IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

523

l PAPER Special Section on VLS| Design and CAD Algorithms

|

Vulnerability Estimation of DNN Model Parameters with Few Fault

Injections

Yangchao ZHANG', Hiroaki ITSUJI'?, Takumi UEZONO'", Nonmembers, Tadanobu TOBA ",

SUMMARY The reliability of deep neural networks (DNN) against
hardware errors is essential as DNNs are increasingly employed in safety-
critical applications such as automatic driving. Transient errors in memory,
such as radiation-induced soft error, may propagate through the inference
computation, resulting in unexpected output, which can adversely trigger
catastrophic system failures. As a first step to tackle this problem, this paper
proposes constructing a vulnerability model (VM) with a small number of
fault injections to identify vulnerable model parameters in DNN. We reduce
the number of bit locations for fault injection significantly and develop
a flow to incrementally collect the training data, i.e., the fault injection
results, for VM accuracy improvement. We enumerate key features (KF)
that characterize the vulnerability of the parameters and use KF and the
collected training data to construct VM. Experimental results show that VM
can estimate vulnerabilities of all DNN model parameters only with 1/3490
computations compared with traditional fault injection-based vulnerability
estimation.

key words: deep neural network, fault injection, vulnerability model, soft
error, malicious attack

1. Introduction

Recent applications of DNN include safety-critical ones,
such as autonomous driving. Therefore, the reliability of
DNN and its hardware platform, where the representative
one is GPU, is drawing attention. With this motivation,
several experiments of neutron irradiation to GPU cards are
reported [1]-[5] since soft error, which is primarily caused
by cosmic rays [6], is the dominant error source during the
intermediate device lifetime [7]. Also, noise [8], aging and
temperature [9] induce transient errors.

On the other hand, DNN has been proved to have high
inherent error resilience; that is, the final outputs of DNN
remain unchanged even some neuron outputs have been af-
fected [10]. Nevertheless, some critical neurons have a
higher probability of propagating error to the final output

Manuscript received March 10, 2022.
Manuscript revised July 13, 2022.
Manuscript publicized November 9, 2022.

"The author was with the Department of Information Systems
Engineering, Graduate School of Information Science and Tech-
nology, Osaka University, Suita-shi, 565-0871 Japan.

¥ The authors are with Electronic Systems Research Dept., Pro-
duction Engineering and MONOZUKURI Innovation Center, Cen-
ter for Sustainability, Research & Development Group, Hitachi,
Ltd., Yokohama-shi, 244-0817 Japan.

"7 The author is with the Department of Communications and
Computer Engineering, Graduate School of Informatics, Kyoto
University, Kyoto-shi, 606-8501 Japan.

a) E-mail: hashimoto @i .kyoto-u.ac.jp
DOI: 10.1587/transfun.2022VLP0004

and Masanori HASHIMOTO "9, Members

of DNN [11]. Once critical neurons are affected by tem-
poral or permanent device defects, the DNN outputs wrong
results, which may cause a severe failure in safety-critical
applications. Also, such DNN vulnerability is drawing at-
tention in the security community since injecting bit flips
can trigger system failure and may expose critical or private
information. Although such error can be mostly corrected
by error correction code (ECC), memories in GPU are less
covered by ECC compared with server CPU [4]. Therefore,
finding out what are vulnerable points in the DNN is vital
to improve the DNN system reliability and security since
the ordinary hardware does not provide an efficient error
checking mechanism with 100% coverage.

Recently, the evaluation of DNN vulnerability is re-
ported in the literature. It is mainly conducted by perturbat-
ing DNN model parameters as white box attack [11] or input
data as black box attack [12]. Existing researches pointed
out that the vulnerability could be measured by some in-
dexes such as gradient [13] or neuron output value [14]. In
contrast, methods for precisely estimating vulnerability, in
other words, pinpointing vulnerable model parameters, are
still under investigation. For example, the gradient cannot
handle a bit flip in significant bits causing a large pertur-
bation since the gradient is defined for a small perturbation
despite DNN being a highly non-linear system. For accu-
rately evaluating the vulnerability, fault injection is utilized
very commonly. However, the number of model parameters
is enormous. For example, the 18-layer ResNet (resnet-18)
[15] has 11 million weight parameters, and hence naive fault
injection-based approach does not apply to modern DNNs.

In this work, we aim to develop a scheme that can
calculate the vulnerability of DNN within a reasonable time,
for example, within an hour for resnet-18. We focus on
minimum perturbation in the model parameters stored in
memory, i.e., single bit flip. Single bit flip can be triggered by
temporal and permanent faults due to, for example, soft error,
noise and malicious attack mentioned above. We conduct
vulnerability analysis on DNN (weight, bias) rather than the
input data like “adversarial example problem” [12] or the
intermediate computation data since this work emphasizes
bit flips in memory storing the DNN parameters originating
from soft error and malicious attack. Here, considering the
millions of parameters DNN possesses, it is impossible to
straightforwardly evaluate the parameter one by one with
fault injection as mentioned above. Therefore, finding a
method that can estimate the vulnerability of DNN with a

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

524

small number of calculations is essential.

Thus, in this paper, we explore an approach for evalu-
ating the vulnerability of DNN parameters with limited cal-
culations. To the best of our knowledge, this is the first work
that study the methodology of DNN vulnerability analysis
with the machine learning, considering the trade-off between
accuracy and computation time. For resnet-18, vulnerabil-
ity prediction finishes in 0.21 hours, much less than 733
hours by smart fault injection that excludes non-sensitive
bits prospectively. The contributions of this paper’ include:

* Proposing to construct and use vulnerability model
(VM) for estimating the vulnerability of each DNN pa-
rameter.

* Providing an efficient VM construction flow with fewer
fault injections.

* Analyzing the key features (KF) for VM that influence
the vulnerability.

» Experimentally comparing the efficiency between VM
and conventional vulnerability evaluation methods for
different network structures and different number for-
mats (floating-point and fixed-point).

The rest of the paper is organized as follows. Section 2
provides the background knowledge of DNN and fault injec-
tion. The proposed DNN vulnerability evaluation method is
presented in Sect. 3. Experiment results are shown in Sect. 4.
Finally, Sect. 5 concludes this work.

2. Background
2.1 Deep Neural Network (DNN)

DNN is comprised of many layers, including convolutional
layers, pooling layers, fully connected layers, etc. The first
layer of DNN is called the input layer, and the final layer is
the output layer. Other layers in the middle are hidden layers.
The neurons in each layer are connected with the neurons in
its upstream and downstream layers through the links having
different weights and biases.

An input data is given to the first layer, doing matrix op-
erations with weights and biases, and then operation results
are obtained as the input data for the next layers. For a single
neuron in a certain layer, its computation of Eq. (1) is sum-
marized as follows; (1) receives many input data generated by
neurons in the previous layer. (2) performs multiplications
and additions using its own weights (and biases if available).
(3) applies its activation function on the calculation result in
(2), then (4) sends the result to the next layer.

N
y = Act (Z wiXx; + wo) s (1)

i=1

where x1, x2, - -+, X, are neuron outputs from the previous
layer and wy, wy, - - -, w, are weights corresponding to these
outputs. N is the number of weights. Act() represents

A preliminary version of this paper is presented at [16].

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

activation function and y represents the output of this neuron.
An activation function in a neural network defines how the
weighted sum of the inputs is transformed into the output
from a node.

2.2 Fault Injection

Faults arise unexpectedly in hardware due to voltage noise,
device aging, temperature, and energetic particle radiation
[6]. For analyzing the impact of such faults, fault injection
experiments are widely carried out. It is typically performed
by simulations on computers [17], or emulations on FPGAs
[18]. Another approach is to actually irradiate the chips
using a beam facility [2].

Other types of faults are injected intentionally to ex-
pose protected data, such as a private key for encryption
and privacy data, and such fault injection is called a mali-
cious attack. Such faults are injected at hardware-level and
software-level. Hardware-level attacks include row-hammer
attack [8], laser beam attack [19], radiation attack [2]. On
software-level, adding noise [12] and bit-flip [11] are studied.

For analyzing the vulnerability of DNN, injecting a fault
into DNN and evaluating the output is a common and widely-
used approach because DNN is a highly non-linear system.
Only using simple sensitivity-based (gradient-based in the
DNN context) methods does not work well, which will be
demonstrated in Sect. 4.4. Fault injection targets can be clas-
sified as input data [12], network parameters [11], network
operations and instructions [20]. In this paper, fault injection
is conducted by flipping a bit in network parameters suppos-
ing the radiation effect and malicious attack to the memory
storing the network parameter is the primary concern.

Against both unintentional and intentional faults, iden-
tifying vulnerable DNN parameters is crucially important to
improve system reliability. Without such identification, it
is challenging to develop countermeasures. Alternatively, a
very expensive countermeasure may need to be adopted if
the actual vulnerability is unknown.

3. Construction of VM for DNN

This section proposes a methodology to construct VM using
a limited number of fault injections.

3.1 Overview

We use a machine-learning algorithm to construct VM. First
of all, we need to define the vulnerability of each DNN
parameter. Also, we have to prepare the training data. The
proposed methodology performs fault injections and uses
their results as the training data. Here, the most challenging
issue is that the fault injection is time-consuming, and hence
the number of executable fault injections is limited. To
construct VM, in summary, we need to have

¢ a definition of the vulnerability of individual DNN pa-
rameters, i.e., weight and bias (Sect. 3.2)

ZHANG et al.: VULNERABILITY ESTIMATION OF DNN MODEL PARAMETERS WITH FEW FAULT INJECTIONS

[Start VM construction]

Select DNN parameters
p and calculate
vulnerability IV with
fault injection

Extract features X for
selected DNN parameter p

[Train/test VM] yes

VM
accuracy
improvel

Predict vulnerability
for all parameters

Fig.1 VM construction flow.

* an efficient calculation procedure of vulnerability with
a smart strategy to inject faults into the bit locations
disturbing the DNN output (Sect. 3.3)

e a set of features that characterize the vulnerability of
each neuron (Sect. 3.4)

Figure 1 shows the proposed flow for constructing VM.

1. Select DNN parameters p randomly and calculate their
vulnerability V performing fault injections, where p
consists of N, DNN parameters and V is a vec-
tor consisting of vulnerability of i-th DNN parameter
Vi(0 < i < Np). The definition of vulnerability is given
in Sect. 3.2. The procedure of vulnerability calculation
is explained in Sect. 3.3.

2. Extract features for the DNN parameters selected in
(1) as input variables X of VM, where X consists of
feature vectors X;(0 < i < N,) and each feature vector
X; includes several feature values. The used features
are explained in Sect. 3.4

3. Train and test VM using a% of (V, X) as training data
and remaining (1-a)% of (V, X) as test data, where
VM is trained such that VM outputs V for X inputs.
Parameter a is empirically determined, where a = 0.7
in this work. Note that all data of (V, X) obtained until
the current iteration are used as either training or test
data.

4. Repeat (1) to (3) until a criterion is satisfied. For exam-
ple, in Fig. 1, the iteration terminates when the improve-
ment of the VM accuracy from the previous iteration is
smaller than a threshold value, for example, 1%. Other
criteria, such as time budget for VM constructioncan
also be used.

3.2 Definition of Vulnerability

This work defines vulnerability V; for i-th DNN parameter as

525

the sum of the accuracy degradation for individual bit flips.
1 &

Vi= — E Aacci i), 2

i N, jzl(acct,/) 2)

where Aacc; ; indicates the accuracy deviation between the
original clean DNN and dirty DNN in which j-th bit of i-th
DNN pamameter is flipped. N, indicates the number of bits
in one DNN parameter. The accuracy is calculated with for-
ward propagation across batches of images in dataset. When
all bit flips in i-th DNN parameter degrade the accuracy from
1to 0, V; becomes 1 as the worst case.

3.3 Efficient Vulnerability Calculation

For preparing V in the training and test data, we calculate V
of a subset of DNN parameters p using fault injection. For
efficient vulnerability calculation, we introduce an approx-
imation below for reducing the number of fault injections,
and regard V' as V.

, 1
v/ = N Z (aacc), 3)

jebits;

where bits; is a set that may contain integer numbers from
1 to Np. When bits; consists of 1 to Np,, Egs. (2) and (3) are
identical. On the other hand, when we remove some elements
of bits;, we can reduce the number of Aacc; ; calculations,
i.e., the number of fault injections. Algorithm 1 shows the
detailed steps to calculate V"’ consisting of V" in Eq. (3). The
following explains how to organize bits; for minimizing the
number of fault injections while keeping the approximation
error small. We exploit an observation that not all bits impact
DNN output.

Let us first discuss the floating-point case. As Z. Yan
et al. pointed out in [7], exponent bits have a much more
significant impact on DNN output than sign and mantissa
bits. They report that the mantissa bits have at most 1.3%
of the impact of the exponent bits. The impact of the sign
bit is mostly less than 10%, but it can be 35%. A simiar
discussion is found in [10]. Meanwhile, the value of each bit
is another factor influencing the vulnerability of a parameter.
Supposing an exponent bit, bit flip from O to 1 is serious
since the parameter increases exponentially and drastically
in consequence, while bit flip from 1 to 0 means the value
approaches 0. In this case, the value change is at most 100%
of the original value. A similar discussion applies to the sign
bit, and the value change is smaller than 100%. As for the
sign bit, the value change is 200%. We therefore put only the
exponent bits whose values are 0 into bits;. Here, it should
be mentioned that a similar idea is adopted for a different
purpose of pruning-based DNN compression [21]. H. Li et
al. show that pruning the parameters that have fewer 1s has
less impact on DNN output [21]. Besides, if the impact of
the sign bit concerns you, bits; can include the sign bit.

In the case of fixed-point format, MSB has the highest
impact. Meanwhile, when we consider the bits that can

526

Algorithm 1 calculate vulnerability V’

Input: p: parameters selected for fault injection, bits: specified bits,
org_acc: clean DNN accuracy

Output: V), : vulnerabilities of parameters p

1:Vp =0

2: fori « p do

3: for j « bits do

4: if Pi,j = 0 then

5: Bit flip p; ;

6: Calculate acc

7 Vi = Vi +abs(org_acc — acc)
8: Bit flip back p;
9: end if
10: end for
11: Vi=V;+Np
12: end for

change the parameter value by more than 100%, we put ‘0’
bits locating in the left side of the topmost ‘1’ bit into bits;
for a positive number case. We put ‘1’ bits locating on the left
side of the topmost ‘0’ bits into bits; for a negative number
case. This approximation will be experimentally validated
in Sect. 4.4.

3.4 Feature Extraction

We examine several metrics as the key features (KF) deter-
mining the vulnerability of DNN parameters. The following
discusses KF for the i-th DNN parameter. Note that the KFs
are normalized to restrict the value between O and 1. The
normalized features are used as feature vector X; for VM
construction.

Absolute value of parameters. The most intensive
computation in DNN is matrix computation. The magnitude
of parameters for matrix computation has a large impact
on the output. As a result, we select the magnitude of the
parameter M; as a KF, where M; = abs(parameter;).

Number of dangerous bits. As mentioned in the pre-
vious section, not all bits have an impact on DNN output.
Referring to the discussion in the previous section, the num-
ber of values included in bits in Eq. (3) is related to the vul-
nerability. We, therefore, regard metric D; as a KF, where
D = #of 0 in exp field.

Gradient. It is reported that the vulnerability of a
parameter is related to its gradient [13], which is calculated
by back-propagation of DNN. Due to the nonlinearlity, as we
mentioned, the gradient is not always valid, but it could be
used as a KF.

Calculation times. When a parameter participates in
more computations, the probability that the error propagates
to the output becomes higher. Compared with repeated cal-
culations using the same parameter in the convolutional layer,
each parameter in the fully-connected layer participates in
only one calculation. Therefore, we regard calculation times
CT; below as a KF.

OFW x OFH (conv. layer),

CTi = { 1 (fully connected layer),

where O FW and O F H are the width and height of the output

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

feature matrix.

Layer location. The location of the layer to which
a DNN parameter belongs may impact vulnerability. The
last layer is directly related to the output, and then it may
possess a higher vulnerability. On the other hand, Z. Yan
et al. indicate that the layers farther from the output are
typically more sensitive and bring more significant change
to the output [7]. We consider both distances from the input
and the output, /D; and OD;, respectively, as indicators of
layer location to reflect such observations.

ID;=(layer_index)/(total # of layers), OD;=1-1D;.

4. Experimental Results and Analysis

This section presents experimental results of VM accuracy
and discusses VM construction procedure and VM construc-
tion time.

4.1 Setup

We perform experimental evaluation of VM on resnet-18
[15], quantized resnet-18 and yolov3-tiny [22]. The datasets
are cifar10 [23] for resnet-18 and quantized resnet-18 and
COCO [24] for yolov3-tiny. Vulnerability is defined as de-
viation of top-5 accuracy for resnet-18 and quantized resnet-
18, and mean average precision (mAP) deviation for yolov3-
tiny. In resnet-18 and yolov3-tiny, the numbering format of
DNN parameters is single precision floating-point (FP32).
As for quantized resnet-18, the parameters are expressed
in 8-bit fixed-point format (INT8). The quantization from
i-th floating-point Pgjoqs,; to i-th fixed-point Prjxeq,; is per-
formed as follows.

ml_aX(Pfloat,i)/(zN)a

Pfixed,i = round(Pfloat,i/AP) X AP,

AP

where N is the number of bits of fixed-point data, and it is
8 here. max() is a function that returns the maximum value
in parameters. round() is a function returning a rounded
integer. AP is the step size of quantization and shared by the
parameters in the same layer.

When calculating gradient, which is one of KFs dis-
cussed in Sect. 3.4, 10000 images from COCO training set
and 50 batches of images from cifar10 training set are used
for yolov3-tiny and resnet-18, respectively. For V’ calcula-
tion in Eq. (3), 40 images from COCO testing dataset and
five batches of images from cifar10 testing dataset are used
for yolov3-tiny and resnet-18, respectively. The batch size is
set to 256 for cifarl0.

For verifying the VM accuracy, we have conducted fault
injections to all exponent bits of all DNN parameters in
resnet-18 and calculated vulnerabilities of all DNN param-
eters, which are hereafter called true vulnerability. Here, to
verify this setup, we evaluated the impact of bit flips at the
sign bit by injecting a bit flip into the sign bit of all DNN pa-
rameters in resnet-18. The result shows that the sign bit of all

ZHANG et al.: VULNERABILITY ESTIMATION OF DNN MODEL PARAMETERS WITH FEW FAULT INJECTIONS

Table1 Spearman correlation between KFs and vulnerability for resnet-
18, quantized resnet-18 and yolov3-tiny.

Spearman correlation of KF to vulnerability

M; | D; | G [CI; | OD; [ID;

resnet18 0.482 | -0.065 | 0.292 | 0.593 | -0.593 | 0.648
quantized resnet18 | 0.193 - 0.337 | 0.341 | -0.342 | 0.428
yolov3-tiny 0.525 | -0.165 | 0.137 | 0.257 | -0.257 | 0.379

the parameters has zero impact. As for quantized resnet-18
and yorov3-tiny, 1% of the parameters are fault-injected for
accuracy verification due to the run-time limitation. The fol-
lowing compares the true vulnerability and the vulnerability
estimated by VM.

We use random forest for the vulnerability regression
in the VM construction. Random forest can avoid overfit-
ting to some extent since it consists of many models and
uses average prediction of the individual models. The fast
training speed and easy implementation also make it use-
ful under many circumstances. We have experimentally
found that random forest outperforms other machine learn-
ing methods, such as support vector machine and k-nearest
neighbors regression, for our purpose. The hyperparameters
we tuned for the experiment are mainly the max depth of
the trees, max features, and minimum number for splitting
samples in Python scikit-learn Library [25], and the values
for these hyperparameters are 10, 3, and 10, respectively.
Meanwhile, any machine learning algorithms apply to the
proposed methodology.

4.2 Feature Selection

We first choose useful features from the KFs introduced in
Sect. 3.4. For this purpose, we evaluated the Spearman cor-
relation between V; and each KF. Tabel 1 lists the Spearman
correlation coefficients of individual KFs. From this table
we can know that M;, G;, CT; and ID; have high correlation
coefficients while D; and OD; remain low. Let us explain
why D; is not relevant. Since the values of almost all DNN
parameters are between —1 ~ 1, which means the significant
bits might be the same. As a result, most of the parameters
have the same D;, making D; useless. Therefore, we choose
M;, G;, CT; and ID; as KFs for training VM.

4.3 Vulnerability Estimation Results

We choose mean absolute error (MAE) and R-squared as
evaluation metrics for VM prediction results. Table 2
presents the evaluation results. The first and second rows
represent the ratio of fault-injected parameters (RoFIP) of
which vulnerabilities are used for training VM. The third
and fourth rows show MAE and R-squared.

Smaller MAE and higher R-squared mean the vulnera-
bility is estimated more accurately. In resnetl8, R-squared
grows sharply to 0.816 when increasing RoFIP from 0.001%
to 0.01%, and it slowly mounts to 0.877 when RoFIP be-
comes 1%. The R-squared values of quantized resnet-18 are
lower than those of resnet-18, and increase steadily with the

527
Table2 VM prediction results of three networks.
Ratio of fault-injected params.(%)
0001] 001 [01 [1
resnet18 MAE 0.007 0.003 0.002 | 0.002
R-squared | 0.398 0.816 0.864 | 0.877
quantized MAE 0.001 0.001 0.001 0.001
resnetl8 R-squared | -0.095 0.177 0.343 0.574
yolov3-tiny MAE 0.0003 | 0.0002 | 0.0001 -
R-squared | 0.0676 | 0.4682 | 0.6522 -

increase in RoFIP. The result of yolov3-tiny shows a similar
trend as resnet-18. Here, we can see the suitable amount of
training data varies depending on the network. This result
indicates that the iterative VM construction in Fig. 1 is neces-
sary. Besides, an R-squared value below 0.4 would generally
show a low correlation. One approach for the model con-
struction could be, for example, increasing RoFIP as long as
R-squared is lower than this threshold.

Figure 2 shows the distributions of residuals of VM.
Here, the residual is calculated as the difference between
the true vulnerability in Eq.(2) and the estimate obtained
by VM. In Fig. 2(a), some fluctuations are found outside the
range of one standard deviation when RoFIP is 0.001%. On
the other hand, as the RoFIP increases, the distributions be-
come smoother and larger errors decrease. The values of
most of the residuals concentrate at around 0, meaning that
the vulnerability error between predicted and actual values
is small. In Fig. 2(b), the increase in RoFIP reduces the dis-
turbance while the reduction is not significant. In Fig. 2(c),
fluctuations are visible with small RoFIP. Meanwhile, as
ROFIP becomes larger, the distribution becomes tighter.

4.4 Discussion

Validating bits; selection introduced in Eq. (3). The vul-
nerability varies depending on the bit location significantly,
especially in the case of floating-point format. Figure 3
shows the average vulnerability of 8 individual exponent bits
of FP32 and all bits of INT8. For FP32, almost all vulnera-
bility is centralized on the highest exponent bit. For INTS,
on the other hand, the vulnerability decreases exponentially
from high bit to low bit.

In Sect. 3.3, we have introduced an approximation for
efficient vulnerability calculation, in which only bits; are
flipped instead of all V,, bits in a parameter. We here evaluate
Aacc by injecting faults into the bits that are not included in
bits;. Our expectation is that Aacc = 0 for the bits except
for bits;. According to our experimental result for resnet-
18 with FP32, 99.9996% bits attain Aacc = 0, and only
0.0004% bits outside bits; have non-zero, yet very small
Aacc. This result verifies our selection of bits;. Also, it
should be mentioned that this bits; selection reduces the
number of fault injections by 54.5%. As for INTS, 99.995%
bits attain Aacc = 0, and only 0.005% bits outside bits;
have non-zero. This bits; selection reduces the number of
fault injections by 27.1%.

Number of test images for vulnerability evaluation.

528

—— 0.001%
— 0.01%
— 0.1%
— 1%

=
o

o
[N)

residual frequency
o
=y

i

—0.075 —0.050 —0.025 0.000 0.025
residual value

(a) resnet-18

—— 0.001%

081 0.01%
§ — 0.1%
o 061 — 1%
o
y
= 0.4
= §
°
wv
L 0.2

0.0 L

-0.2 -0.1 0.0
residual value
(b) quantized resnet-18
0.3
—— 0.001%
— 0.01%

) — 0.1%
T 0.2
=
o
g
©
301
w
g

0.04 -

—0.002 —-0.001 0.000 0.001

residual value
(c) yolov3-tiny

Fig.2 Distributions of VM residual. As the RoFIP increases, the distri-
butions become tighter and smoother, and large errors decrease.

For speeding up the VM construction, evaluation with fewer
images is desirable for fault injection while the evaluated vul-
nerability may include large uncertainty. We here evaluate
the vulnerability uncertainty for different numbers of images.
Figure 4 shows the vulnerabilities of 100 DNN parameters,
where the black bar represents one standard deviation across
the 100 trials. The error bar becomes smaller with the in-
crease in the number of images while increasing the image
number means longer computation time. The computation
time increases linearly according to the number of images.
Considering this trade-off, we need to determine the number
of images for fault injection.

Comparison with gradient-based vulnerability es-

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

0.008+ ii
50.006* II
=
©
@ 0.004
o
>

O.OOZJI

0.000-

o 1 2 3 4 5 6 17

bit index

(a) resnet-18

0.004+

0.002+

vulnerability

]
0.0034 ii

0.001+
O.OOO—M
bit index

(b) quantized resnet-18

Fig.3 Average vulnerability at each bit location.

timation. Some works (e.g., [13]) have investigated the
gradient-based vulnerability estimation. We here use the
gradient values only as a feature for comparison. Table 3
shows that the R-squared values of the gradient-based es-
timation are negative values of —3.126 to —5.780, clearly
indicating that the estimation only with the gradient is insuf-
ficient. The proposed VM with gradient and other features
outperforms the gradient-based estimation.

Calculation time and accuracy compared with other
fault injection-based method. Compared with the pro-
posed VM that requires few fault injections for calculating
vulnerability, conventional methods perform fault injection
to every bit. We here suppose a time-saving bit flip method
for comparison. It only flips exponent bits with value 0
for floating-point data, which is hereafter called BFO. BFO
adopts the approximation regarding bits; introduced in the
VM construction (Sect.3.3). We compare the calculation
time and accuracy between BF0O and VM.

BFO can obtain precise vulnerability for the parameter
to which faults are injected. VM can also return the exact
vulnerability for the training and test data, while VM estima-
tion may have deviation for the parameters to which faults
are not injected. To consider these, we evaluate the error as
follows.

Np

1
Error = — x » |TV; — PV;|. “)

Remind that Np is the number of parameters. TV; and PV;
are true and predicted vulnerabilities, respectively. Note that
GV; = PV, for the RoF 1P x N,, parameters thanks to the fault

ZHANG et al.: VULNERABILITY ESTIMATION OF DNN MODEL PARAMETERS WITH FEW FAULT INJECTIONS

vulnerability
o o o =
= o [++] o

©
[N}

o
=}

0

1 o o g
> o © =}

vulnerability

o
)

0 20 40 60 80 10
parameter number
(a) 10 test images
0 20 40 60 80 10
parameter number
80 10

Fig.4 Vulnerability distribution of selected 100 parameters obtained by
using different numbers of images.

o
=}

0

o o o Ly
» o © =)

vulnerability

o
N

(b) 100 test images

il |
0 20 40 60

parameter number

o
=}

0

(c) 1000 test images

Table 3 Comparison w/ gradient-based estimation.

Ratio of fault-injected params.(%)
0001 T 001 J 01 [1
Proposed MAE 0.007 0.003 0.002 0.002
R-squared | 0.398 0.816 0.864 0.877
Gradient- MAE 0.016 0.012 0.012 0.013

Based R-squared | -3.126 | -4.254 | -4.255 | -5.780

injection. Thus, for the proposed method, Error consists of
the prediction errors for (1 — RoFIP) X N,, parameters. On
the other hand, for BFO, the predicted vulnerability PV; is
not available for (1 — RoFIP) X N, parameters. Then, we
suppose PV; = 0 for those parameters.

Figure 5 shows the relation between RoFIP and error
defined above in resnet-18. Figure 5 plots the error of VM
for RoFIP of 0.001%, 0.01%, 0.1% and 1%. We can see VM
is mitigating the large error of conventional fault injection-
based method.

We finally compare the actual runtime. We estimate the
runtime using the analytical models in Table 4. To obtain

529
0.010
W 0.008
s
oy
= 0.006
8 [}
[T}
{ =
3 0.004
— BFO
I W =
0.002 + .
0 le-05 0.0001 0.001 0.01

RoFIP

Fig.5 Comparison between the proposed VM and conventional fault
injection-based approach (BF0). Error bar indicates the standard deviation
w.r.t 5 trials.

Table4 Runtime expectation.

Method Runtime estimate

VM sub_test! * (forward + backward?) +
sub_train'* forward * N_bit3* N_param4
+ VM_train® VM_test®

BFO sub_train * forward * N_bit * All_param6

! Part of train/test dataset.

2 Average runtime for a single forward/backward propagation.
3 Number of bits to be flipped for every parameter.

4 Number of parameters used for calculating real vulnerability.
5 Runtime for training/testing VM.

6 Number of total parameters in DNN.

concrete runtime, we assume the vulnerability of ResNet-18
is analyzed with Nvidia GPU GeForce RTX 2080. The
sub_test and sub_train for calculating gradient and im-
plementing RV calculation is 10000 and 40 images. The
runtimes of both forward and backward are around 0.002s.
N_bit is 8 for VM and 3 on average for BFO. N_param
is 1100 and All_param is 11,000,000 for resnet-18 if we
choose 0.01% as RoFIP. The times necessary for training and
testing VM are very short, and then we ignore VM _train and
VM _test here. As a result, VM requires around 0.21 hours
while BFO requires 733 hours, which means 3490x speedup.

5. Conclusion

This work proposed a methodology to estimate vulnerabil-
ity for all parameters in DNN in a short time. We defined
vulnerability and presented a procedure to construct the VM
with fault injection and machine learning. We examined the
features of each DNN parameter. Through extensive exper-
iments and analysis, we demonstrated that the vulnerability
of the DNN parameter could be predicted with reasonable
accuracy in a short time, 0.21 hours for resnet-18, for ex-
ample. Compared with a conventional fault injection-based
approach, 3490x speedup is attained.

Acknowledgments

This work is supported in part by the Japan Science and Tech-
nology agency, Program on Open Innovation Platform with

530

Enterprises, Research Institute and Academia (JST-OPERA)
Program, Japan, under Grant Number JPMJOP1721; and
in part by the JSPS Grants-in-Aid for Scientific Research
(KAKENHI), Japan, under Grant Number 19H05664.

References

(1]

(2]

(3]

[4]

[5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D.A.G. Gongalves de Oliveira, L.L. Pilla, T. Santini, and P. Rech,
“Evaluation and mitigation of radiation-induced soft errors in graph-
ics processing units,” IEEE Trans. Comput., vol.65, no.3, pp.791—
804, 2016.

F.F. dos Santos, P.F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of
convolutional neural networks on GPUs,” IEEE Trans. Rel., vol.68,
no.2, pp.663-677, 2019.

A. Lotfi, S. Hukerikar, K. Balasubramanian, P. Racunas, N. Saxena,
R. Bramley, and Y. Huang, “Resiliency of automotive object detec-
tion networks on GPU architectures,” 2019 IEEE International Test
Conference (ITC), pp.1-9, 2019.

C. Lunardi, F. Previlon, D. Kaeli, and P. Rech, “On the efficacy of
ECC and the benefits of FinFET transistor layout for GPU reliability,”
IEEE Trans. Nucl. Sci., vol.65, no.8, pp.1843-1850, 2018.

P.M. Basso, F.F. dos Santos, and P. Rech, “Impact of tensor cores and
mixed precision on the reliability of matrix multiplication in GPUs,”
IEEE Trans. Nucl. Sci., vol.67, no.7, pp.1560-1565, 2020.

P.E. Dodd and L.W. Massengill, “Basic mechanisms and modeling
of single-event upset in digital microelectronics,” IEEE Trans. Nucl.
Sci., vol.50, no.3, pp.583-602, 2003.

Z.Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, and C. Zhuo, “When
single event upset meets deep neural networks: Observations, explo-
rations, and remedies,” 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), IEEE, pp.163-168, 2020.

Y. Kim, R. Daly, J. Kim, C. Fallin, J.H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” ACM
SIGARCH Computer Architecture News, vol.42, no.3, pp.361-372,
2014.

B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari,
“Characterizing temperature, power, and soft-error behaviors in data
center systems: Insights, challenges, and opportunities,” 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems (MASCOTS),
pp.22-31, 2017.

G. Li, S.K.S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S.W. Keckler, “Understanding error propagation in deep learning
neural network (DNN) accelerators and applications,” Proc. Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis, 2017.

A.S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural
network with progressive bit search,” Proc. IEEE/CVF International
Conference on Computer Vision, pp.1211-1220, 2019.

1.J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
W. Choi, D. Shin, J. Park, and S. Ghosh, “Sensitivity based error re-
silient techniques for energy efficient deep neural network accelera-
tors,” 2019 56th ACM/IEEE Design Automation Conference (DAC),
pp.1-6, 2019.

A. Mahmoud, S.K.S. Hari, C.W. Fletcher, S.V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M.B. Sullivan, T. Tsai, and S.W. Keck-
ler, “HarDNN: Feature map vulnerability evaluation in CNNs,” arXiv
preprint arXiv:2002.09786, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pp.770-778, 2016.

Y. Zhang, H. Itsuji, T. Uezono, T. Toba, and M. Hashimoto, “Esti-
mating vulnerability of all model parameters in DNN with a small

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

IEICE TRANS. FUNDAMENTALS, VOL.E106-A, NO.3 MARCH 2023

number of fault injections,” Design, Automation and Test in Europe
Conference (DATE), 2022.

Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “BinFI: An
efficient fault injector for safety-critical machine learning systems,”
Proc. International Conference for High Performance Computing,
Networking, Storage and Analysis, pp.1-23, 2019.

F. Benevenuti, F. Libano, V. Pouget, F.L. Kastensmidt, and P. Rech,
“Comparative analysis of inference errors in a neural network im-
plemented in SRAM-based FPGA induced by neutron irradiation
and fault injection methods,” 2018 31st Symposium on Integrated
Circuits and Systems Design (SBCCI), pp.1-6, 2018.

A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injec-
tion attacks on cryptographic devices: Theory, practice, and coun-
termeasures,” Proc. IEEE, vol.100, no.11, pp.3056-3076, 2012.

J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Practical
fault attack on deep neural networks,” Proc. 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp.2204—
2206, 2018.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H.P. Graf, “Prun-
ing filters for efficient ConvNets,” arXiv preprint arXiv:1608.08710,
2016.

J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-
ment,” arXiv preprint arXiv:1804.02767, 2018.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Technical Report, University of Toronto, Toronto,
Ontario, 2009.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C.L. Zitnick, “Microsoft COCO: Common objects in
context,” European Conference on Computer Vision, pp.740-755,
Springer, 2014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol.12, pp.2825-2830, 2011.

Yangchao Zhang received the B.E. degree
from Wuhan University and M.E. degree in infor-
mation systems engineering from Osaka Univer-
sity, Suita, Japan in 2019 and 2021, respectively.
She is currently with Micron Inc. Data Science
Department, Hiroshima, Japan. Her research in-
terests include reliability of neural network.

Hiroaki Itsuji received the M.S. and the
Ph.D. degree in electrical engineering and in-
formation systems from the University of To-
kyo, Tokyo, Japan. He is currently a Senior Re-
searcher in the Center for Technology Innovation
- Production Engineering and MONODUKURI,
Research and Development Group, Hitachi, Ltd.,
Yokohama, Japan. His current research inter-
ests include the system design of highly-reliable
fault-tolerant systems.

http://dx.doi.org/10.1109/tc.2015.2444855
http://dx.doi.org/10.1109/tc.2015.2444855
http://dx.doi.org/10.1109/tc.2015.2444855
http://dx.doi.org/10.1109/tc.2015.2444855
http://dx.doi.org/10.1109/tr.2018.2878387
http://dx.doi.org/10.1109/tr.2018.2878387
http://dx.doi.org/10.1109/tr.2018.2878387
http://dx.doi.org/10.1109/tr.2018.2878387
http://dx.doi.org/10.1109/itc44170.2019.9000150
http://dx.doi.org/10.1109/itc44170.2019.9000150
http://dx.doi.org/10.1109/itc44170.2019.9000150
http://dx.doi.org/10.1109/itc44170.2019.9000150
http://dx.doi.org/10.1109/tns.2018.2823786
http://dx.doi.org/10.1109/tns.2018.2823786
http://dx.doi.org/10.1109/tns.2018.2823786
http://dx.doi.org/10.1109/tns.2020.2977583
http://dx.doi.org/10.1109/tns.2020.2977583
http://dx.doi.org/10.1109/tns.2020.2977583
http://dx.doi.org/10.1109/tns.2003.813129
http://dx.doi.org/10.1109/tns.2003.813129
http://dx.doi.org/10.1109/tns.2003.813129
http://dx.doi.org/10.1109/asp-dac47756.2020.9045134
http://dx.doi.org/10.1109/asp-dac47756.2020.9045134
http://dx.doi.org/10.1109/asp-dac47756.2020.9045134
http://dx.doi.org/10.1109/asp-dac47756.2020.9045134
http://dx.doi.org/10.1145/2678373.2665726
http://dx.doi.org/10.1145/2678373.2665726
http://dx.doi.org/10.1145/2678373.2665726
http://dx.doi.org/10.1145/2678373.2665726
http://dx.doi.org/10.1145/2678373.2665726
http://dx.doi.org/10.1109/mascots.2017.12
http://dx.doi.org/10.1109/mascots.2017.12
http://dx.doi.org/10.1109/mascots.2017.12
http://dx.doi.org/10.1109/mascots.2017.12
http://dx.doi.org/10.1109/mascots.2017.12
http://dx.doi.org/10.1109/mascots.2017.12
http://dx.doi.org/10.1145/3126908.3126964
http://dx.doi.org/10.1145/3126908.3126964
http://dx.doi.org/10.1145/3126908.3126964
http://dx.doi.org/10.1145/3126908.3126964
http://dx.doi.org/10.1145/3126908.3126964
http://dx.doi.org/10.1109/iccv.2019.00130
http://dx.doi.org/10.1109/iccv.2019.00130
http://dx.doi.org/10.1109/iccv.2019.00130
https://arxiv.org/abs/1412.6572v1
https://arxiv.org/abs/1412.6572v1
http://dx.doi.org/10.1145/3316781.3317908
http://dx.doi.org/10.1145/3316781.3317908
http://dx.doi.org/10.1145/3316781.3317908
http://dx.doi.org/10.1145/3316781.3317908
https://arxiv.org/abs/2002.09786
https://arxiv.org/abs/2002.09786
https://arxiv.org/abs/2002.09786
https://arxiv.org/abs/2002.09786
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.23919/date54114.2022.9774569
http://dx.doi.org/10.23919/date54114.2022.9774569
http://dx.doi.org/10.23919/date54114.2022.9774569
http://dx.doi.org/10.23919/date54114.2022.9774569
http://dx.doi.org/10.1145/3295500.3356177
http://dx.doi.org/10.1145/3295500.3356177
http://dx.doi.org/10.1145/3295500.3356177
http://dx.doi.org/10.1145/3295500.3356177
http://dx.doi.org/10.1109/sbcci.2018.8533235
http://dx.doi.org/10.1109/sbcci.2018.8533235
http://dx.doi.org/10.1109/sbcci.2018.8533235
http://dx.doi.org/10.1109/sbcci.2018.8533235
http://dx.doi.org/10.1109/sbcci.2018.8533235
http://dx.doi.org/10.1109/jproc.2012.2188769
http://dx.doi.org/10.1109/jproc.2012.2188769
http://dx.doi.org/10.1109/jproc.2012.2188769
http://dx.doi.org/10.1145/3243734.3278519
http://dx.doi.org/10.1145/3243734.3278519
http://dx.doi.org/10.1145/3243734.3278519
http://dx.doi.org/10.1145/3243734.3278519
https://arxiv.org/abs/1608.08710v1
https://arxiv.org/abs/1608.08710v1
https://arxiv.org/abs/1608.08710v1
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48

ZHANG et al.: VULNERABILITY ESTIMATION OF DNN MODEL PARAMETERS WITH FEW FAULT INJECTIONS
531

Takumi Uezono received the B.E., M.E.,
and Ph.D. degrees in computer science and in
electrical and electronic engineering from the
Tokyo Institute of Technology, Tokyo, Japan, in
2005, 2007, and 2010, respectively. He was a
B ! Post-Doctoral Researcher with Kyoto University,
g Kyoto, Japan, from 2010 to 2011. He was also a
= Research Fellow with the Japan Society for the
(" Promotion of Science, from 2009 to 2011. He
is currently a Chief Researcher in the Center for
Technology Innovation - Production Engineer-
ing and MONODUKURI, Research and Development Group, Hitachi, Ltd.,
Yokohama, Japan. His current research interests include the circuit and
system design for highly reliable system and the physical design of high-
performance integrated circuits.

Tadanobu Toba received the M.S. and the
Ph.D. degree in system safety and information
science from the Nagaoka University of Technol-
ogy, Niigata, Japan. He is currently a Chief Re-
searcher in the Center for Technology Innovation
- Production Engineering and MONODUKURI,
Research and Development Group, Hitachi, Ltd.,
Yokohama, Japan. His current research activity
is dependable technology and system design.

Masanori Hashimoto received the B.E.,
M.E. and Ph.D. degrees in communications and
computer engineering from Kyoto University,
Kyoto, Japan, in 1997, 1999, and 2001, respec-
tively. He is currently a Professor in Graduate
School of Informatics, Kyoto University, Kyoto,
Japan. His current research interests include the
design for manufacturability and reliability, tim-
ing and power integrity analysis, reconfigurable
computing, soft error characterization, and low-
power circuit design. Dr. Hashimoto was a re-
cipient of the Best Paper Awards from ASP-DAC in 2004 and RADECS in
2017, and the Best Paper Award of the IEICE Transactions in 2016. He
served as the TPC chair and co-chairs for ASP-DAC 2022 and MWSCAS
2022, respectively. He serves/served as the Editor-in-Chief for Elsevier Mi-
croelectronics Reliability and an Associate Editor for the IEEE Transactions
on VLSI Systems, IEEE Transactions on Circuits and Systems I, and ACM
Transactions on Design Automation of Electronic Systems.

