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Abstract—This work aims to develop a reservoir comput-
ing (RC) device based on the phenomenon of FRET between
quantum dots (QDs), where FRET is a phenomenon in which
excited states are transferred between QDs, and its properties
change depending on the distance between QDs. We propose a
compact structure in which optical input/output and quantum
dots are adjacently placed without lenses or delay lines. The
proposed structure exploits the QD-based optical reservoir as
an intermediate layer and adopts memory to enable recurrent
inputs. We evaluate the feasibility of the proposed structure
by applying tasks that require nonlinearity. Simulation-based
experimental results show that the proposed device can perform
logistic map, time-series XOR, and NARMA10.

Index Terms—Reservoir computing, optical reservoir, quantum
dots, FRET, fluorescence

I. INTRODUCTION

Reservoir computing is expected to facilitate the model
training since only the output connection is trained while
the randomly-generated middle layer is unchanged. Physical
reservoir, which replaces the middle recurrent layer with phys-
ical phenomena, is drawing attention [1] since it may process
the data more efficiently than conventional digital circuits. To
enable reservoir computing, the physical reservoir should have
the properties of non-linearity, short-term memory, and high
dimensionality. Various physical reservoirs have been studied
in a variety of things. Examples includes light-based reservoir
[2], oscillator-based reservoir [3], and mechanical reservoir
using physical properties [4].

In the IoT era, edge computing is demanded in various
applications instead of traditional centralized data processing.
Edge computing requires processing large amounts of data,
which imposes efficient computation since computation re-
sources and power are often limited. Deep learning requires
a lot of power to perform the computation, making us find
alternatives. Also, the need for computing closer to the user
requires devices that are smaller in size.

Fluorescence resonance energy transfer (FRET) is a phe-
nomenon in which excited states are transferred, for example,
between neighboring quantum dots (QDs). The state transfer
probability depends on the QD types and the distance between
the QDs. Therefore, a randomly-generated QD network, which
includes QDs densely, inherently exposes various nonlinear
relationships between input excitation light and output fluores-
cence. Also, the excitation state represents the memory, and
therefore, FRET in the QD network is a promising behavior
for a physical reservoir. On the other hand, when capturing the
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Fig. 1. QD behaviours.

fluorescence with a photo-diode (PD) array or an image sensor,
the nano-meter scale of QD and micro-meter scale of PD make
it challenging to know which QD emits each photon. Also, the
state holding duration and the fluorescence lifetime are tens
of nano-seconds, which may necessitate repeated evaluations.
For overcoming such issues, optical devices often use lenses
and delay lines. However, they prevent the computing device
from being small in size.

This study proposes a simple structure that can be easily
miniaturized without using lenses or delay lines while uti-
lizing FRET for computing. The proposed structure includes
excitation light sources, such as tiny LEDs, a sheet including
a QD network, a filter that passes fluorescence but eliminates
excitation light, and a photo-diode array. We map several tasks
requiring nonlinearity on the device and confirm the feasibility
of the proposed device using a FRET simulator.

II. QUANTUM DOTS AND FRET

Fig. 1 illustrates the QD phenomena focused in this work.
When excitation light activates a quantum dot (a), the excita-
tion energy may move to neighboring QDs (FRET) (b), emit
a photon as fluorescence (c), or become inactivated without
fluorescence (d). The probability of excitation energy transfer
is modeled in [5] as 1

1+(R/R0)6
, where R is the distance

between QDs, and R0 is the Förster distance, which depends
on the QD type. When R = R0, the energy transfer occurs at
the probability of 50 %.

The wavelength of the fluorescence uniquely depends on the
QD type. The excitation light should have a shorter wavelength
than that of the fluorescence to enable the excitation. On
the other hand, the wavelength difference between excitation
and fluorescence is used to filter out the excitation light and
solely observe fluorescence. Besides, the FRET network can be
configured with multiple types of QDs, but this work supposes
that a single type of QD is used for the QD network as the
first step of FRET-based reservoir computing.

Fig. 2 shows the input and output light intensities for a two-
QD system, which is obtained by the FRET simulator [6] with
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Fig. 2. Relationship between input and output light intensities.

a similar setup with Section IV. The distance values between
the QDs are expressed as a ratio to the Förster distance. You
can see a nonlinear relationship between input and output
intensities depending on the distance. Note that, without FRET,
such distance-dependency would not arise. Even when many
QDs are randomly placed, the density difference makes the
input-output relationship diverse.

III. PROPOSED DEVICE STRUCTURE

A. Device structure

We propose the device structure whose cross-section is
shown in Fig. 3 for FRET-based reservoir computing. The red
box in the figure represents the physical reservoir, i.e., the in-
termediate layer in reservoir computing. The light source 2D-
array (input), a sheet including many quantum dots randomly,
and PD 2D-array (output) are placed in a straight line. The
light source provides the optical input to excite the QDs, and
PD acquires the intensity of the fluoresce. For pursuing form-
factor minimization, lenses are not adopted in this structure.
The light source, QDs, and PDs would be stacked and housed
in a single package in the expected final implementation.

As mentioned in Section I, the memory of the excited
state in quantum dots is very short, and QD-wise fluorescence
detection is infeasible due to the mismatch in size between QD
and PD. Therefore, the proposed structure introduces a digital
memory to compose a recurrent network. Also, single-photon
detection is difficult since the sensitivity of ordinary PD is not
high enough, and moreover, the photon emission is isotropic
in all solid angles. Hence, repeated input and accumulation
are necessary to obtain the digitized reservoir output stably.
Taking into account such accumulation time, the reservoir in
the proposed structure operates at the discretized time like
a sequential circuit. The recurrent behavior proceeds with
this discretized time using the feedback through the memory.
Finally, the digitized reservoir output is given to a lightweight
machine learning model, such as linear support vector machine
and ridge regression, to obtain the final output.

Fig. 4 shows a closer view of the positional relationship be-
tween the light sources, QDs, and PDs. QDs are much smaller
than PDs, as mentioned earlier, and the photon emission is
isotopic. Therefore, a PD receives the photons coming from

multiple, rather many, QDs in this configuration. However,
even in this case, we can obtain the nonlinear relationship
between the input and output, as shown in Fig. 2 is obtained
and used for reservoir computing. There is a filter between
the QDs and PDs to filter out the excitation light. We can find
thin yet high rejection-ratio bandpass filters, e.g., in [7].

B. Network mapping

In the proposed structure, we can give a switching matrix
function to the feedback memory. Namely, we can choose
some of the PD outputs for feedback and determine the lo-
cations of the feedback inputs. In addition to the conventional
training of the output part, we can, in other words, need to
determine the feedback matrix.

This section presents a method that maps an echo state
network (ESN) into the proposed device. Here, ESN is a basic
type of non-physical reservoir implementation [8]. The middle
layer corresponding to the reservoir consists of artificial neu-
rons whose recurrent connections and weights are randomly
determined. A nonlinear transformation is performed by using
a nonlinear activation function.

This work proposes to selectively map a compact ESN
achieving high performance into the proposed device structure
by adjusting the memory switching matrix. Fig. 5 shows the
correspondence between the ESN and the network on the
proposed device. Several PDs and light sources compose a
single unit (node). The following explanation supposes that a
set of 3×3 light source array and 3×3 PD array is considered
equivalent to a node in an ESN. In Fig. 5, the sizes of the
light source and PD are equal for simplifying the explanation.

The spatial and temporal overlap of the light from the light
sources can provide interaction between multiple light sources.
The arrows (called edges) between the nodes from PD to the
light sources mean that the PD output is delayed by one step,
and the light sources give recurrent inputs. By choosing the
relative position of the light source and PD, the so-called
weights can be set since the spatial overlap varies. In the
device, the nodes are separated in time using external memory.
As for space, the nodes are separated by a sufficient distance
from each other. Therefore, FRETs do not occur between
nodes, nor do they affect each other unexpectedly.

IV. EXPERIMENTS

A. Setup

We randomly generate QD networks for experiments ac-
cording to the conditions listed in Table I. In this study,
QD585 [9] is assumed. Other device parameters are also
listed in Table I. We use two types of light sources; DC
and pulsed sources. When using DC light source, its intensity
represents the input value. In the case of the pulsed source,
the pulse count in a unit time represents the input value. More
concretely, the input light is pulsed with a period of 10/(input
value) [ns], where the pulse width is constantly 1 ns.

In this work, we simulate the QD behavior using a simulator
reported in [6]. We use a Monte Carlo option of the simulator
to stochastically simulate the state transitions between QD
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Fig. 3. Proposed device structure.
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Fig. 5. Network construction.

TABLE I
SIMULATION SETUP.

QD density 1000 dots/µm2

# of MC trials 200
PD size 600 nm
PD pitch 1000 nm

QD-PD distance 1000 nm
LS-QD distance 1000 nm

Sim. step 100 ns

excitation, FRET, fluorescence, and inactivation on the basis of
tRSSA [10]. On the other hand, the original FRET simulator
simulates the state of the QDs only. Therefore, we constructed
a simulation framework that reproduces the entire proposed
device structure and simulates it as a device using the above-
mentioned FRET simulator as a core engine. The input light
and the fluorescence, for example, decay according to the
squared distance in the framework.

B. Memory-unnecessary tasks

We first test two tasks that approximate nonlinear functions
that do not require memory.

1) Logistic map: A logistic map is a chaotic system where
even a tiny error can significantly disturb the calculation. The
logistic map is represented by

xt+1 = αxt(1− xt),

where α = 4.0 and the initial value x0 = 0.2.
In this logistic mapping, the output value becomes the next

input value. Therefore, the next input shall be based on the
predictions one after another in the prediction process. Ridge
regression is used to learn the function. The mean squared
error (MSE) in training was 9.61×10−9. Here, 5×5 PD array
and DC light source are assumed.

Fig. 6 shows the original function Y , the trained data Train,
and the prediction Predict. The training is performed in the
first 100 steps, and the prediction is performed after 100 steps
are passed. Because of the chaotic nature of the system, the
predictions eventually become different. However, the first 17
steps, i.e., 100 to 117 steps, are well approximated, which
means the approximation is feasible. Fig. 7 shows an X-Y
diagram plotted with the input on the horizontal axis and the
output on the vertical axis. We can see that the function and
the prediction are almost identical.

Fig. 6. Prediction result of logistic
map in time domain.

Fig. 7. Prediction result of logistic
map in input-output domain.

2) XOR: Two-input XOR y = XOR(x1, x2) is used to
check whether the nonlinearity can be derived in the proposed
structure. We use linear support vector machine (SVM) for
output classification. Here, it should be noted that linear SVM
cannot approximate XOR solely. Two hundred cases are used
for training, and additional 50 cases are used for evaluation.
The inputs x1 and x2 are given from two locations with pulsed
light sources. In this experiment, the pulse frequencies for 0
and 1 are 50 MHz and 100 MHz, respectively.

We executed this experiment in two configurations; 2×2 and
3×3 PD arrays. The input lights are given to the most distant
diagonal locations. In the case of the 3×3 PD array, both
the training and evaluation attained 100% accuracy. However,
in the 2×2 case, the training and evaluation accuracies are
both 75%, which means the XOR function is not approximated
well. In the 2×2 case, there are only three variations of the
distance between the light source and the PD, whereas there
were six variations in the 3×3 case. We think this difference
in the distance variation count contributed to the accuracy.

C. Memory-necessary temporal tasks

We next test tasks requiring memory in the reservoir.
1) Time-series XOR: Time-series XOR takes random 0 and

1 inputs and predicts the result of XORing the previous and
current inputs.

d(n) = XOR(u(n), u(n− 1)),

where u(n) is the randomly generated input at time n. The
same pulsed light source as Section IV-B2 is used for inputting
u(n). As for the feedback input, the pulse period is inversely
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Fig. 8. Network structure for time-series XOR. Fig. 9. NARMA10 net-
work structure

proportional to the amount of photons received by the associ-
ated PD. The absolute value of the period is adjusted within
the period range of the input light source for u(n).

Fig. 8 exemplifies one network configuration we tested.
There is one edge from the right node to the left node. In
this configuration, the right node works as one-step memory
and provides one-step previous input to the left node. The
left node can process the current input and the previous input
coming from the right node. Each node consists of 3×3 PDs
per node, and there are 18 outputs in total as a reservoir. Linear
support vector machine is applied to the reservoir outputs.
We experimentally confirmed that both training and evaluation
attained 100% accuracy.

D. NARMA10

Finally, we test NARMA [11], which is often used for eval-
uating reservoir computing capability. NARMA is expressed
by the following equation.

d(n+1)=a1d(n)+a2d(n)

m−1∑
i=0

d(n−i)+a3u(n−m+1)u(n)+a4,

where ai is constants, and u(n) is the input at time n.
The output d depends on the inputs of previous m steps,
which means m-step memory is necessary. In the following,
we evaluate a popular setting of m = 10, which is called
NARMA10.

Due to the large number of steps in NARMA10 and the con-
sequent long simulation time, the number of FRET simulation
trials was set to 100. This experiment supposes online training,
meaning that the weights are updated sequentially every step
by the sequential least-squares method. The number of training
steps was 200 steps for three different sets of NARMA10
parameters, resulting in 600 steps in total.

First, appropriate network structures were explored. We
generated many ESNs changing the number of nodes and
edges. We then trained and evaluated them using a metric
of RMSE. Among them, we chose a 20-node network having
cyclic structures shown in Fig. 9 since it achieves good accu-
racy. Then, we mapped this network on the proposed device
structure following the procedure discussed in Section III.
Each node is assumed to have 3×3 PD array and 3×3 light
source array.

Fig 10 shows the NARMA10 function d(n) and the pre-
dicted results. The blue line represents d(n), which is the target

Fig. 10. NARMA10 prediction result.

for prediction. The orange line shows the predicted value. The
blue and orange lines are slightly distant at the beginning of
the training, but they overlap as the steps progress. The RMSE
is 0.020.

V. CONCLUSION

This work proposed a compact device structure for FRET-
based optical reservoir computing. The proposed structure,
which includes tiny light sources, a randomly-generated dense
QD network in a thin sheet, optical filter and a PD array, is
suitable for a single package implementation and resultantly
edge computing. Simulation-based experiments mapping lo-
gistics map, XOR, and NARMA10 tasks showed that the
proposed structure could execute those tasks and provide
nonlinearlity, memory and high dimensionality demanded for
reservior computing.
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