
Basically, two typical MBW MACs are 2D Divide-and-
Conquer Sum Together (2D D&C ST) and Subword-Parallel
Sum Together (SWP ST), as shown in Fig. 2. 2D D&C ST is
based on bottom-up strategy configured for one 8b×8b, four
4b×4b, and sixteen 2b×2b. Conversely, SWP ST is based on
a top-down strategy configured for one 8b×8b, two 4b×4b,
and four 2b×2b. Almost all MBW MACs are implemented
based on these two strategies.

2D D&C ST unit achieves multi-precision MAC operations
by adding low-precision multiplication units with configurable

shifters. Fig. 2(a) shows 2D D&C ST design for 8-bit, 4-bit,
and 2-bit modes, respectively. Each 2D D&C ST unit includes
16 basic 2-bit multiplications. According to the configuration
of shifters in different precision modes (e.g., 2bit, 4bit, and
8bit), these 16 shifted results are divided into 4 groups, and
the final result is obtained by summing them up. SWP ST
unit achieves multiple-precision MAC operations by splitting
one high-precision multiplier into multiple lower-precision
multipliers. Fig. 2(b) shows the SWP ST design. Compared
with 2D D&C ST method, the throughput of low-precision
cases is lower. SWP ST method sacrifices the utilization of
adders in low-precision computation, resulting in the wastage
of hardware resources. In general, in comparison to SWP
ST MAC, the control logic, including shifters, selectors, and
compensating logic, of 2D D&C ST MAC is more complex,
resulting in higher resource consumption. Thus, we adopt SWP
ST-based MAC as our baseline.

Furthermore, to achieve parallel MBW computations with
large volumes, some accelerators, including MBW processing
element (PE) array [24], [25] and configurable MBW data
flow [26], [27], are proposed. In addition, it is equivalently
important to schedule the data flow in the accelerator. Sys-
tolic array (SA) architecture has been introduced to improve
energy efficiency by utilizing data reuse and reducing memory
footprint of external memory [28]. Moreover, the demand
for high-volume parallel MAC operations in edge devices
has become an accelerated trend in academia and industry.
Thus, SA for accelerating AI computations deserves further
exploration.

Moreover, according to the data state in MACs, systolic
data flow can be classified as non-stationary type [29], [30]
and stationary type [31], [32]. Compared with the broadcast
array, SA has better timing and is more applicable for data
reuse. On the other hand, it consumes more flip-flops (FFs)
and control logic. In general, most designs are based on SA or
similar architectures. Overall, a well-designed systolic-based
accelerator should possess high-throughput capabilities and an
efficient data flow to deploy NNs on edge devices.

C. Fault Injection Framework

Fault injection is a standard technique for evaluating the
reliability of systems [33]. Any fault, whether transient or
permanent, can lead to application failures, potentially causing
disasters in our daily lives. A high-efficiency FI environment
is critical to evaluate the system’s reliability. FI techniques are
categorized into two types: 1) hardware-based (injecting faults
into hardware), and 2) software-based (simulating hardware
faults at abstract levels). No matter what kind of FI environ-
ment is deployed, the essence is to compare the differences
between the golden version and the dirty version to analyze
the system’s integrity. In addition, the experimental results of
hardware-based FI platforms [34] are closer to real situations,
while the deployment of software-based FI [35] platforms is
cheaper and more convenient for reliability analysis.

While both methodologies are applicable to a wide range
of applications, FI for accelerators can be directly realized
on FPGAs or simulated by code on computers. As the AI
accelerator is peripheral in SoC, the output of CNNs in the
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accelerator will not crash the entire SoC but produce some
mismatched outputs. It is important to note that mismatched
outputs can potentially lead to significant failures at the appli-
cation level, while the SoC itself continues to operate. On the
other hand, unacceptable CSR values can cause dead loops or
unresponsiveness in the SoC since CSR registers are used for
the control of AI accelerator. As a result, in the experiment,
we focus on analyzing (1) how the impact of faults leads to
silent data corruption (SDC) and (2) how misconfigured CSRs
cause detectable unrecoverable error (DUE) across our SoC.
Moreover, given the large size of NNs, it is crucial to develop a
highly efficient FI platform for conducting reliability analysis.

To study the reliability of CNNs, Xu et al. inject faults
into a processor and effectively stimulate the probability of
NN failure caused by soft errors while analyzing node data of
visual CNNs using Simics simulation platform [36]. Similarly,
Barbirotta et al. perform FI and analyze the reliability of
RISC-V cores on the UVM platform, relying on the co-design
of software and hardware platforms [37]. Paiva et al. propose
a comprehensive FI platform for CubeSats software based on
JTAG and UART interface [38], providing a good example of
FI on the hardware side. In addition, Mamone et al. present a
Python-based host computer software to replicate the effects
of single event upset (SEU) [39]. Overall, when analyzing the
reliability of an AI accelerator, a dedicated FI platform that
co-designs host software and hardware platforms is essential
to improve test efficiency and flexibility.

D. Soft Error Mitigation Techniques

Mitigating soft errors is accompanied by the reliability anal-
ysis of SoC. Related works in literature are implemented based
on redundant code and replicated modules. Triple modular
redundancy (TMR) is a very common and useful technique
in soft error mitigation, and it is adopted in many studies.
Wilson et al. [40] apply TMR techniques to a VexRISC-V
processor via triplicating all FFs, LUTs, BRAMs, and DSPs on
FPGAs, which achieve a 10× improvement in SEU-induced
mean fluence to failure but with a cost of 4× resource con-
sumption. Meanwhile, a popular mitigation technique at the
instruction level, introduced by [41], involves implementing
TMR to recover from soft errors occurring in the register
file, and triplicating the verification points. Although these
works can be regarded as good references, the high hardware
consumption is often unacceptable if the design aims for
industrial products. Additionally, register allocation technique
(RAT), which is a compiler-based software technique that
restricts the number of available CSRs when executing specific
functions [42], is also used in many safety-critical designs.
RAT reduces the effective bits exposed to radiation, con-
tributing to reliability improvement. RAT does not involve
code redundancy and is an architecture-independent approach.
Abich et al. [43] attempt to improve soft error reliability via the
adoption of two software-based mitigation techniques: Partial-
TMR (P-TMR) and RAT.

Another related work includes a fault-tolerant RISC-V pro-
cessor that incorporates TMR and Hamming code to protect
vulnerable parts [44]. Similarly, Cho [45] analyze the effects
of soft errors on two RISC-V cores: Rocket and Berkeley

Fig. 3. NAS flow of Multi-bit-width LeNet5.

Out-of-Order Machine (BOOM). Dos Santos et al. conduct
an irradiation experiment to assess the soft error susceptibility
of a multi-core RISC-V ASIC platform (GAP8) by executing
four simple algorithms and MNIST CNN [46].

Currently, although a number of soft error mitigation works
are proposed aiming for processor systems, there is no related
research that explicitly considers peripheral circuits, such
as AI accelerators and their interfaces. Especially, a high-
efficiency low-power SoC running AI applications is needed in
reliability-demanding applications. Therefore, to analyze and
enhance the reliability of SoC, constructing a 100% white-
box SoC with a SOTA accelerator is crucial, allowing for an
exhaustive exploration of all the details.

III. DESIGN AND IMPLEMENTATION OF
MULTI-PRECISION CNN ON FPGA

As discussed in section II-B, systolic data flow are widely
used in commercial products such as Google TPU. In this
work, we construct an SoC including a systolic-array-based
MBW accelerator [27] due to its high data reuse and low-
latency characteristics. To ensure the relevance of the afore-
mentioned analysis, it is essential to design a low-power SoC
specifically for reliability analysis. The following explains the
implemented SoC and MBW NNs.

A. NAS Optimized Multi-Bit-Width LeNet5

To evaluate how MBW data impact the reliability of CNNs,
we prepare three cases with different precision distributions.
The NAS flow based on differential NAS approach [27] for
training MBW LeNet5 is shown in Fig. 3.

First, we train LeNet5 on GPU and generate a full-precision
model with FP32 weights. Second, to get a single-precision
model of INT8 weights, we quantize all the FP32 weights
into INT8 and re-train it to maintain accuracy as much as
possible. In this case, we regard FP32 as INT8 ranging
from -128 to 127 with certain constraints (INT8 model).
Third, we apply this strategy on differential NAS to generate
optimized MBW LeNet5 automatically. The obtained model
consists of INT4 and INT8 (INT4/8 model). However, the
precision distribution of the generated MBW LeNet5 does not
contain INT2, indicating that INT2 data adversely affects the
performance of LeNet5. Conversely, this work aims to analyze
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TABLE I
PRECISION DISTRIBUTION ON THREE DIFFERENT MBW MODELS

TABLE II
RESOURCE UTILIZATION OF OUR SOC ON MICROSEMI MPF300T EVAL KIT

the reliability of comprehensive precisions, including INT2,
INT4, and INT8. Therefore, we introduce special constraint
items into the training method to generate a special case
(INT2/4/8 model) for LeNet5.

These three models are shown in Table I. INT4/8 model
achieves about 50% weight size reduction from INT8 model
with 3% accuracy loss. The differential NAS-optimized
method has a balanced trade-off between accuracy and weight
size. On the other hand, the top-1 accuracy of the INT2/4/8
model has a larger loss, and the weight size is even larger
compared with the INT4/8 model. Although this model will
not be adopted in terms of performance, we use it as an
aggressively-quantized MBW model for reliability analysis.

B. Multi-Bit-Width Accelerator Implementation

Our SoC platform incorporates the high-performance MBW
vector systolic accelerator [27] for FI and neutron experiments.
The MAC unit in this accelerator is based on a multi-precision
Booth (mp-Booth) multiplier based on the SWP ST method.
Also, a vector systolic dataflow is proposed to improve the
throughput of the whole system. Considering the available
resources in MPF300T Eval Kit, we build a 16 × 8 array,
which means that the parallelism of inputs is 16, 32, and 64 for
INT8, INT4, and INT2 respectively, and the number of output
channel is 8. The resource utilization is shown in Table II. Note
that a 64 × 32 PE array implemented on Xilinx ZCU102 [27]
achieves 721.5 GOPS on the NAS-optimized VGG16 network
on average, and the peek performance of the convolutional
layer can reach 764 GOPS for INT8, 1515 GOPS for INT4,
and 2574 GOPS for INT2, respectively. Thus, the adopted
MBW accelerator is competitive at this moment.

Fig. 4. Architecture of multi-bit-width accelerator.

Fig. 4 shows the architecture of the MBW accelerator.
The MBW DMA is used to interact with external memory
for data exchange of weights and activations. The operating
flow of our MBW accelerator is as follows: 1) We store
weights and activations in DRAM, 2) Once the controller
completes initialization, the MBW DMA reads data from
DRAM and loads it into corresponding buffers sequentially,
3) The data is then sent to PE array of the convolutional
unit or pooling unit, controlled by CSR values, 4) For pooling
unit, the outputs are transmitted back to DRAM through the
MBW DMA for further computations. For the convolutional
unit, the outputs are first sent to temporary buffers until the
accumulation operations are completed. Then, the final results
will be transmitted back to DRAM.
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Fig. 5. Block diagram of SoC.

This design involves configuring various parameters of
CNNs, such as the weight/activation addresses, model size,
and the number of slices, in CSRs. Once these parameters
have been set, one of the CSRs can be used to start the
computation. The accelerator then conducts the computation
according to these parameters, such as slicing the data into
multiple rounds of calculation. Once the computation is com-
pleted, the results are sent back to the external memory. The
accelerator then updates the CSR with a completion signal.
This completion signal can be used for various purposes, such
as triggering other processes or allowing the microcontroller to
retrieve the outputs. Using CSRs to manage the computation
process provides a convenient and efficient way to conduct
AI model computations. Additionally, it facilitates seamless
synchronization between the accelerator and microcontroller.

C. System on Chip Implementation

Fig. 5 shows the architecture of our SoC. This SoC
mainly consists of three components: 1) MBW accelerator,
2) HBirdv2 e203 RISC-V processor [47], and 3) DDR4
DRAM. HBirdv2 e203 is an open-source lightweight
32-bit RISC-V microprocessor with 2-stage pipeline, support-
ing RV32IMAC or RV32EMAC instruction set architecture
(ISA). E203 has a wealth of peripherals like UART, QSPI-
flash, JTAG, etc.

To provide fast and efficient access to instructions and data,
instruction tightly coupled memory (ITCM) and data tightly
coupled memory (DTCM) are equipped in e203. Prior to
the SoC design, we compare prevalent open-source micro-
controllers including Pulpino, HBirdv2 e203, Tiny RISC-V,
rocket, BOOM, etc. To make our SoC applicable for resource-
constrained platforms, we choose HBirdv2 e203, a pertinent
controller with low overhead and abundant peripherals.

We extend two groups of AXI ports on e203 to control the
MBW accelerator and access the DRAM. Similarly, we also
build two groups of AXI ports in our accelerator. These two
ports in the MBW accelerator are interconnected to the periph-
eral and memory bus in e203. In other words, to integrate
this accelerator into our SoC, we develop an AXI4-Lite bus to
control our accelerator, and an AXI4-Full bus to exchange data
with external memory (DRAM). E203 can directly configure
the CSRs in the accelerator via the AXI-Lite bus. The MBW
DMA can exchange data with DRAM automatically according
to CSR configuration. In short, this accelerator connected to
e203 is regarded as a peripheral with a DMA channel in
our SoC. Our accelerator and DRAM are extended from the
unused space of e203 for user customization. In addition,

TABLE III
KEY CSRS OF MBW ACCELERATOR. TOP HALF FOR
CONVOLUTION AND BOTTOM HALF FOR POOLING

Fig. 6. SoC implementation on MPF300T Eval Kit.

we allocate 32-bit registers for both convolutional and pooling
operations. The detail of key CSRs is shown in Table III.

In this SoC, the clock tree includes three domains. The
accelerator, DDR4, and e203 run at the speed of 100MHz,
400MHz and 16MHz respectively. An AXI-interconnect IP
is used to bridge these components for clock domain cross
(CDC) communications. Table II shows the resource utiliza-
tion. As e203 is a lightweight microprocessor, we only develop
a bare-metal program on e203 to control the whole SoC.

Thus, we have successfully constructed an SoC with the
MBW accelerator. The SoC is simulated, synthesized, and
implemented using Libero on Microsemi MPF300T Eval Kit
board as shown in Fig. 6. Then, we adopt three same FPGA
boards with the same Libero project but different weights and
configuration parameters for the following experiments.

D. Fault Injection Environment

For the reliability analysis of the MBW accelerator, it is
vital to develop a FI environment to reproduce the effects of
SEU, in particular single bit upset (SBU), focusing on the
weights, activations, states of the controller, and configuration
parameters of CNNs. In addition, logging the results and
saving them via host software for analysis is also necessary.

Our FIE is a hardware-software co-design. The SoC side of
FIE, which is developed by C language, works on the RISC-V
microprocessor e203, and the host side, developed by C++
language, works on the Qt platform as host software. The SoC
for AI is controlled by the Qt software that can configure FI
campaigns and record the experimental results. Also, our FIE
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Fig. 7. Fault injection environment for MBW accelerator.

Fig. 8. Fault injection flow.

is able to inject SBUs in different targets (e.g., the location
of weights, activations, and CSRs), and count errors in NNs
automatically. As shown in Fig. 7, the FIE is based on the
UART protocol between MPF300T and the computer. Firstly,
we define relevant data frames as FI commands and send them
to the SoC side via UART after initialization. Secondly, the
SoC side receives and decodes the commands. Thirdly, the
SoC side injects the fault into the target object via the system
bus based on the decoded FI commands. Fourthly, the poll
and trace module will get the injection results and send them
to the host side via UART. Finally, the host side retrieves all
the results and compares them with a golden copy. Besides,
the FIE can perform FI campaigns automatically, and all the
faults can be injected into desired bits of the data in designated
memory locations at given times. Meanwhile, the user has the
option to enable or disable this feature, allowing host software
to automatically restart the SoC in case of unresponsiveness or
when it enters a dead loop without sending completion signals
within a specified timeframe.

Fig. 8 depicts the FI flow of the whole system. Retrieving
the instructions from the non-volatile memory and loading
them into ITCM in RISC-V to initialize the MBW accelerator
and relevant peripherals (e.g., UART, GPIO) is the first setup
for the SoC. Simultaneously, the host side initiates the software
and builds a connection with our SoC. After building the
connection, the host side can send the FI commands to the

SoC side and wait for the feedback. Then, the SoC side will
execute the FI commands (bit-wise operations) and run the
AI benchmark after the completion of FI. During the running
period, the host side will poll one CSR to check whether the
testing of the benchmark is finished. Once the benchmark is
finished, the host side will record all the experiment results and
the SoC will remove the faults. Furthermore, our FIE supports
long-term FI experiments. So, if the FI commands contain
multiple error injections, the SoC will loop the process of FI
and run the benchmark periodically until all FIs are completed.

IV. FAULT INJECTION EXPERIMENT

A. Fault Injection Experimental Methodology

The fault injection experiment aims to assess the sensitive
parts in MBW LeNet5. To achieve this, we conduct an
exhaustive 3-month experiment for data acquisition. First,
we train the MBW LeNet5 using PyTorch with three dif-
ferent precision distributions, as explained in section III-A.
This allows us to create three models with varying weights.
Specifically, we have 61470, 30810, and 35737.5 bytes of
weights in these models as shown in Table I. Second, all the
weights, images, and configuration parameters for the MBW
accelerator and C program of RISC-V e203 are stored in
external flash memory on FPGA boards before the interaction
phase. Finally, we adopt our self-developed FIE to coordinate
with the MPF300T hardware platform for SBU simulation.

At the beginning of the SBU simulation, all the weights
and images will be transferred from external flash to DDR
memory under the control of the RISC-V processor. Then,
as described in section III-D, the processor will receive FI
commands from the host via UART and decode them. It will
then perform FIs on the corresponding weight data in DDR
memory based on decoded commands. Configuring CSRs will
activate the accelerator to perform model computations. Once
the computation is completed, it will output the results to
the host software and rectify the polluted weight data. The
above process will be repeated until all weight errors have
been injected. Namely, each bit in the weights is flipped
exhaustively one by one. Also, we randomly select 100 data
from the test dataset in the experiment, which means we can
get 49.176, 24.648, and 28.59 million dirty samples for these
cases, respectively. Besides, in this experiment, after linking
the FPGA board to our FI host software and initializing the
FI mode in FIE, the host software can coordinate with the
MPF300T board and collect and analyze all the prediction
outputs automatically.

The aforementioned experiment only focuses on FI to the
data in NNs. Meanwhile, we need to estimate the effect of
CSRs since CSR values can also be affected by radiation-
induced upsets. Therefore, we inject faults to some key CSRs,
as mentioned in section III-C. We execute the FIs similar
to the aforementioned experiment. Namely, we flip every bit
in correlated CSRs before starting the computation in the
accelerator and test them using the same 100 image data.

B. Fault Injection Experimental Results

Table IV lists FI experimental results to NN data. “Errors”
represents the misclassification of NNs due to SDCs, where no
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TABLE IV
FAULT INJECTION AT DIFFERENT BIT POSITIONS IN WEIGHTS.ERROR REPRESENTS MISCLASSIFICATION

OF NNS. ONLY SDCS, I.E., NO DUES ARE OBSERVED

DUEs are observed. We define Layer Architectural Vulnera-
bility Scoring (LAVS) and Overall Network AVS (ONAVS) to
analyze the reliability of weights throughout the entire model.
LAVS and ONAVS are the metrics that consider the duration of
each weight in the buffer, the averages of AVF across the layer,
and the number of network parameters. LAVS and ONAVS are
expressed as:

LAVS(l) = [Error(l)/Sample(l)] ∗ Dur(l) ∗ Weight(l),

ONAVS =

L∑
l=1

LAVS(l),

where l is the layer number, Error(l) is the total error number
in l-th layer, Sample(l) is the number of FI samples of
l-th layer, and Weight(l) is the bit number of weights in
l-th layer. Then, Error(l)/Sample(l) represents the average AVF
of l-th layer. One special treatment in LAVS and ONAVS is
that we multiply the averages of AVF by the weight duration,
Dur, of corresponding layers, respectively, for fair comparison
since a longer duration time means a higher probability of
having an upset in the accelerator. Here, as our accelerator’s
data flow involves data reuse, we provide the duration equation
in Table IV for reference. Also, LAVS and ONAVS include
Weight(l) since the larger number of weight bits experience
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TABLE V
CRITICAL ERRORS REGARDING CSRS IN MBW ACCELERATOR

more bit flips. With LAVS and ONAVS, the network error rate
per inference is expressed as ONAVS × (SEU rate [/bit/s]).
For a particular design, the SEU rate is identical, and hence
LAVS and ONAVS represent the NN vulnerability.

The main conclusions are: 1) MBW networks have higher
susceptibility to critial errors than single-precision networks.
The ONAVS parameters, error-to-second-to-bit (esb), of single
INT8 LeNet5, INT4/8 MBW LeNet5 and INT2/4/8 MBW
LeNet5 are 6.6667e-4 esb, 1.3537e-2 esb and 6.1227e-3 esb,
respectively. 2) The high bits, especially the sign bit, are more
sensitive to faults. In this experiment, around 77.1% SDCs
come from the high two bits.

These conclusions have not been explicitly addressed in one
paper, but have been mentioned in different contexts across
multiple papers. In the literature, Libano et al. prove that
low-precision layers heighten error criticality of misclassifi-
cation [22], aligning with our experiment. Additionally, some
studies demonstrate that reducing precision can enhance relia-
bility [20], [21]. However, merely reducing data precision does
not guarantee an improvement in reliability. In our experiment,
we observe that the LeNet5 model, being relatively small and
having limited data reuse, exhibits similar execution times with
different precisions. Meanwhile, the experimental results show
that MBW LeNet5 has a higher misclassification rate, several
hundred times greater than INT8 LeNet5. For larger networks,
low-precision NNs can achieve significantly lower latency,
several times faster than high-precision models (e.g., INT8 and
FP32 VGG16). However, if the ONAVS of low-precision NNs
is much higher than high-precision NNs, the low-precision
models may be less reliable. However, if the ONAVS of
low-precision NN is similar to high-precision NNs, low-
precision NNs are more reliable due to shorter data duration
in memory. In general, the reliability of low-precision NNs is
determined by multiple factors, such as hardware architecture,
dataset complexity, training strategy, and so on, rather than
simply by data precision reduction. Meanwhile, those factors
result in the difference of Dur in LAVS and ONAVS. Thus,
ONAVS can guide the network reliability exploration.

The FI experimental results of CSRs in the accelerator are
shown in Table V. “Acceptable range” of CSRs indicates that
the SoC can still perform the model calculation and output
the results, while “unacceptable range” indicates that the SoC

Fig. 9. Hybrid triple modular redundancy (a) Encoder. (b) Decoder.

cannot complete the model calculation, namely DUE errors.
Also, the parameter “Error Ratio” means the misclassification
ratio in overall errors. Unlike FI of weights, about 50% of CSR
tests can inflict misclassification errors. Meanwhile, about
40% of the tests can lead to unacceptable errors. The main
conclusions are: 1) the bit-flip of CSRs is far more sensitive
than that of weights in NNs, 2) data errors in the acceptable
range can lead to a high probability of misclassification,
3) error values in the unacceptable range cause the accelerator
to enter into a deadlock or hang the AXI bus.

C. Fault Tolerant Techniques

The above results of our FI experiment indicate that improv-
ing the reliability of the accelerator in safety-critical scenarios
is necessary. As mentioned in section IV-B, the accelerator
is highly sensitive to CSR values. Therefore, we directly
introduce the TMR method to CSRs to remedy this situation.

Moreover, the FI experiment indicates that higher bits in
data are more sensitive than lower bits. To improve the
reliability in low precision, we can introduce suitable mit-
igation techniques based on the data format stored in the
buffer. In the original accelerator, each INT8 data, each two-
packed INT4 data, and each four-packed INT2 data occupy
1-byte space. Exploiting this packing feature, we propose
a hardware-based hybrid TMR (HTMR) method compatible
with INT2 and INT4 computations to improve the reliability
of the accelerator. The basic idea of HTMR is bit-selective
TMR for INT2 and INT4 as shown in Fig. 9. Bits of C and D
in two INT2s and bits of A and B in one INT4 are triplicated.
Meanwhile, HTMR mechanism sacrifices the throughput of
INT4 and INT2 data. Namely, for each INT4 data or every two
INT2 data, there are 4 redundant bits per byte. In this modified
fault-tolerant design, each INT8 data, each INT4 data with
HTMR, or each two packed-INT2 data with HTMR occupy
1-byte space.

Fig. 10 shows the architecture of our MBW fault-tolerant
accelerator. For CSRs, we simply adopt the TMR method to
triplicate every CSR and vote on three redundant inputs to
determine final CSR values. As for data flow, we integrate
HTMR encoder/decoder modules into the accelerator without
significantly changing the data flow in our accelerator. HTMR
can effectively fix most data errors in three data paths:
1) from weight/activation buffers to PE units, 2) from PE units
to temporary buffers, and 3) from output buffers to DRAM.
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Fig. 10. Architecture of multi-bit-width fault-tolerant accelerator.

TABLE VI
RESOURCE OVERHEAD OF TMR_CSR AND HTMR IN ACCELERATOR

After integrating the HTMR units, the SDC events caused by
the SEU of weights in high 1 bit in INT2 and the SEU of
weights in high 2 bits in INT4 are diminished.

We pre-encode weights and activations into HTMRed for-
mat as shown in Fig. 9 and store these data in DRAM. All
encoded data will be sent to the HTMR decoder and distributed
to the PE array after being decoded. Regarding the pooling
unit, the outputs will be directly transmitted into Activation
HTMR (AHTMR) encoder. As for the convolutional unit,
since the final outputs cannot be calculated immediately,
we incorporate another group of AHTMR decoder/encoder
adjacent to temporary buffers for accumulation operations to
enhance the reliability of INT2 and INT4 cases. The mitiga-
tion technique can effectively reduce 72.72% weight-induced
errors in the INT4/8 model, and 74.93% in the INT2/4/8
model. The resource overhead required for applying TMR
CSR and HTMR techniques is shown in Table VI, where the
resource overhead is less than 9% of the entire SoC. Also, the
throughput of INT2 and INT4 will decrease by half due to the
transmission of TMR bits.

V. NEUTRON BEAM EXPERIMENT

A. Neutron Beam Experimental Methodology

As shown in the previous section, we analyze the reliability
of our accelerator using FI experiments. We have found that
the AVF of CSRs is significantly higher than that of weights,
and the FI of CSRs has a high probability to cause DUE
in the SoC. In addition, we need to evaluate the robustness
of the entire SOC in the radiation environment to make a
comprehensive comparison. For this purpose, this work adopts
a neutron irradiation experiment to evaluate the reliability
of our SoC including microprocessors, accelerator CSR, and
weights. The neutron irradiation experiment is an effective way

Fig. 11. Experimental setup for neutron irradiation at CYRIC, Tohoku
University.

TABLE VII
FOUR RELIABILITY CONFIGURATIONS FOR NEUTRON IRRADIATION

to evaluate the reliability of this SoC without any exceptions
and overlooking and can help identify potential vulnerabilities.
Thus, we can analyze the reliability of these components in
our SoC through this experiment.

We perform a 4-day quasi-monoenergetic neutron irra-
diation experiment at Cyclotron and Radioisotope Center
(CYRIC) at Tohoku University [48]. A 70-MeV proton source
produces the neutron beam, and the neutron beam has a flux
peak at the energy near 70 MeV. To cover INT8, INT4/8, and
INT2/4/8 models mentioned in section III-A, we prepare three
MPF300T boards that mimic ASIC SoCs thanks to radiation-
tolerant CRAM, namely FFs and BRAMs are sensitive to
radiation similar to ASIC SoCs. Moreover, to compare ASIC
SoC and SRAM FPGA-based SoC, we prepare one extra
Xilinx Genesys2 FPGA board running the INT4/8 model.
Meanwhile, due to the fact that SRAM-based device is sensi-
tive to radiation, it may accidentally change the configuration
information in CRAM. To mitigate this problem, we adopt
SEM (Soft Error Mitigation) to scan CRAM in real-time and
recover configuration errors caused by radiation. Fig. 11 shows
the board setup for the irradiation experiment.

To identify and analyze the vulnerable components of our
SoC and rank them according to severity, we build four
different reliability configurations using the control variable
method for comparison as shown in Table VII. Config. 1 does
not integrate any mitigation techniques and accumulates the
errors without resetting operations until the system crashes.
In Config. 1, we suspect the ITCM and DTCM SRAMs are
the most sensitive parts of the SoC. Since we do not refresh
the contents of these two SRAMs frequently, especially the
ITCM SRAM, they will accumulate errors continuously and
crash the SoC frequently, which increases the difficulty of
data collection. To remedy this situation, we build Config.
2 which could reset the SoC (i.e., RISC-V, Accelerator, DDR
and Bus interconnect) after each round of data collection.
On the basis of the experimental data in Config. 2, we discover
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TABLE VIII
EVENT STATISTICS OF THREE MODELS IN FOUR RELIABILITY CONFIGURATIONS

that ITCM and DTCM SRAMs still cause some critical errors
and errors in the CSRs in the accelerator can lead to dead-loop
or classification errors of NNs. To better estimate the vulner-
ability of SRAM in the e203 and the CSRs in the accelerator,
Config. 3 replaces the normal SRAM with TMR SRAM to
improve the robustness of the RISC-V core, where TMR is
selected instead of ECC for just implementation simplicity.
In comparison to Config. 2, we could identify the reliability
of RISC-V. In addition, Config. 4 replaces the normal CSRs
with TMR CSRs in our accelerator so that we can evaluate
the reliability of the entire system and analyze the error
contribution of CSRs when compared with Config. 3. Besides,
in the experiment, we only find 2 samples of misclassification
caused by weight/activation bit-flip in LeNet5. Then, we do
not build an AI accelerator with the HTMR mechanism in
this radiation experiment since enough events are difficult to
obtain for comparison.

When running the CNNs, not all errors can be regarded
as critical errors. Even though some outputs in middle layers
are not expected, the classification result is still correct. Here,
we identify four error classes: 1) Tolerable Core Event (TCE):
RISC-V core experiences some misbehavior, but it does not
affect the function of the NN application; 2) Tolerable Accel-
erator Event (TAE): classification result of a given image is
correct, but the middle outputs are not as expected; 3) Critical
Core Event (CCE): the RISC-V core runs away or crashes; and
4) Critical Accelerator Event (CAE): the accelerator has no
correct response or correct classification result. Furthermore,
we use the serial port to monitor all errors in the accelerator
(i.e., TAE and CAE), as well as tolerable errors in the RISC-V
core (i.e., TCE). When the RISC-V core encounters intolerable
errors and is not able to respond to the commands from host-
side software, we use the debug function in FPGA software to
monitor the RISC-V privilege level registers to detect the error.
This approach allows us to accurately identify and analyze
errors during the experiment and comprehensively understand
the SoC’s fault tolerance and reliability.

B. Neutron Beam Experimental Results

Table VIII shows the event statistical results. The flu-
ence data of four boards, ranging from 8.227e+6 n/cm2 to
1.563e+7 n/cm2, are also listed. Furthermore, the cross section
(cm2), which is the number of observed errors divided by
the entire irradiated neutron influence, is shown in Fig. 12.
In the experiment, we select a set of data from the MNIST
dataset that contains 100 image data as those mentioned in
section IV-A. We regard the testing of 100 images as one event

Fig. 12. Neutron cross section for four reliability configurations.

to make event statistics intuitive. In these four configurations,
Config. 1 corresponds to a conventional design and operation
without any countermeasures to soft errors, and the results
reflect the reliability of the original SoC. In Config. 2, we reset
our application after each sampling so that the RISC-V core
itself would not accumulate errors continuously. Moreover,
in Genesys2, even when we reset the programmable logic
circuit, the CRAM may accumulate errors since we do not
reload the bitstream to reconstruct the circuit. On the other
hand, even though we have adapted SEM interface IP into
Genesys2, the SEM IP itself has limited efficiency in scanning
and rectifying the error CRAMs of SRAM-based boards.
In fact, in Config .2/.3/.4, even if we reset the system, the
error with the highest proportion in SRAM-based FPGAs
is CAE, whereas this phenomenon does not occur in flash-
based FPGAs.

The results of MFP300T in Configs. 1 and 2 indicate that
the RISC-V core is more sensitive to the accumulated errors
than the accelerator, which comes from the observed large
cross section reduction of 81.59% in CCE from Config. 1 to
Config 2 in MFP300T. In the RISC-V core, the data in
I/DTCM determine the running of the application. When
the data in I/DTCM experiences SEUs and the errors are
accumulated, the SoC could crash easily. Meanwhile, after
deploying the TMR I/DTCM in the RISC-V core (Config. 3),
we find that the CCEs almost decrease to zero and the other
events also have a significant decrease. Namely, the errors in
the accelerator become dominant. Furthermore, after deploying
TMR CSRs into our design (Config. 4), the errors generated at
the accelerator decreased. The overall cross section is reduced
by 78.05% compared with Config. 1.

The observations indicate that the RISC-V core is more
vulnerable than the accelerator, and implementing mitigation
techniques (e.g., Error Correcting Codes (ECC), TMR) is nec-
essary for instruction and data memory to strengthen the SoC.
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TABLE IX
RELATED WORKS IN SOFT ERROR ASSESSMENT OF NN APPLICATIONS

In addition, applying mitigation techniques to these memories
could reveal the vulnerability of the interface between the
processor and accelerator. Besides, the impact of precision
differences in NNs is limited. Meanwhile, after deploying the
above-mentioned countermeasures, the accelerator errors are
dominant. In this case, implementing HTMR can effectively
improve the reliability of weights. Thus, it is up to the
specific application requirements to decide whether to deploy
the mitigation techniques listed above. Depending on the
criticality of the system and the level of reliability required,
a combination of these techniques may be necessary to ensure
the SoC’s overall reliability to potential faults.

VI. COMPARISON WITH RELATED WORK

Table IX lists the related works in soft error assessment of
NN applications. Even though these designs are realized on
different hardware platforms and have different architectures,
there are two main ways to improve the reliability of the
system: 1) using redundant mechanisms to repeat those crucial
bits, susceptible to errors or vulnerabilities caused by FIs or
radiation in AI applications, in vulnerable components and
2) reducing the usage of crucial bits in vulnerable components
exposed to radiation. When analyzing our SoC architecture
from a white-box perspective, it is important to select or
design appropriate methods that improve system reliability
while minimizing overhead. Therefore, as the data flow in our
accelerator is shareable at different precisions, we propose the
HTMR method to improve both the INT2 and INT4 cases.
Moreover, as I/DTCM in the microcontroller and CSRs in
the accelerator are the most vulnerable parts verified by the
irradiation experiment, we can adopt TMR or ECC methods to
these components to further improve the reliability of our SoC.
In summary, our efforts contribute to the development of SoC
design with accelerator architectures from a white-box per-
spective, prioritizing reliability in safety-critical applications.
Our research on the reliability analysis of SoC with MBW
accelerator provides valuable insights for designing reliable
hardware for AI applications.

VII. CONCLUSION AND FUTURE WORK

This paper assesses the reliability of a RISC-V-based SoC
with the MBW accelerator. The FI results show that CSRs are
the most vulnerable component in the accelerator, and the lay-
ers with INT2/4 data are more vulnerable than those of INT8
data since every bit of low-precision should carry more infor-
mation compared with that of high-precision. The results also
demonstrate that MBW networks are more fragile than single-
precision networks. Moreover, the high bits in low-precision
are more prone to the occurrence of misclassification errors.
From the hardware-based perspective, we propose an HTMR
method to improve the reliability of the MBW accelerator.
Even though the HTMR circuit can effectively eliminate the
72.72% and 74.93% errors generated by the INT4/8 model and
INT2/4/8 model, it will sacrifice half of the bandwidth and
SRAM use of INT4 and INT2 cases. Therefore, this trade-off
still needs to be taken into consideration.

In the neutron radiation experiment, we find that the RISC-V
core, especially the I/DTCM, is the most sensitive component
in the SoC. Moreover, the SBU of CSRs in our accelerator
can also cause critical DUE errors (e.g., dead loop, unre-
sponsiveness). Also, the effect of weights and activations has
the lowest cross section in the entire SoC. Hence, if an
extremely safety-critical AI application is not necessary for
edging devices, we could ignore the influence of weights
and activations in MBW CNNs since the weights are loaded
from external DRAM regularly and the activations are updated
frequently.

Future works will seek to improve the reliability of our SoC
with the MBW accelerator. We need to look into the errors
caused by the data path in the RISC-V core in detail during
instruction decoding and execution. We have three areas to
focus on. First, we will analyze and optimize the control flow
and data in the RISC-V core to attain fault tolerance with
low overhead. Second, we will optimize the data flow of our
accelerator by combining systolic and broadcast frameworks
to reduce FFs overhead and improve reliability. Lastly, we will
assess NAS-optimized MBW networks and improve their
reliability with a reliability-aware NAS algorithm.
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