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A B S T R A C T

A resource efficient hardware accelerator for Bayesian neural network (BNN) named B2N2, Bernoulli random
number based Bayesian neural network accelerator, is proposed. As neural networks expand their application
into risk sensitive domains where mispredictions may cause serious social and economic losses, evaluating
the NN’s confidence on its prediction has emerged as a critical concern. Among many uncertainty evaluation
methods, BNN provides a theoretically grounded way to evaluate the uncertainty of NN’s output by treating
network parameters as random variables. By exploiting the central limit theorem, we propose to replace
costly Gaussian random number generators (RNG) with Bernoulli RNG which can be efficiently implemented
on hardware since the possible outcome from Bernoulli distribution is binary. We demonstrate that B2N2

implemented on Xilinx ZCU104 FPGA board consumes only 465 DSPs and 81661 LUTs which corresponds
to 50.9% and 14.3% reductions compared to Gaussian-BNN (Hirayama et al., 2020) implemented on the
same FPGA board for fair comparison. We further compare B2N2 with VIBNN (Cai et al., 2018), which
shows that B2N2 successfully reduced DSPs and LUTs usages by 50.9% and 57.9%, respectively. Owing
to the reduced hardware resources, B2N2 improved energy efficiency by 7.50% and 57.5% compared to
Gaussian-BNN (Hirayama et al., 2020) and VIBNN (Cai et al., 2018), respectively.
1. Introduction

Neural networks (NNs) have emerged to demonstrate surpassing
human performances on several applications such as image recogni-
tion [1–3], object detection [4] or voice generation [5]. Encouraged by
these successes, NNs expand their application to risk sensitive domains
such as self-driving cars [6,7] and flight control [8]. However, for
such safety critical applications, making accurate predictions are not
enough, i.e., NNs are requested to provide confidence on their pre-
diction. Hence, Bayesian neural networks (BNNs), which are variants
of NNs that provide mathematically grounded ways for uncertainty
estimation on their prediction [9,10], attract increasing attention to
replace NNs in risk sensitive applications. Contrary to conventional
NNs where parameters are fixed during inference, BNNs treat them as
random variables each has own probability distributions. The outputs
of BNNs are also given as probability variables, which enables us
to estimate their uncertainty, i.e., the wide probability distribution
indicates the large uncertainty on it. Due to massive amount of com-
putation required for the BNN inference, its hardware accelerators are
intensively studied [11–13].

∗ Corresponding author.
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BNN accelerators can be classified into two categories in terms
of adopted algorithm: deterministic variational inference and Monte-
Carlo (MC) inference. The deterministic variational inference algorithm
has been recently developed in machine learning community [14,15].
The major advantage of this algorithm is to eliminate the need for
MC and thus is computationally efficient. Since NN inference involves
multiply-accumulate (MAC) operations, i.e., the outputs of preceding
neurons are multiplied by the corresponding synaptic weights followed
by accumulation, the accumulated activation follows a Gaussian dis-
tribution due to the central limit theorem (CLT). Knowing that the
network activation approximately follows a Gaussian distribution, all
we have to propagate are mean and variance of activations since a
Gaussian distribution is fully described by using up to the second mo-
ments. FPGA-based sampling-free BNN accelerator has been proposed
in [13], which demonstrated 4.07× higher throughput compared with
the conventional BNN accelerator. To simplify implementation, their
work replaced ReLU non-linearity with quadratic ones. Although their
experiment on MNIST dataset demonstrated that replacing ReLU with
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quadratic non-linearity causes very limited accuracy drop, our repro-
duction experiment revealed that BYNQNet achieves the classification
accuracy of only 11.7% on CIFAR10, which is unacceptably low.

The MC inference, i.e., repeating forward passes with sampling pa-
rameters from the corresponding distributions to approximate the com-
plex distributions of activations, is more flexible in terms of network
structures and are successfully applied for various applications [16–18].
Since NNs have huge number of synaptic weights, increasing through-
put of Gaussian random number generator (GRNG) is of great inter-
est when considering the acceleration of MC inference. VIBNN [11],
which is a prior work in this direction, employed a CLT-based GRNG
which generates Gaussian random numbers (GRNs) by adding together
128 random bits generated by a linear shift feedback register (LFSR).
However, naive implementation of CLT-based GRNG requires an accu-
mulator for each GRNG, which significantly increases hardware cost.
Hence, VIBNN focused on the locality of LFSR, i.e., only the bits on tap
locations are updated at each iteration, and proposed to exploit a tiny
accumulator which keeps track the changes of random bits on tap loca-
tions. More recently, another approach to improve resource efficiency
of GRNG has been proposed in [12], where the GRNs were generated
by using an inverse transform sampling method. By exploiting the error
tolerance of NNs to the reduced numerical precision, [12] adopted 6-bit
GRNGs which can be efficiently implemented by using 6-input look-up-
table (LUT) on Xilinx 7 series FPGA. As the result, [12] showed that
a single GRNG can be implemented by using only 3 slice LUTs while
VIBNN implemented on the same FPGA required 12 slice LUTs.

In this paper, to further improve the resource efficiency of the
BNN accelerator, we propose a novel BNN accelerator on FPGA which
exploits Bernoulli random number generator (BRNG) instead of GRNG.
Our proposal is based on the observation that the MAC output follows
Gaussian distribution according to CLT and thus we can choose ar-
bitrary statistical distributions instead of Gaussian which are suitable
for hardware implementation. Our proposed accelerator named B2N2,

ernoulli random number based Bayesian neural network accelerator,
enerates samples from Bernoulli distributions whose parameters are
djusted so that the means and variances of original Gaussian distribu-
ions are conserved. Contrary to VIBNN [11] or LUT-based GRNGs [12]
hich require dedicated accumulator or LUT on each GRNG, B2N2

xploits MAC operations performed during NN inference as a part of
GRNG. The difference between the conventional Gaussian random

umber based BNN (Gaussian-BNN) accelerators and B2N2 is illustrated
n Fig. 1. Note here that a random number generator (RNG) of B2N2

omposed by only a BRNG and an MUX while the Gaussian-BNN
ccelerator requires a GRNG, a multiplier, and an adder for shifting
nd scaling unit GRNs.

B2N2 implemented on ZCU104 FPGA board requires only 465 DSPs
nd 88040 LUTs, which correspond to 50.9% and 14.3% reduction
ompared to Gaussian-BNN accelerator [12] carefully reimplemented
n the same FPGA board for fair comparison. We further demon-
trate that B2N2 achieved energy efficiency of 72.9 images/J, which
orresponds to 7.50% improvement.

Followings summarize the contributions of this paper.

• To the best of our knowledge, this is the first BNN accelerator
on FPGA achieving a practical performance on CIFAR10 dataset
which is more practical than MNIST used in the conventional
works.

• B2N2 implemented on ZCU104 board achieves 50.9% and 14.3%
reduction of DSP and LUT usage compared to Gaussian-BNN
accelerator [12] reimplemented on the same board for fair com-
parison.

The rest of this paper is organized as follows. In Section 2, we
rovide the preliminaries required to introduce B2N2, followed by the
etail of B2N2 in Section 3. The software implementation of B2N2 is

compared with Gaussian-BNN in Section 5. Then, in Section 4, B2N2 on
ZCU104 board is compared with the Gaussian-BNN. Finally, concluding
2

remarks are provided in Section 6. a
. Preliminaries

.1. Bayesian neural network

BNN is an extension of NNs that can model uncertainties of pre-
ictions. For a general Bayesian model, we are interested in finding
he posterior distribution over the weights of 𝐿-layered network, 𝑾 =
𝒘1,𝒘2,… ,𝒘𝐿), given the training data, 𝑿 = (𝒙1,𝒙2,… ,𝒙𝑀 ), and the

target label, 𝒀 = (𝑦1, 𝑦2,… , 𝑦𝑀 ). Here, 𝒘𝑙 is the 𝑁𝑙 × 𝑁𝑙−1 weight
matrix of 𝑙th layer having 𝑁𝑙−1 input and 𝑁𝑙 output nodes, 𝒙𝑖 is a 𝐷-
dimensional input vector, and 𝑀 is the number of training samples. By
using the Bayes’ theorem, the posterior distribution can be represented
by the combination of the likelihood and the prior distribution:

𝑃 (𝑾 |𝑿) =
𝑃 (𝑿|𝑾 )𝑃 (𝑾 )

𝑃 (𝑿)
. (1)

n practical applications, this posterior distribution is not tractable and
ence the variational inference technique has been developed to approx-
mate the posterior distribution, i.e., 𝑃 (𝑾 |𝑿) ≈ 𝑞(𝑾 |𝜽), where 𝑞(⋅|⋅) is
variational posterior distribution and 𝜽 is variational parameters.

For simplicity, a Gaussian distribution is usually employed for the
ariational posterior distribution. Hence, an (𝑖, 𝑗)-element of 𝒘𝑙 can be
btained by

𝑙
𝑖𝑗 = 𝜇𝑙

𝑖𝑗 + 𝜖 ⋅ log
(

1 + exp
(

𝜌𝑙𝑖𝑗
))

, (2)

here 𝜖 is a random variable sampled from the unit Gaussian distribu-
ion, and 𝜇𝑙

𝑖𝑗 and 𝜌𝑙𝑖𝑗 are the variational parameters. During inference,
e perform the forward propagation repeatedly with randomly sam-
led network weights to approximate the statistical distribution of
etwork outputs:

(𝑦|𝒙,𝑿, 𝒀 ) ≈ 1
𝑁

𝑁
∑

𝑛=1
𝑔(𝑦,𝒙,𝑾 (𝑛)), (3)

here 𝑔(⋅, ⋅, ⋅) is the network function and 𝒙 and 𝒚 are network input
nd output, respectively. 𝑾 (𝑛) is 𝑛th sample drawn from 𝑞(𝑾 |𝜽). Using
enerated samples, we can evaluate the uncertainty of the classification
y several metrics such as the entropy defined by

[𝑦|𝒙,𝑿,𝒀 ]=−
∑

𝑐
𝑃 (𝑦=𝑐|𝒙,𝑿,𝒀 )log𝑃 (𝑦=𝑐|𝒙,𝑿,𝒀 ). (4)

BNN is capable of reporting the uncertainty in the network output,
hich is the distinct advantage of BNN, but it involves a large amount
f computation since the forward propagation is repeated 𝑁 times to
ake each prediction. Hence, hardware accelerators for BNN inference
ave been intensively studied. Due to the frequent usage of GRNs in
he BNN inference, developing high-performance yet efficient GRNGs
ave been of great interest for the hardware acceleration of BNN.

.2. Gaussian random number generators

A typical GRNG is composed of two components: a uniform random
umber generator (URNG) and a converter that transforms the uniform
andom numbers (URNs) to GRNs. Contrary to cryptographic applica-
ions where randomnesses are the most important, quasi-random se-
uences are sufficient for BNN inference and thus an LFSR is commonly
dopted for URNG.

For the conversion of URNs to GRNs, several algorithms have been
roposed, which includes Box–Muller method [19], CLT-based method,
nd CDF inversion method. Box–Muller method has been one of the
ost popular method for GRNs generation. It applies a series of mathe-
atical functions such as sine and cosine on URNs to obtain GRNs. The

dvantage of this method is that it has no branching or looping and
ence it can produce uncorrelated GRNs every steps, which is suitable
or implementation on GPU-like architecture where massive amount of

rithmetic units are available.
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Fig. 1. (a) Gaussian-BNN accelerator and (b) proposed B2N2. Even if weights are sampled from Bernoulli distributions, the accumulating operations make the resulting activations
to follow Gaussian distribution.
Considering the error tolerance of NNs, on the other hand, less
accurate yet efficient methods are more desirable. Hence, VIBNN em-
ployed the CLT-based method [11] which exploits the fact that mean
of 𝑛 independent random variables will follow Gaussian distribution
when 𝑛 is sufficiently large. The major advantage of this method is
that it requires only add and shift operations, which can be efficiently
implemented with limited amount of hardware resources. However, the
accumulation of hundreds of bits still requires considerable amount of
hardware resources. Hence, [12] adopted the CDF inversion method
where GRNs were generated by applying the inverse Gaussian CDF
on URNs. Since computation of inverse Gaussian CDF on hardware is
difficult due to its strong non-linearity, [12] introduced lookup table
(LUT) approximation. Further, they demonstrated that the bit precision
of GRNs can be safely reduced down to 6-bit so that the LUT can be
efficiently implemented by using 6-input LUT primitives integrated on
Xilinx 7 series FPGA.

Note here that above GRNGs generate uniform GRNs, i.e., the mean
and variance are fixed to be zero and one, respectively. Hence, we
still need additional adder/multiplier to generate GRNs having desired
means and variances, which still requires huge hardware resources.

3. Proposed method

3.1. B2N2 architecture overview

In this section, we propose an efficient BNN accelerator named
B2N2. Fig. 2 illustrates the entire architecture of B2N2 which consists
of on-chip BRAMs and processing elements (PEs). We employed a
streaming pipelining architecture, where each PE is responsible for the
computation of single convolutional layer, to increase the inference
throughput.

3.2. PE design

Each PE has an im2col unit, weight generators (WGs), and a matrix
multiplication (MM) unit. Input feature maps are given in channel-
major manner to avoid data duplication while realizing continuous ac-
3

cessing pattern for increased inter PE communication bandwidth [20].
The im2col unit extract image patches from the input feature stream
and rearrange pixels so that the convolutional operations can be per-
formed with the MM unit [21]. The im2col unit is implemented by
using a shift register and a set of multiplexer units (MUXes). The shift
register sequentially reads a pixel value from the input feature map
stream while shifting out the last pixel. Then, MUXes select appropriate
items from the shift register to form an internal stream of input pixels
fed to the MM unit. The MM unit has multiple pairs of a multiplier
and an accumulator each of which is responsible for computing a
single output channel. The weight parameters are also rearranged in
channel-major manner and stored in on-chip BRAMs.

Listing 1 shows the pseudo-code of PE for convolutional layer,
where kernels are convolved over the input image with specific stride
and padding. When performing high-level synthesis of code contain-
ing loops, pipeline directives can be added to significantly improve
throughput. However, when adding pipeline directives to nested loops,
the inner loops are automatically unrolled completely, and there is a
risk that they will not fit into the limited FPGA resources. Therefore,
in this study, we chose to fully expand only the innermost loop6.
Moreover, since extra clock cycles are required to enter and exit loops,
we flattened the loops. Loop flattening refers to the conversion of
multiple loops into shallowly nested loops. For the description in the
Listing 1, flattening Loop 1 to Loop 5 yields the description in the
Listing 2, which is fed to Vivado_HLS to obtain the RTL of PEs.

Listing 1: Pesudo-code of PE design for convolutional layer
Loop1 : for i in 1 . . . input _channel // i n p u t image channe l

Loop2 : for j in 1 . . . width // p i c t u r e width
Loop3 : for k in 1 . . . height // p i c t u r e h e i g h t

Loop4 : for l in 1 . . . f i l t e r _ s i z e _ x // f i l t e r x d i r e c t i o n
Loop5 : for m in 1 . . . f i l t e r _ s i z e _ y // f i l t e r y d i r e c t i o n

Loop6 : for n in 1 . . . output_channel // ou tpu t image channe l
output [ j ][ k ][n] += weights [ i ][ l ][m][n] ∗ input [ j ][ k ][ i ] ;

end
end

end
end

end
end
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Listing 2: Modified Pseudo-code of PE design for convolutional layer

i =1; j =1; k=1; l =1; m=1;
Loop1 : for i i in 1 . . . input _channel ∗ width ∗ height ∗

f i l t e r _ s i z e _ x ∗ f i l t e r _ s i z e _ y
pragma HLS PIPELINE
Loop2 : for n in 1 . . . output_channel // ou tpu t image channe l

output [ j ][ k ][n] += weights [ i ][ l ][m][n] ∗ input [ j ][ k ][ i ] ;
end
m++;
i f m = f i l t e r _ s i z e _ y :
l ++;
i f l = f i l t e r _ s i z e _ x :
k++;
i f k = height :
j ++;
i f j = width :
i ++;
j = 0;

end
end

end
end
4

a

end

3.3. Bernoulli random number generators

The novelty of B2N2 is to exploit BRNs for BNN inference while most
onventional accelerators require GRNs. As discussed in Section 2.2,
here are several ways to generate GRNs on hardware but all of those
pproaches suffer from large hardware footprint. For example, VIBNN
amples GRNs by exploiting the CLT approximation, which requires
ccumulators for counting number of 1’s in the LFSR. Authors of [12]
ntroduced an LUT-based inverse transform sampling where LUTs pre-
ision are carefully optimized so that they fit Xilinx 7 series 6-input
UT primitives. However, it still requires a multiplier and an adder to
hift and scale uniform GRNs so that they have intended means and
ariances, which leads to a significant hardware overhead.

To solve above mentioned problems, B2N2 employs BRNs which
an be efficiently generated on hardware. One may argue that using
on-Gaussian random numbers may violate the assumption of BNN
hat the weights are sampled from Gaussian distributions. However,

ccording to CLT, even if the weights are sampled from non-Gaussian
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Fig. 3. (a) Weight generators of B2N2 and (b) that of Gaussian-BNN accelerator [12].

distributions, the MAC result follows a Gaussian distribution when the
number of neurons is sufficiently large. Let us first review the algorithm
for neural network inference. Neural network is composed of a series
of linear and non-linear transformations. Given inputs for 𝑙th layer,
𝑙−1 =

(

ℎ𝑙−11 , ℎ𝑙−12 ,… , ℎ𝑙−1𝑁𝑙

)

, the inputs are firstly applied a linear
ransformation:

𝑙
𝑖 = 𝑏𝑙𝑖 +

𝑁𝑙−1
∑

𝑗=1
𝑤𝑙

𝑖𝑗ℎ
𝑙−1
𝑗 , (5)

here 𝒃 =
(

𝑏𝑙1, 𝑏
𝑙
2,… , 𝑏𝑙𝑁𝑙

)

is the bias and 𝒙𝑙 =
(

𝑥𝑙1, 𝑥
𝑙
2,… , 𝑥𝑙𝑁𝑙

)

are the
th layer pre-activations and 𝑙−1th layer post-activations, respectively.
hen, a non-linear transformation 𝜙(⋅) is applied for 𝒙𝑙 to yield the layer
utput 𝒉𝑙+1, which is used as inputs for 𝑙 + 1th layer. Eq. (5) shows
hat 𝑥𝑙𝑖 is given by a sum of independent and identically distributed
i.i.d) random variables and hence, owing to CLT, 𝑥𝑙𝑖 follows a Gaussian
istribution at the limit of infinite neurons, i.e., 𝑁𝑙−1 → ∞. The means
nd variances of 𝒙𝑙 are given by:

E[𝑥𝑙𝑖]= 𝑏𝑙𝑖 +
𝑁𝑙−1
∑

𝑗=1
E[𝑤𝑙

𝑖𝑗 ]E[ℎ
𝑙−1
𝑗 ], (6)

[𝑥𝑙𝑖]=
𝑁𝑙−1
∑

𝑗=1

{(

V[𝑤𝑙
𝑖𝑗 ]+E[𝑤

𝑙
𝑖𝑗 ]

2
)

V[ℎ𝑙−1𝑗 ]+V[𝑤𝑙
𝑖𝑗 ]E[ℎ

𝑙−1
𝑗 ]2

}

, (7)

here E[𝒙] and V[𝒙] indicate the mean and variance of 𝒙, respec-
ively. Eqs. (6) and (7) show that as long as E[𝑤𝑙

𝑖𝑗 ] and V[𝑤𝑙
𝑖𝑗 ] are

preserved, arbitrary distributions can be used for 𝑤𝑙
𝑖𝑗 without changing

the statistical properties of pre-activations.
BRNs are the simplest kind of RNs which takes ‘‘1’’ with probability

𝑝 and ‘‘0’’ otherwise. Let 𝑋 be a BRN, then E[𝑋] = 𝑝 and V[𝑋] =
(1 − 𝑝), respectively. Note that our goal is to replace GRNs with
RNs without interfering their means and variances. However, since
ernoulli distribution is a single parameter distribution, their means
nd variances cannot be controlled separately. Hence, we introduce
n auxiliary parameter 𝑞 and define a new random variable 𝑌 = 𝑞𝑋.
hen, the mean and variance of 𝑌 are given by E[𝑌 ] = 𝑝𝑞 and V[𝑌 ] =
(1 − 𝑝)𝑞2, respectively. To preserve E[𝑤𝑙

𝑖𝑗 ] and V[𝑤𝑙
𝑖𝑗 ], E[𝑤

𝑙
𝑖𝑗 ] = E[𝑌 ]

and V[𝑤𝑙
𝑖𝑗 ] = V[𝑌 ] should be held. Hence, we obtain

𝑙
𝑖𝑗 =

E[𝑤𝑙
𝑖𝑗 ]

2

E[𝑤𝑙
𝑖𝑗 ]2 + V[𝑤𝑙

𝑖𝑗 ]
, (8)

𝑞𝑙𝑖𝑗 =
E[𝑤𝑙

𝑖𝑗 ]
2 + V[𝑤𝑙

𝑖𝑗 ]

E[𝑤𝑙
𝑖𝑗 ]

, (9)

where 𝑝𝑙𝑖𝑗 and 𝑞𝑙𝑖𝑗 are parameters for 𝑤𝑙
𝑖𝑗 . Eqs. (8) and (9) indicate that

BRNs multiplied by an appropriately selected constant value can be
adopted for BNN inference without interfering the statistical charac-
teristics of output distribution. Note here that both Gaussian-BNN and
B2N2 requires two precomputable variational parameters, i.e., E[𝑤𝑙

𝑖𝑗 ]
and V[𝑤𝑙

𝑖𝑗 ] for Gaussian-BNN and 𝑝𝑙𝑖𝑗 and 𝑞𝑙𝑖𝑗 for B2N2, and hence both
method requires the same memory footprint.

Fig. 3(a) shows the WG of B2N2, which is composed by a URNG,
a comparator, and a multiplexer (MUX). URNG generates a uniform
random value 𝜀𝑙𝑖𝑗 , which is compared with 𝑝𝑙𝑖𝑗 provided by the weight
parameter memory. If 𝑝𝑙 > 𝜀𝑙 , MUX outputs 𝑞𝑙 and ‘‘0’’ otherwise. For
5

𝑖𝑗 𝑖𝑗 𝑖𝑗
the comparison, WG of [12] is shown in Fig. 3(b) where weight are gen-
erated by applying scaling and shifting on the uniform GRN generated
by GRNG. Obviously, WG of B2N2 does not require multiplier, which
contributes to the reduction of hardware cost.

4. Hardware implementation and measurement flow

4.1. Implementation flow

The overall flow of implementing B2N2 on ZCU104 is shown in
ig. 4. Firstly, B2N2 is implemented and trained by using TensorFlow
robability framework. After the training, the means and variances
f weights are extracted as a Numpy array format. Then, in-house
arameter converter computes Eqs. (8) and (9) and generates a C++
eader file.

Whole circuits of B2N2 are designed using C++ language. Since
loating-point operations require huge cost when implemented on
PGA [22], every numerical operations are replaced by 8-bit fixed-
oint arithmetics. For the ease of implementation, we adopted

‘ap_fixed’’ template which handles fractional arithmetic. Xilinx Vivado
oolchain is used to generate a ‘‘.bit’’ FPGA configuration file. The
mplemented B2N2 is controlled via Python scripting language using
YNQ framework.

isting 3: Python code executed on PYNQ board
from pynq import Overlay
ol = Overlay ( ’ design . b i t ’ ) # c o n f i g u r e FPGA
r e g i s t e r s = ol . HLS_accel _0 . reg i s te r _map
r e g i s t e r s . CTRL . AP_START = 1 # s t a r t B2N2 a c c e l e r a t o r
r e g i s t e r s . CTRL . AUTO_RESTART = 1
r a i l s = pynq . g e t _ r a i l s ( )

power measurement
recorder = pynq . DataRecorder ( r a i l s [ ’ INT ’ ] . power )
with recorder . record ( 0 . 1 ) :

o l . axi_dma_0 . sendchannel . t r a n s f e r ( i b u f f ) # t r a n s f e r images
ol . axi_dma_0 . recvchannel . t r a n s f e r ( obuff ) # load r e s u l t s
ol . axi_dma_0 . sendchannel . wait ( ) # wai t DMA to send data
ol . axi_dma_0 . recvchannel . wait ( ) # wai t DMA to r e c e i v e data

4.2. Measurement flow

The code shown in Listing 3 is executed to measure image classifica-
tion accuracy and power consumption. We measured power consump-
tion of FPGA part by using PMBus power system embedded on ZCU104
board. During measurement, 10k test images are continuously applied
to the B2N2 accelerator to observe the averaged power consumption.
ince MC sampling involves random procedure, we repeated every
xperiment 10 times to investigate the impact of randomness.

. Experimental results and discussion

.1. Experimental setup

We compare B2N2 with Gaussian-BNN [12] and VIBNN [11] which
re reimplemented on the same FPGA board for the fair comparison.
aussian-BNN, VIBNN, and B2N2 are applied on the following image
lassification tasks to evaluate their performances on practical tasks.

NIST MNIST dataset is a collection of 70k images of 28 × 28 gray-
scale hand written digit, where 60k images are used for model
training while the rest of 10k images are for testing [23]. In our
experiment, 28 × 28 image was resized to 32 × 32 to align the
image size with the CIFAR10 dataset described next.

IFAR10 CIFAR10 consists of 60k 32 × 32 pixel color images of
animals and vehicles, of which 50k are used for training and

the remaining 10k for testing [24].
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Fig. 4. Design flow of B2N2 accelerator.
Fig. 5. Inference accuracies of Gaussian-BNN, VIBNN, and B2N2 as a function of MC samples.
Table 1
Network architecture.

Layer Input Fmaps Output Fmaps Output Dim

Conv1 3 32 32
Conv2 32 32 32
MaxPool 32 32 16
Conv3 32 64 16
Conv4 64 64 16
MaxPool 64 64 8
Conv5 64 128 8
Conv6 128 128 8
MaxPool 128 128 4

Dense 4 × 4 × 128 10 (for MNIST and CIFAR10) 1100 (for CIFAR100)

CIFAR100 This dataset is similar to CIFAR10 except that it has 100
classes containing 600 images. Among 600 images per class, 500
images are used for training and the remaining 100 images are
used for testing. Since CIFAR100 requires 100 dimensional logits
to be predicted, which increases the number synaptic of param-
eters, VIBNN could not be implemented in the ZCU104 due to
its large circuit size. Therefore, we compared two methods for
CIFAR100: Gaussian-BNN and B2N2.

For our experiment, we employed a VGG-like architecture which
consists of six convolutional layers, three max pooling layers, and
one densely-connected layer. 3 × 3 kernel filters are used for all
convolutional layers. Table 1 shows the network architecture.

5.2. Inference accuracy

CLT assumes that (1) the number of neurons are large enough
and that (2) each pixel value of input feature map is stochastically
independent. However, these requirements may not hold for the prac-
tical neural network architecture and hence we firstly investigated
the inference accuracy degradation caused by replacing GRNs with
BRNs. Fig. 5 shows the inference accuracy of Gaussian-BNN, VIBNN,
and B2N2 as a function of MC samples. Note here that since MC
sampling involves random procedure, we repeated every experiment 10
times to investigate the impact of randomness. Note also that, for the
experiments with CIFAR100 dataset, only the results for Gaussian-BNN
and B2N2 are shown since VIBNN could not be implemented on ZCU104
due to its large circuit size. The bold lines and the shaded regions show
the averages and 95% confidence intervals of 10 trials. We notice that
the inference accuracies slightly improve by increasing MC samples.
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We also see that the accuracies of B2N2 are almost the same or slightly
higher than Gaussian-BNN and VIBNN.

5.3. Uncertainty estimation

We further investigate the reliability of the estimated uncertainty
by using the precision–recall (PR) metric [25]. First, we compute
the uncertainty for each classification with Eq. (4) and rank images
according to the associated uncertainty. Then, the testing accuracy is
evaluated using only 𝛼-portion of images having lower uncertainty,
while the others are discarded. The curve shows how classification
accuracy changes as we discard images classified with lower confidence
than different percentile thresholds.

Fig. 6 shows the PR curves of Gaussian-BNN, VIBNN, and B2N2 for
different MC samples (𝑁). Again, the shaded regions show the 95%
confidence intervals. If the classifier is reliable, we should observe the
monotonically decreasing PR curve. For Gaussian-BNN, VIBNN, and
B2N2, the accuracies monotonically decrease, which indicates that the
uncertainties estimated by these methods well correlate to misclassi-
fications. We also notice that by increasing 𝑁 , PR curves move to
the upper. For example, Fig. 6(c) shows that if we take only the
20% of prediction results having lower uncertainties, the classification
accuracy reaches over 90%.

To quantitatively compare the reliabilities of reported uncertainties,
we compute the area under each PR curve (AUC) and summarize the
result in Fig. 7. The shaded regions again show the 95% confidence
intervals. A high AUC indicates that a classifier outputs accurate results
while suppressing the misclassification and hence the AUC of the
perfect classifier will be 1.0. Studying Fig. 7, we notice that AUC
monotonically increases as a function of MC samples (𝑁). We again
see that AUCs of B2N2 are almost the same or slightly higher than
Gaussian-BNN and VIBNN, which validate the use of BRNs instead of
GRNs.

5.4. Resource utilization and energy consumption

Finally, we compare the resource utilization and energy consump-
tion of Gaussian-BNN, VIBNN, and B2N2 when they are implemented
on ZCU104 board. As shown in Table 2, B2N2 can be implemented by
using only 465 DSPs and 89312 LUTs, which corresponds to 50.9% and
14.3% reduction compared to Gaussian-BNN [12]. Further, compared
to VIBNN [11], B2N2 successfully reduced DSPs usage by 50.9% and
LUTs usage by 57.9%. Owing to these hardware resource reductions,
B2N2 achieved energy efficiency of 100.3 Images/J, which corresponds
to 7.50% and 57.5% improvements from Gaussian-BNN and VIBNN,
respectively.
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Fig. 6. Precision–recall (PR) curves of Gaussian-BNN, VIBNN, and B2N2 as a function of MC samples.
Fig. 7. Area under the precision–recall curves (AUC) of Gaussian-BNN, VIBNN, and B2N2 as a function of MC samples.
Table 2
Comparison with Gaussian-BNN accelerator.

Gaussian-BNN [12] VIBNN [11] B2N2 (This work)

FPGA Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC
Clock (MHz) 300
# of LUTs 101560/230400 (44.1%) 194106/230400 (84.3%) 81661/230400 (35.4%)
# of DSPs 929/1728 (53.8%) 929/1728 (53.8%) 465/1728 (26.9%)
Registers 117632/460800 (25.5%) 244436/460800 (53.1%) 89312/460800 (19.3%)
BRAM [kB] 1184/1404 (84.3%) 1109/1404 (79.0) 1370/1404 (97.6%)
Throughput 300.4 254.8 300.4(Images/s)
Energy efficiency

93.3 63.7 100.3on CIFAR10
(Images/J)
6. Conclusion

B2N2, an efficient BNN accelerator on FPGA, was proposed. Owing
to CLT, we showed that arbitrary distributions can be used for sam-
pling variational parameters as long as means and variances are hold.
To reduce hardware resources, B2N2 employed BRNs which are the
simplest kind of RNs taking either ‘‘1’’ or ‘‘0’’. B2N2 implemented on
ZCU104 FPGA board consumes only 465 DSPs and 81661 LUTs, which
corresponds to 50.9% and 14.3% reductions compared to the Gaussian-
BNN [12] implemented on the same FPGA board. Further, compared
to VIBNN [11], B2N2 successfully reduced DSPs usage by 50.9% and
LUTs usage by 57.9%. Owing to the reduced hardware resources,
B2N2 improved energy efficiency by 7.50% and 57.5% compared to
Gaussian-BNN and VIBNN, respectively.
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