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ABSTRACT Accurate neural networks can be found just by pruning a randomly initialized overparam-
eterized model, leaving out the need for any weight optimization. The resulting subnetworks are small,
sparse, and ternary, making excellent candidates for efficient hardware implementation. However, finding
optimal connectivity patterns is an open challenge. Based on the evidence that residual networks may be
approximating unrolled shallow recurrent neural networks, we conjecture that they contain better candidate
subnetworks at inference time when explicitly transformed into recurrent architectures. This hypothesis is
put to the test on image classification tasks, where we find subnetworks within the recurrent models that
are more accurate and parameter-efficient than both the ones found within feedforward models and than
the full models with learned weights. Furthermore, random recurrent subnetworks are tiny: under a simple
compression scheme, ResNet-50 is compressed without a drastic loss in performance to 48.55 x less memory
size, fitting in under 2 megabytes. Code available at: https://github.com/Lopez-Angel/hidden-fold-networks.

INDEX TERMS Deep neural networks, lottery ticket hypothesis, recurrent neural networks, residual
networks, pruning, binary neural networks, ternary neural networks.

I. INTRODUCTION

The Strong Lottery Ticket Hypothesis [1], [2] states that
high-performing neural networks can be obtained just by
pruning an overparameterized dense model, as they are
already available hidden inside of the randomly initialized
parent network. This claim supersedes the Lottery Ticket
Hypothesis [3], as weight training is entirely unnecessary.
These sparse, random, and tiny subnetworks achieve compet-
itive performance in vision tasks and can be exploited for very
efficient inference hardware implementation [4].

However, current training methods have trouble finding
the optimal connectivity patterns [5]. It has been found that
better-performing random subnetworks can be discovered by
constraining the weight precision to ternary via the combined
effect of random binary weight initialization and a learned
binary mask [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

This paper shows that even higher-performing subnet-
works can be obtained by imposing two additional con-
straints: one in the hypothesis space and one in the search
space. Both constraints are imposed simultaneously by trans-
forming a residual network into a recurrent architecture,
restraining the hypothesis to iterative functions to be searched
within fewer random weights. We make the observation that
residual networks are architecturally inclined to learn ensem-
bles of all the possible unrollings of a shallow recurrent neural
network, based on which this restriction on the hypothesis
space actually increases the number of candidate subnetworks
of interest available at initialization time.

The resulting subnetworks are parameter-efficient and
have a competitive performance on image classification tasks,
supporting the arguments for embracing feedback connec-
tions in computer vision. Furthermore, they can be com-
pressed to tiny memory sizes and have a high degree of
parameter reusability, making them even better candidates for
inference acceleration.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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The remainder of the paper is organized as follows. Sec-
tion II reviews the related work on the Weak and Strong
Lottery Ticket Hypotheses, residual networks, and recurrent
convolutional neural networks for computer vision. After
Section III presents a method for obtaining high performing,
sparse, random, recurrent residual subnetworks, Section IV
explores it in detail. Finally, after a discussion in Section V,
Section VI concludes the paper.

Il. BACKGROUND

Fueled by the increasingly more accessible and powerful
computational power promised by Moore’s Law, artificial
neural networks experienced a growth in size that gave the
field of deep learning its name [6]. This trend, initially led by
image classification models [7], has continued as researchers
keep enhancing neural networks at the cost of model growth.
Recently natural language processing and generative models
have also jumped on board, offering impressive capabilities
at the price of an immense size [8], [9].

Although it is a convenient compromise for cutting-edge
research, the vast computational cost of these models is
impractical for real-world applications, motivating a parallel
trend of research that aims for small, efficient models.

Strong lottery tickets are a family of efficient networks
obtained by a training approach that merges learning, prun-
ing, and weight quantization in a single process. Section II-
A summarizes the evolution of training methods, illustrated
in Fig. 1, that lead to their discovery. This paper explores a
technique that transforms a residual network, an architecture
overviewed in Section II-B, into a recurrent architecture to
improve the strong lottery tickets contained within it. Finally,
Section II-C reviews previous work on recurrent neural net-
works for computer vision.

A. THE LOTTERY TICKET HYPOTHESES

Pruning is a common technique for compressing trained net-
works into much smaller models by removing unnecessary
weights [10], [11], [12], [13], [14]. Applied progressively
by iterating training and pruning, large portions of trained
models can be removed without affecting accuracy, making it
evident that the original models are overparameterized. The
sparsity of the resulting network can be exploited for addi-
tional compression with entropy coding and for arithmetic
optimization. Combined with weight quantization, it has
resulted in very efficient model compression schemes [15],
[16] and specialized hardware neural accelerators [17].

1) THE WEAK LOTTERY TICKET HYPOTHESIS

It was generally found that the connectivity patterns found by
pruning were not disentangled from the pre-trained weights,
as they could not be reinitialized and trained from scratch.
However, a recent breakthrough paper [3] showed that over-
parameterized neural networks contain a subnetwork that
can be trained in isolation to match the original model—
the Lottery Ticket Hypothesis (LTH). These subnetworks,
nicknamed winning tickets, are found by iteratively training,
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FIGURE 1. Evolution of the training methods leading to the Strong Lottery
Ticket Hypothesis.

pruning, and resetting the remaining weights to their original
value.

This paper has inspired a quickly growing body of work
that has found that a network contains not one but several
tickets [18], which may be connected [19]. Moreover, after it
was shown that tickets can be identified early in the training
process [20], some methods have succeeded in pruning before
training [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
even before looking at the data, in order to reduce training
cost.

2) THE STRONG LOTTERY TICKET HYPOTHESIS

In a surprising turn of events, while analyzing the LTH, [1]
found that learning weights is unnecessary: an overparam-
eterized neural network contains high-performing subnet-
works at its randomly initialized state, which can be found
just by pruning. Furthermore, they described an algorithm
for finding these subnetworks by training a binary mask.
This technique was taken a step further in [2] with a training
algorithm and a weight initialization scheme that delivers
sparse random subnetworks of competitive performance in
image classification tasks.

After a series of papers analyzing the theoretical bounds of
necessary overparameterization for the presence of this type
of tickets [31], [32], [33], the existence of subnetworks that
can be obtained just by pruning has come to be named the
Strong Lottery Ticket Hypothesis (SLTH), albeit some works
refer to it as the Multi-Prize Lottery Ticket Hypothesis [34],
or simply as “‘hidden networks”.

Despite being a surprising finding, strong tickets
have some closely related precedents. Extreme learning
machines [35] are feedforward networks that use fixed ran-
dom weights in their hidden units, only learning the output
layer. Reservoir computers [36] use random recurrent archi-
tectures in an analogous manner. Similarly, [37] proposed
substituting convolutional layers with fixed additive random
noise and a learned linear combination. It was demonstrated
that non-trivial accuracy could be achieved just by train-
ing the batch normalization parameters of a fixed random
network [38]. More directly related, [39] adapted a binary
neural network training method to learn binary masks that,
when applied to a trained model, extracted subnetworks that
performed well on untrained tasks. When using a randomly
weighted backbone model, they even found subnetworks with
non-trivial accuracy, closely missing the discovery of strong
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FIGURE 2. The residual network architecture. Specifically, ResNet-50,
which has 3, 4, 6, and 3 blocks in each stage, from input to output.

tickets. Furthermore, the bio-plausibility of strong tickets has
been considered by linking it to the emergence of innate
face-selectivity in the visual cortex [40].

The SLTH does not only merge training and pruning, but
also quantization: strong lottery tickets have been found to be
robust to binarization [34], [41], sparser when using ternary
masks [42], and more accurate with a scalar mask [43].
Furthermore, sparse random weights and binary masks can
be exploited for designing energy-efficient inference hard-
ware [4], which can even switch the binary mask for adjusting
computational cost at the edge [4] or for reusing the same
random weights for a different task [44].

However, current algorithms for finding strong tickets are
unable to recover optimal strong tickets planted in the model
artificially [5]. Training methods that use multiple random
seeds, either concurrently [45] or iteratively [46], can improve
performance, but at the cost of increasing model size. This
paper analyzes a method, first proposed in [47], that delivers
stronger and smaller tickets by constraining the optimization
space.

B. RESIDUAL NEURAL NETWORKS
Among the ever-growing variety of neural network architec-
tures, the residual neural network (ResNet) [48], depicted in
Fig. 2, remains the backbone of many SOTA models.
ResNet is a pyramidal feedforward deep convolutional
neural network formed by a convolutional pre-net followed
by four stages of residual blocks and finished with a fully-
connected post-net classifier. Each of the four stages uses a
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different representation space size, adjusted by the first resid-
ual block by downsampling the feature map and doubling the
number of channels. The remaining blocks within a stage,
of identical shape and size, keep the same representation
space size.

Residual blocks are formed by a concatenation of batch-
norm, ReLU, and convolutional layers. Specifically, this
paper uses the bottleneck block [48], composed of three
convolutional layers with kernel sizes 1 x 1,3 x 3, and 1 x
1, in order. Each residual block has a skip-connection: an
identity function in parallel to the block that adds its input
to its output. In order to adjust the different representation
space sizes, downsampling blocks have a learnable layer in
the skip-connection—a projection shortcut.

The original intuition behind this architecture was that
skip-connections provide a clear path for backpropagation for
reaching a layer directly, thus solving the vanishing gradient
problem. Based on the representation view, which directly
associates layer depth with level of representation, a deeper
network is able to form a deeper feature hierarchy and thus
can solve more complex problems. Indeed, skip connections
allowed to successfully train ResNets of thousands of layers.
Furthermore, a continuation of the original work [49] updated
the original architecture with a full pre-activation structure,
relocating all activation layers into the residual blocks to leave
aclear path of identity shortcuts. In the forward pass, this path
could be seen as an implementation of all the feedforward
lateral connections observed in the visual cortex [50].

However, this is not the only way to interpret ResNet.
Lesion studies showed that removing or shuffling the order
of residual blocks does not have an acute effect on its per-
formance [51]. Instead, there is a proportional relationship
between the introduced corruption and the performance loss.
This phenomenon is not observed in other feedforward mod-
els, where similar lesions are critical. From these results stem
two alternative views of ResNet: some authors have defended
that ResNet is an ensemble of shallow networks, while others
have argued that it may be an approximation of an unrolled
shallow recurrent neural network. This paper tries to reconcile
these two views into a single one.

1) THE ENSEMBLE VIEW
Each residual block can be viewed as a path bifurcation. Then,
ResNet can be interpreted as an ensemble of all the possible
paths within it [51], i.e., 2" paths for a model with 7 residual
blocks.

If considering a chain of three full pre-activation residual
blocks approximating functions 4, g, and f, their composition
can be written as

Ff+Do(g+Do(h+1)

=(Ff+Do(goh+D+(h+1)

=fo(goth+ 1)+ (h+1)

+@goth+ 1)+ (h+1))
+(h+1), (1)
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where o denotes function composition, and [ is the iden-
tity function with the same domain and codomain as #,
g, and f. Residual blocks perform a transformation on
the previous output, but this transformation is not com-
positional, as they contribute their output additively—as a
new element of an ensemble. Indeed, if approximating #4,
g, and f as linear functions, this chain of residual blocks
can be directly interpreted as the ensemble of all possible
paths:

f+Do(g+Doh+1)
Xfogoh+fog+foht+goh+f+g+h+I. (2)

A downsampling block also contributes additively to the
ensemble, but its projection shortcut transforms all the previ-
ously ensembled outputs:

(f+s)o(@+DHoh+1)

= +s)o(goth+I)+(h+1))

=fo(goh+I)+(h+1)
4+so(go(h+1) +(h+1)), 3)

where s is the shortcut function of downsampling block f.

A parallel analysis could be done for any other feedforward
neural network, but in the case of ResNet, paths are not the
same length and do not go through the same layers, i.e.,
ResNet is an ensemble of networks of various depths. Then,
it makes sense that removing a block only has a mild effect
on accuracy, as it only removes a subset of the ensemble. The
effect of shuffling can also be understood through the linear
approximation.

Of course, residual blocks are non-linear. However, resid-
ual blocks’ nonlinearity can be considered weak, as their
outputs have a small magnitude centered around zero that
contributes little compared to the identity function [48], [52],
[53].

Several ResNet improvements have been proposed based
on this view. Removing random subsets of blocks during
training makes the ensembled networks shallower and acts
as regularization [54]. Using multiple skip-connections per
block increases the amount of ensembled paths [55], boosting
performance. Network depth can be reduced by increasing
width, allowing to train bigger models to higher performance
in lower time [56].

2) THE UNROLLED ITERATIVE ESTIMATION VIEW
Another possible explanation for the lesion and shuffling
results is that all the blocks within a stage—which have
the same shape and receive partially the same inputs and
gradients through the identity shortcuts—are approximating
the same function. That is, that ResNet naturally converges
to the approximation of an unrolled shallow recurrent neural
network.

Proponents of this view have argued that each of ResNet’s
stages corresponds to a different hierarchical level of repre-
sentation, composed by the downsampling block, whereas
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the rest of the blocks perform iterative refinement of fea-
tures [52].

ResNet’s iterative behavior was observed by visualizing
its activations [57], and it has also been analytically and
empirically demonstrated that residual blocks perform iter-
ative refinement of features by approximating a gradient
descent step during inference [53]. Furthermore, ResNet can
be transformed explicitly into a recurrent architecture without
a critical loss in performance [58], a transformation exploited
in this paper.

Although they have been presented as opposing views,
we argue that they are compatible: ResNet can be interpreted
as both an ensemble and an unrolled shallow recurrent neural
network at the same time.

If h~ g=f,(1)is rewritten as

Ff+Do(g+Doh+1)

~(f+Do(f+Do(f+1)

=+’

=fo(fo(f +D+(+1D)

+fo(f +DH+ (¢ +1)
+( +1), “4)

which can be seen as an ensemble of three iterations, where
each iteration performs an additional recursion of f over the
previous ensemble. Using the same linear approximation as
above,

F+D>~f+324+3f+1. 5)

More generally, a chain of n identical linear residual blocks
can be seen as a weighted ensemble of all the possible
unrollings of a linear recurrent residual block up to n
iterations:

n—1
F+D"~f"+ D nff+1. (6)
i=1
Strictly, the repetitive application of an iterative function
would compound to

I )

so the ensemble of unrollings view is a closer approximation
than the strict unrolled iteration view.

This ensemble of unrollings provides a rich search space
for finding strong tickets within a model with few parameters
and suggests that stronger tickets will be present in a ResNet
if it contains more recurrent approximations at its randomly
initialized state.

C. RECURRENT NEURAL NETWORKS FOR VISION

Although deep neural networks for computer vision are
predominantly feedforward, there have been some recur-
rent approaches. Recurrent convolutional neural networks
(RCNN) have been used for scene parsing [59], object recog-
nition [60], and image classification [61]. RCNN with long
short-term memory (LSTM) [62] have also been used for
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improving weather forecasting [63]. The authors of [64]
exploited recurrence for early image prediction, and found
that an RCNN naturally learns taxonomic representations
that are iteratively refined to finer-grain classes, improving
explainability. Similar to this paper, some works have explic-
itly transformed ResNet into RCNN for constructing efficient
models [65], [66], which can be taken a step further by using
recurrent depthwise separable convolutions [67], [68].

If feedforward deep neural networks have been successful
in computer vision, why use recurrent architectures, usually
associated with time-series data? Here we summarize some
of the compelling arguments for this paradigm shift, which
are thoroughly covered in [69].

The main arguments come from the field of neuroscience.
While the primate visual cortex has only a few layers deep,
with a wide variety of feedback and lateral connections [50],
[70], computer vision models are hundreds of layers deep and
strictly feedforward. Despite this, the visual cortex has high
accuracy in multiple tasks, even though it has fewer units and
much lower energy consumption. Iterative computation can
be exploited to implement complex functions with limited
hardware, and for adjusting computational time dynamically,
a behavior observed in biological brains [50].

Vision neural network models that take direct inspiration
from neuroscience are accurate, small, and better predictors
of the brain [70], and can effectively adjust the number of
iterations dynamically for improved efficiency [71].

Furthermore, some vision capabilities can only be imple-
mented with recurrence. Vision is an active process, there-
fore requiring feedback connections to control the associated
organs and to integrate priors and attention into the vision
tasks. Although computer vision has given overwhelming
attention to static images, vision processes time-series data—
“video”. Feedback connectivity is necessary for processing
temporal dependency, integrating stimulus history, and mak-
ing predictions of the dynamic world.

Experimentally, neural network performance on vision
tasks improves when models have recurrent and lateral con-
nections [72], and they naturally learn a rich variety of feed-
back loops when given the freedom of choosing to share
weights during training [73].

Intriguingly, ResNet, which is conjectured to approximate
an RCNN, is both one of the best performing computer vision
models and one of the most brain-like [74].

ill. HIDDEN-FOLD NETWORKS

This section describes a method, first proposed in [47], that
first folds a residual network to then find a strong lottery ticket
within it. These folded subnetworks, which overperform the
strong tickets hidden in feedforward ResNets, are referred to
as Hidden-Fold Networks (HFN).

Section III-A defines the recurrent ResNet architecture,
and the training method employed to discover the strong
ticket is described in Section III-B. The importance of the
weight initialization choice for constraining the search space
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FIGURE 3. A ResNet stage folded into a recurrent residual stage through
the opposite of time unrolling. The downsampling block is left untouched,
whereas the rest of the stage is folded into a single recurrent block. That
is, a stage of n blocks is folded into 2 blocks, the second of which is
applied n — 1 iterations.

is detailed in Section III-C, after which Section III-D explains
the normalization strategies considered. Finally, Section III-E
clarifies the memory size compression scheme considered in
this paper, which makes HFN some of the tiniest ResNets.

A. FOLDED RESNET ARCHITECTURE

According to the unrolled iteration view (see Section II-B2),
the chains of residual blocks of identical shape within each
stage are approximating an iterative function. Folding [58]'
is a method that transforms these chains into recurrent blocks,
via weight sharing. That is, h ~ g ~ f is transformed
explicitly to » = g = f, and since applying identical
functions in succession is equivalent to applying one of them
repeatedly, the feedforward chain can be transformed into a
single recurrent block in a process opposite to time unrolling.

Since the downsampling block has a different shape than
the rest of the blocks, it cannot be folded with the rest.
This block could be removed by transforming ResNet into
an isotropic architecture or by substituting it with a simpler
block, strategies that were explored in [53], [58]. Neverthe-
less, based on the view that different stages correspond to
different hierarchical levels of features composed by down-
sampling blocks [52], this paper leaves them untouched. The
rest of the stage is folded into a single recurrent residual
block that is iterated the same number of times as the number
of original blocks, as illustrated in Fig. 3. Section IV-C2
experiments with the number of folded stages.

Folding has a double effect on the search space: it limits
the set of functions that the model can learn—the hypoth-
esis space—to iterative functions and reduces the number
of parameters. We argue that, despite this trim in param-
eters means an exponential reduction of the available sub-

INot to be confused with the method that compresses trained networks by
removing unnecessary activation layers [75], or with the method that adds

longer skip-connections [76], both also named folding.
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FIGURE 4. Training an HFN with a supermask. The supermask (H)
includes the random weights (W) with the top-k% scores (S), updated via
backpropagation. © is the Hadamard product.

network candidates, folded residual networks contain better
performing strong tickets than their feedforward counter-
parts. If training ResNet’s weights naturally converges to
approximations of unrolled iterative functions, likely, the
strong tickets contained within it are also approximations of
recurrent networks. This limits the number of subnetworks
of interest to only those that include similar random weights
in consecutive blocks, a very small subset. Folding ResNet
forces all candidate subnetworks to have a recurrent form.
Therefore, the number of candidate subnetworks of interest
is larger and likely to contain stronger tickets.

Furthermore, the parameter reduction happens not only
at inference time but also at train time. At train time, the
search space for strong tickets is largely reduced, making
these folded tickets also easier to find. At inference time, the
found subnetworks are even smaller and exploit parameter
reusability, making them excellent candidates for efficient
hardware implementation.

B. SUPERMASK TRAINING

Instead of optimizing the model’s weights, the model is
pruned to find a high-performing subnetwork hidden within
the randomly initialized folded model—an HFN.
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This connectivity pattern is learned by training a super-
mask [1], a pruning mask that contains a binary element for
each weight. The ticket is unearthed at inference by applying
an element-wise product of the random weight tensor and the
trained supermask.

This paper uses the edge—popup [2] algorithm for train-
ing the supermasks, illustrated in Fig. 4a. Edge—popup
defines a score for each weight, which is updated in the back-
ward pass via backpropagation using straight-through estima-
tion for the supermask (i.e., the supermask is not applied in
the backward pass). The scores are then sorted by absolute
value, and the supermask is updated to include the weights
with the top-k% highest ranking scores and prune the rest.
Top-k %, thus, is a hyperparameter that sets the supermask’s
density a priori. Although top-k% is set globally, the sparsity
is enforced at the layer level.

Folding does not affect this process: supermasks and scores
are shared in the same way as their corresponding weights,
and backpropagation flows through the unrolled model in the
same way it would travel a feedforward model. Therefore,
folded parameters receive a separate gradient from each iter-
ation, as depicted in Fig. 4b.

This training method takes more computation time than
standard dense weight learning (about 1.75x in our experi-
ments), as it uses three parameters for each node, and scores
must be sorted every training step. However, the resulting
models are smaller, sparse, and formed by random weights,
allowing for efficient inference implementations.

C. RANDOM SIGN CONSTANT WEIGHT INITIALIZATION
Following [1], [2], this paper considers two weight initializa-
tion strategies: Kaiming normal initialization (KN) [77], and
signed Kaiming constant initialization (SC).

KN initializes weights of later / by sampling from

Ni(0, o), ®)
where N denotes the normal distribution, and the standard
deviation is scaled by the density k [1], [2]:

o1 =.,/= 9

nk?’

where n; is the number of input dimensions of layer /.
On the other hand, SC initializes weights to the same
modulus and a random sign by sampling from

Di{—o1, +oi}, (10)

where D denotes the discrete uniform distribution.

Since the same modulus o; is shared by all the random
weights in layer [, it can be absorbed by the normalization
layer’s scaling factor y. Then, all weights in the model belong
to {—1, +1}, and after applying the binary supermask in infer-
ence, the effective weights belong to {—1, 0, +1}. In other
words, in combination with the binary supermask, SC initial-
ization constrains the search space to balanced ternary neural
networks. We argue that this strict constraint is the reason for
its positive effect on accuracy.
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Scores are always initialized with Kaiming uniform initial-
ization [77] by sampling from

U—/8..[%), (1)

where U denotes the uniform distribution.

D. UNSHARED BATCH NORMALIZATION

It is well known that the choice of normalization strategy is
crucial for folded architectures. Specifically, batch normal-
ization (batchnorm) [78] with independent affine parameters
for each iteration—which has been rediscovered numerous
times under different names [53], [58], [65], [66], [67]—
has been reported to be especially effective. This paper also
employs this strategy and refers to it as unshared batch nor-
malization (UBN), following [53].

In addition to UBN, this work experiments with folding
using shared affine batchnorm parameters (SBN), and folding
using non-affine batchnorm (NA-BN). If the affine param-
eters are unshared, technically each iteration of a folded
block applies a different function. Although this may have a
significant impact on a recursive block’s expressive power,
in practice, it requires a very small number of additional
parameters, and may even be bio-plausible [58].

Other normalization layers that do not normalize along
the mini-batch dimension, which have been reported to be
well suited for recurrent architectures, are also considered
for folded blocks. Namely: layer normalization [79], which
computes statistics along the channel dimension instead of
the batch dimension; instance normalization [80], which uses
a single channel; and group normalization [81], which gener-
alizes the previous two by considering an arbitrary number of
channels. Furthermore, we also consider local response nor-
malization [7], a non-affine normalization scheme inspired
by the lateral inhibition of biological neurons that has been
successful on recurrent convolutional neural networks [60].

Previous work on supermask training of feedforward net-
works only considered either non-affine batchnorm [2] or
affine batchnorm [43]. This paper explores both options also
for the feedforward sections of the HFN model, as well as for
the baselines.

E. MODEL COMPRESSION SCHEME
This paper reports model memory sizes considering a specific
compression scheme oriented to specialized hardware.

All weights and biases are counted as occupying 32 bit.
However, it is not necessary to store weights in the case of
supermask training, since they can be generated on the fly
from the original seed with a random number generator [1],
[4]. Furthermore, this seed can be substituted with a hash of
other model parameters [4], so it is not necessary to store
it either. Therefore, the model size of models trained with
supermask training is only the size of the supermask—one
bit per weight—in addition to the memory size of the affine
normalization parameters, if any. When used, affine parame-
ters constitute a very small part of the total size: UBN models
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Table 1. Summary of the four methods compared on ResNet in this paper.

Method Architecture Training
Standard (“Vanilla”) [48] Feedforward | Dense weight learning
Folding [58] Recurrent Dense weight learning
Hidden-Networks (HNN) [2] Feedforward Supermasks
Hidden-Fold Networks (HFN) Recurrent Supermasks

only occupy 5% to 15% more memory than their SBN or BN
counterparts.

Although supermasks can be compressed further by
exploiting their sparsity with entropy coding [4], [43], these
techniques are not considered in this paper for simplicity.
Counterintuitively, this means that sparsity has no impact on
the reported model sizes.

HFNs can fit in under 2 MB under this scheme, as will
be demonstrated later in Section IV-D, small enough for
specialized hardware’s on-chip SRAM memory resources.
This provides a significant advantage, as off-chip DRAM
memory access consumes orders of magnitude more energy
and time than on-chip DRAM access or arithmetic opera-
tions [82]. Moreover, the weight’s balanced ternary precision
and sparsity can be leveraged to reduce the arithmetic cost.

It shall be noted that in conventional hardware, weights
must be uncompressed to full precision and processed
densely. In that case, the proposed models provide no com-
putational cost advantage compared to their feedforward
dense learned weight counterparts. For this reason, and
because the arithmetic cost on specialized hardware is heavily
implementation-dependent, this paper does not report FLOP
counts and instead focuses on model memory size gains under
the described compression scheme.

IV. EXPERIMENTS AND RESULTS

This section analyzes how to better combine supermask train-
ing with arecurrent residual network and compares the results
with the baseline methods, summarized in Table 1.

After describing the methodology in Section I'V-A, Sec-
tion IV-B examines the compatibility of both methods under
diverse strategies of weight initialization, normalization, and
bias learning. Section IV-C explores different model size
options, including supermask sparsity, the number of stages
folded, and model depth and width. Now with the optimal
settings, the four methods are compared on CIFAR100 and
ImageNet on Section IV-D, revealing HFN’s strengths and
weaknesses. Section IV-E investigates the iterative generality
of the learned recurrent blocks by modifying the number
of iterations after training, and Section IV-F concludes this
section.

A. EXPERIMENTAL SETTINGS

All experiments described were implemented on PyTorch [83]
based on the original code of [2], which is publicly
available [84]. The baseline model for all experiments is
ResNet-50, as described in [48], and variations of it. Since
folding only applies to deep networks, basic experiments
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were performed on the rather complex CIFAR100 [85]
dataset, whereas ImageNet [86] was used for large-scale
dataset evaluation.

Except when explicitly stated otherwise, experiments
were carried out using the following methodology. The
60 000 images of CIFAR100 were split into 45 000 for
training, 5000 for validation, and 10 000 for the test set.
Image pre-processing and augmentation were done in the
same way as [2]. Training on CIFAR100 is performed using
stochastic gradient descent (SGD) with weight decay 0.0005,
momentum 0.9, and batch size 128 during 200 epochs, with
an additional 100 epochs for models deeper than 100 layers
or double width. The learning rate is reduced using cosine
annealing starting from 0.1, with no warmup. Experiments
using ImageNet were performed for 100 epochs, using the
hyperparameters recommended in [87]. Reported accuracy
on CIFAR100 is the average of three runs of top-1 test accu-
racy scores, measured at the highest scoring validation epoch,
whereas on ImageNet they correspond to single-run top-1
validation accuracy. Standard deviation is indicated with lines
on bar graphs and with shaded areas on plots.

Training a vanilla ResNet-50 on CIFAR100 on an NVIDIA
GeForce RTX 3090 takes 2.4 h, whereas its folded, HNN, and
HFN versions take 2.2 h, 4.4 h, and 4.2 h, respectively.

B. COMPATIBILITY OF SUPERMASKS AND FOLDING

This section takes a preliminary look at how well supermask
training and folding mix under different weight initialization
and normalization strategies. Fig. 5 compares feedforward
ResNet-50 to models with increasingly more stages folded,
trained with dense weight learning in Fig. 5a and top-50%
supermask training in Fig. 5b.

The impact on accuracy of transforming ResNet into a
recurrent model is slightly more negative the more stages are
folded, but very small in any case. In the case of supermask
training, folding even results in a slight improvement in accu-
racy, as predicted. Both weight initialization choices produce
similar results for weight learning, but for supermask train-
ing, signed Kaiming constant (SC) initialized models reach
notably higher accuracy, as reported in [2]. SC is used for all
methods hereafter, except for dense feedforward models, for
which Kaiming normal (KN) is used.

1) FOLDING THE NORMALIZATION LAYER
Fig. 5 compares three batchnorm strategies for folded blocks:
non-affine (NA-BN), affine with shared learned parameters
(SBN), and affine with independent learned parameters
for each iteration (UBN). Feedforward blocks use non-
affine batchnorm, except when learning dense weights, when
affine batchnorm is used. Accuracy tends to be higher the
more affine parameters are learned, although the difference
between SBN and UBN is smaller than previously reported.
This analysis is expanded in Fig. 6 to also compare
layer norm (LN) [79], instance norm (IN) [80], group norm
(GN) [81] (32 groups), and local response normalization
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FIGURE 5. Impact of folding ResNet-50 when training (a) dense weights
(b) a supermask for different combinations of weight initialization and
batchnorm strategies. Numbers in parentheses indicate folded stages.

(LRN) [7]. Their affine parameters are shared in all cases
except for LRN, which is intrinsically non-affine. GN uses
32 groups, and LRN uses size 5, additive factor 2, multiplica-
tive factor 0.0001, and exponent 0.75.

As reported in previous work, additional affine parameters
have a significant impact when folding with learned weights.
However, normalizing along the channel dimension provides
an even more significant advantage—bigger the more chan-
nels are considered. Unlike weight learning, HFN just works
better when more affine parameters are learned. LRN over-
performs NA-BN, but is surpassed by all the affine methods.
Although closely followed by GN, UBN provides the highest
accuracy for HFN. All experiments hereafter use UBN for
recurrent blocks.

2) LEARNING ADDITIONAL PARAMETERS
Since learning more affine parameters results in better per-
formance, it could seem obvious that they should be learned
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in all layers. However, Fig. 7 shows that independently of
the weight initialization used, using affine batchnorm on
non-folded blocks is harmful if some part of the architecture
is folded or using supermask training. Therefore, affine batch-
norm is only used for dense feedforward models and folded
blocks (as UBN).

Previous work [2], [47] reported results without learn-
ing biases of convolutional and fully connected layers. This
is standard practice when using batchnorm, as the role of
biases is absorbed by the shift parameter B in batchnorm’s
affine transformation, but these works used non-affine batch-
norm. The impact of learning these additional parameters is
explored in Fig. 8, which shows that it has an insignificant
influence. Therefore, biases are not learned hereafter.

C. TUNING HFN's SIZE
This subsection analyzes HFN’s tradeoff between size and
accuracy by exploring its different size hyperparameters: the
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1) SUPERMASK DENSITY

Fig. 9a explores a range of top-k% values for different
numbers of folded stages. The number of folded stages is
increased from the deeper to the shallower stages, based on
the evidence that the later stages of the visual ventral stream
are more likely to exploit iterative computation [50].

The optimal density range is between 20% and 40%
in all cases, with a peak around top-30%. Interestingly,
it is the same for the feedforward and folded models, sug-
gesting that it may be optimal for the learning algorithm
used (edge—popup) but not necessarily the density of the
optimal strong ticket. Fig. 9b shows that HFNs are more
parameter-efficient than feedforward strong tickets for the
whole optimal range. Since density has no impact on model
size in the proposed compression scheme, all experiments
hereafter adopt the optimal density value of top-30%. This
may not be the optimal density for the deeper and wider
models introduced later. However, due to edge—-popup’s
drawback of sparsity having to be set a priori, tuning it for
each configuration is costly.

2) NUMBER OF FOLDED STAGES

Fig. 9 shows that, despite the smaller size, folding even a
single stage of ResNet results in higher accuracy and only
suffers a drop when folding all stages. That means that the
recurrent version of ResNet either contains strong tickets
that are better performing or at least are easier to find for
edge-popup. The best results are achieved when only fold-
ing stages 3 and 4, which contain most of the parameters
of ResNet. Folding additional stages has a very small effect
on model size and negatively impacts accuracy. For weight
learning, accuracy drops when more stages are folded, but
folding only stages 3 and 4 provides the best size-accuracy
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FIGURE 9. Accuracy to parameter count tradeoff for different supermask
densities and number of folded stages. Points in (b) correspond to the
densities in (a). Numbers in parentheses indicate folded stages.

tradeoff. Therefore, this is the folding strategy used for both
methods in all experiments hereafter.

3) ARCHITECTURE DEPTH

Deep learning’s success in general, and ResNet’s in specific,
has been commonly attributed to network depth. However,
folding collapses a stage’s depth into a single block, trans-
forming it into number of iterations. This subsection looks at
the effect of this transformation and examines whether there
is a benefit to extra depth when it does not imply additional
parameters.

Fig. 10 depicts the effect of increasing the depth of a single
stage of an HFN version of ResNet-50. Although increasing
depth in stage 3 has a monotonic positive impact, it is
milder than what would be expected for deep neural networks.
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FIGURE 11. Depth scalability of folding and supermask training.
ResNet-101 is only deeper than ResNet-50 in stage 3, but ResNet-152 and
ResNet-200 are also deeper in stage 2.

Additional iterations in stage 4 have a destructive effect,
presumably because of its much larger size (ResNets rarely
have more than 3 blocks in this stage).

Additional iterations should not have a different impact on
gradients than additional depth: folding preserves the iden-
tity mappings of the skip-connections, and after unrolling,
gradients flow through the same number of layers as in the
corresponding feedforward model. The reduced amount of
parameters could explain the impaired effect of extra depth,
but Fig. 11 shows that increasing iterations in folded models
with learned weights has a much stronger effect. Furthermore,
extra depth also has a more substantial effect on supermask
training on feedforward models. However, when also increas-
ing depth in stages that are not folded, HFN scales better
than when not folded at all, although with increasingly bigger
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200 epochs.

variance. Deeper recurrent ResNets also contain stronger
tickets, supporting our conjecture on hypothesis space: extra
depth makes subnetworks randomly initialized close to a
recurrent approximation even scarcer in feedforward ResNets
of finite width.

4) ARCHITECTURE WIDTH

Although incrementing depth in a folded block only increases
the number of iterations, deeper unfolded stages are not the
only way of upscaling HFN. The search space for HFNs can
be broadened by expanding ResNet’s width [56].

Fig. 12 compares HFN’s width scalability to that of the
other methods by multiplying the number of channels of all
layers by a width multiplier. Although all methods benefit
from extra channels, HFN profits the most, overperforming
both feedforward supermasks and dense folded models, with
smaller variance. More remarkably, HFN even matches the
wider dense feedforward architecture, despite being 52.47x
smaller.

D. METHOD COMPARISON ON IMAGE CLASSIFICATION

1) CIFAR100

Fig. 13a (left) compares the accuracy and parameter count
of different ResNet sizes trained with the compared methods
on CIFAR100. HFN models are the most parameter-efficient:
fewer parameters than equally performing models and more
accurate than models with a similar parameter count. Fur-
thermore, deeper HFNs and wider HFNs reach the highest
accuracies overall.

Moreover, HFN’s advantage is more evident when com-
paring in Fig. 13a (right) model memory sizes under the
compression scheme described in Section III-E. HFNs are
about half the size of their feedforward counterparts, with
ResNet-50 fitting in under 2 MB. Wide-ResNet-50 overper-
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forms dense models more than 30x larger, only matched by
the wider dense (Fig. 12b).

2) IMAGENET

When the same models are compared on ImageNet, Fig. 13b
shows that HFN’s accuracy advantage scales poorly to a
larger dataset. It is no longer the best-performing method,
only matching the shallowest weight-learning architectures
considered.

A suboptimal train schedule can explain this decay.
As shown in Fig. 14, HFN converges to CIFARI00 in
200 epochs, only needing additional epochs for larger models.
However, HFN underfits on ImageNet and fails to reach con-
vergence, even when doubling the number of epochs, using a
different learning rate scheduler, or using RAdam [92]. This
phenomenon is observed in all HFN sizes but in none of
the other methods, making it evident that edge—popup is
unable to exploit the full potential of HFN. Although dou-
bling the number of epochs is enough to match the accuracy of
feedforward strong tickets, it contradicts the hypothesis that
folded tickets are easier to find.

Nonetheless, HFN is still the most parameter-efficient
and tiny: more accurate than models of similar parameter
count and one order of magnitude smaller memory size than
similarly performing dense models. Popular small models
are even more parameter-efficient, but offer a much smaller
memory size compression ratio. Although not the focus of
this paper, it is also noticeable that folded ResNets with
learned weights achieve higher accuracy than previously
reported in both datasets, especially with deeper configura-
tions.

E. STRETCHING HFN AFTER TRAINING
This subsection explores the effect of changing the number
of iterations after training. Since the goal is to investigate
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FIGURE 13. Comparison of the four methods using different model sizes on two common image classification datasets. HFN is both the most
parameter-efficient and the tiniest. (b) also compares with popular efficient models: DenseNet [88], MobileNetV2 [89], NasNet [90], EfficientNet [91].

iterative generality, this section does not use UBN, so all
iterations apply strictly the same function.

As discussed above, folding transforms architecture depth
into a new dimension: iterations. Where the parameters of
a conventional block would receive a gradient per train-
ing update, a recurrent block propagates to its parameters
a number of gradients equal to its number of iterations,
as was covered in Section III-B. It is then tempting to
draw a parallelism between train iteration and recurrence
iteration.

Fig. 15 investigates if additional gradients from increased
iterations at train time have the same effect as additional
gradients from increased train epochs. Training ResNet-50
with added iterations at individual folded stages has no pos-
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itive impact, regardless of whether normalization is affine
or not. The best performance is at the original number of
iterations, but stretching in training has a very mild impact,
suggesting that the learned functions have some degree of
iterative generality.

Fig. 16 stretches ResNet-50 at inference time to further
investigate this phenomenon, testing for more or fewer iter-
ations than the models were trained for. Similar experiments
with weight learning were presented in [53], [58]. If ResNet
is learning an ensemble, its accuracy would suffer little from
removing blocks but unpredictably from adding additional
blocks. However, if these blocks are learning generally iter-
ative functions, a small change in the number of iterations,
should have a small effect on performance.
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train time. SBN:shared affine batchnorm; NA-BN: non-affine batchnorm.

The results show precisely that kind of behavior when
the modification is small, sometimes even improving per-
formance. Affine batchnorm makes recurrent blocks more
resilient to these alterations, and HFN shows similar behavior
to its dense counterpart, other than a narrower sweet spot.

Strikingly, in both cases, higher accuracy is observed con-
sistently when completely removing stage 4’s folded block
at test time, leaving only the downsampling block before the
classifier. Although it confirms that these blocks do not per-
form a compositional transformation in the feature hierarchy,
the reason for this phenomenon is not clear yet.

Since complex samples that benefit from additional itera-
tions are a minority [53], increasing the number of iterations
for all samples generally has a globally negative effect. A pos-
sible way of exploiting this iterative generality is to adjust
the number of iterations dynamically on a per-sample basis
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on independent runs. SBN:shared affine batchnorm; NA-BN: non-affine
batchnorm.

as in [71] or [66], a mechanism that has also been observed
in primate’s visual cortex [50].

F. CONCLUSIONS
Table 2 compares the four methods when applied to the same
ResNet-50. In the case of CIFAR100, the folded recurrent net-
work hides a more accurate and smaller ticket than the feed-
forward model, even close in performance to the models with
dense learned weights. Although HF-ResNet-50 falls slightly
short compared to its feedforward version, HF-ResNet101,
with the same architecture but more iterations, matches it in
performance.

The model compression potential of HFN is better appreci-
ated when comparing models of similar accuracy in Table 3:
even on ImageNet, an HFN with similar performance to a

VOLUME 11, 2023



A. Lépez Garcia-Arias et al.: Recurrent Residual Networks Contain Stronger Lottery Tickets

IEEE Access

Table 2. Comparison of the four methods on the same model, ResNet50.
F: folded; H: HNN; HF: HFN; RN:ResNet; WRN:ResNet of 2x width.

i Top-1 Parameters Size Size
Dataset | Model | o "ro1 | (Millions) | [MB] | Reduction
CIFAR100 RNS50 78.74 23.68 94.82 -
F-RN50 78.09 14.75 59.07 1.61x
H-RN50 77.03 7.10 2.96 32.07x
HF-RN50 77.68 4.45 1.95 48.55x
ImageNet RNS50 76.89 25.55 | 102.22 -
F-RN50 7591 16.60 60.47 1.54x
H-RN50 68.16 7.65 3.19 32.07x
HF-RN50 67.14 5.00 2.18 46.80x

Table 3. Size comparison of models of similar accuracy, using the
proposed compression.

Top-1 Parameters | Size Size
Dataset Model Acc. [%] | (Millions) | [MB] | Reduction
CIFAR100 RN34 78.82 21.32 | 85.31 -
F-RN101 78.84 14.78 | 59.28 x1.44
H-WRNS50 78.59 20.10 | 8.37 x10.19
HF-RN200 78.90 6.21 3.02 x28.27
ImageNet RNI18 71.13 11.68 | 46.75 -
F-RN34 72.37 12.35 | 4941 x0.95
H-RN101 71.64 1333 | 5.56 x8.42
HF-RN200 71.92 6.77 | 3.25 x14.39

dense feedforward model occupies one order less memory
size. As a technique for model compression, combining fold-
ing and supermask training results in a superior accuracy-size
tradeoff that produces residual networks capable of fitting
in just 2 MB, small enough for on-chip memory. From
the standpoint of specialized hardware design, the sparsity,
ternary nature, and, most importantly, the reduction in data
transfers from external memory provides computation time
and energy advantages that far outweigh the additional depth
necessary to match in accuracy the baseline methods. In the
case of 32 bit operations on 45 mm CMOS, a DRAM read
consumes 640 pJ, two orders of magnitude more than the
3.7 pJ consumed by a floating-point multiplication [82].
On a specialized architecture such as [4], HFN’s reduction
of memory reads guarantees at least a proportional two order
of magnitude reduction of energy consumption.

Although folding ResNet is a detriment to its performance
when learning dense weights, for supermask training it is
beneficial. Independently of sparsity, depth, or width, folded
residual networks contain smaller and stronger tickets than
their feedforward counterparts. Furthermore, these models
outperform densely learned models with the same number of
parameters, and occupy one order of magnitude less memory
than those of similar performance.

V. DISCUSSION

Multiple improvements on the edge—popup algorithm have
been proposed, which future work may apply to the method
presented in this paper: learning signs instead of using ran-
dom binary weights [42]; learning weight scales instead of
the fixed modulus of SC initialization [34]; annealing spar-
sity [5], [93] or enforcing it at a global level instead of per-
layer [94]; an improved straight-through estimator [95]; a
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better strategy for using biases [93]. Strategies for pruning
trained models with masks could be adapted to supermask
training, such as learning the pruning thresholds [11] instead
of calculating them from top-k % at every update step.

HFN’s effective weights can be equivalently regarded
as ternary or binary, depending on whether the unselected
weights are considered zero-weighted or simply not part
of the model. Independently of this detail, we believe this
trend should be reconnected with the literature on binary
and ternary neural networks, where supermasks originated at
first [39]. Essentially, supermasks are just a binarization—
ternarization in [42]—of the scores, which act as latent
weights. Recent advances in binarized neural network opti-
mization have shown that learning can be done more effi-
ciently without latent weights [96].

Pruning and quantization are two central techniques for
implementing energy-efficient hardware inference acceler-
ators. Supermask training concurrently learns and prunes
a quantized network. Although many advances have been
made by using ternary effective weights, it has been shown
that supermask training can be expanded to learning weights
quantized at a larger precision [43]. This points to a future
trend of training methods that blend learning, pruning, and
quantization into a concurrent process.

Previous work has shown that introducing recurrent con-
nections in computer vision model is beneficial for weight
learning. This paper expands this argument to supermask
training. ResNets with skip-connections and recurrent loops
include most of the lateral connections observed in the visual
cortex, but still miss one type: lateral feedback connections.
Additionally, this paper has only considered standard pyra-
midal ResNets. A study exploring isotropic ResNets with
various complex connections was recently published in [76].
Their results could be leveraged for expanding HFN to mod-
ern isotropic architectures [97], [98].

Lastly, we have only evaluated HFNs on image classifica-
tion tasks. Future work should evaluate them in time-series
data tasks, considering standard RNN practices such as
including LSTM units. Some previous work on RCNN for
vision considered recurrent architectures that produced an
output at every iteration [64], [72], whereas other methods,
including the one studied in this paper, consider a single final
output. Future work should also investigate the difference
between these two readout strategies.

VI. CONCLUSION

This paper proposes and tests the conjecture that recurrent
residual networks contain stronger tickets than their feedfor-
ward counterparts. The results show that these strong tickets
can be exploited to vastly reduce the memory footprint, and
upscaled to match or surpass the accuracy of models with
dense learned weights: ResNet-50 is compressed 48.55x% to
2 megabytes without a drastic loss in performance, and a
ResNet-200 with superior accuracy is compressed 28.27 x to
just 3 megabytes. However, more than the additional restric-
tions on the search space imposed by recurrence is needed:
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the current supermask training algorithm is unable to find
the best possible tickets, especially in the case of a larger
dataset. Nonetheless, we find that these recurrent subnet-
works with random weights have similar iterative properties
to their learned weight counterparts and, furthermore, can be
fitted in on-chip memory with a straightforward compression
scheme, encouraging efficient edge implementations of com-
puter vision based on recurrent neural networks.
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