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A Hardware Efficient Reservoir Computing System Using Cellular
Automata and Ensemble Bloom Filter

Dehua LIANG†a), Nonmember, Jun SHIOMI†, Noriyuki MIURA†, Masanori HASHIMOTO††,
and Hiromitsu AWANO††, Members

SUMMARY Reservoir computing (RC) is an attractive alternative to
machine learning models owing to its computationally inexpensive training
process and simplicity. In this work, we propose EnsembleBloomCA, which
utilizes cellular automata (CA) and an ensemble Bloom filter to organize an
RC system. In contrast to most existing RC systems, EnsembleBloomCA
eliminates all floating-point calculation and integer multiplication. Ensem-
bleBloomCA adopts CA as the reservoir in the RC system because it can
be implemented using only binary operations and is thus energy efficient.
The rich pattern dynamics created by CA can map the original input into
a high-dimensional space and provide more features for the classifier. Uti-
lizing an ensemble Bloom filter as the classifier, the features provided by
the reservoir can be effectively memorized. Our experiment revealed that
applying the ensemble mechanism to the Bloom filter resulted in a signifi-
cant reduction in memory cost during the inference phase. In comparison
with Bloom WiSARD, one of the state-of-the-art reference work, the En-
sembleBloomCA model achieves a 43× reduction in memory cost while
maintaining the same accuracy. Our hardware implementation also demon-
strated that EnsembleBloomCA achieved over 23× and 8.5× reductions in
area and power, respectively.
key words: EnsembleBloomCA, reservoir computing, cellular automata,
Ensemble Bloom Filter

1. Introduction

With the increasing scale of deep neural networks (DNNs),
most portable and wearable devices are becoming unable to
handle the large memory consumption and computing de-
mand in both the training and inference phases. For exam-
ple, AlexNet [1] requires 249MB of inference memory and
performs 1.5B high precision operations to classify one im-
age. Even applying the hardware-friendly implementation
techniques to get the Binarized Neural Networks (BNNs) [2]
or XNOR-Networks [3], still require expensive computation
costs due to the floating-point calculation and backpropaga-
tion algorithm during the training. Most of the small edge
devices do not have sufficient computing power to accom-
plish such sophisticated algorithms. Hence, it is crucial to
meet the rising demand for more computationally efficient
models.
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Fig. 1 Conventional DNN and reservoir computing.

Reservoir computing (RC) is a promising alternative
for drastically reducing the computational burden of ma-
chine learning methods. Figure 1 shows a comparison be-
tween conventional DNN models and RC systems. The
most critical advantage of RC is that only some of the pa-
rameters are trained, while the rest can be fixed. Owing
to this unique feature, RC can be implemented with limited
hardware resources, that is, fixed weights can be realized us-
ing hardwired logic. The standard RC architecture generally
consists of a reservoir and classifier. All the input signals
are given to a reservoir, which is often constructed by a re-
current neural network (RNN) whose synaptic weights are
randomly initialized [4]. After being fed into the fixed and
nonlinear pattern dynamic reservoir, these input signals are
mapped into a higher-dimensional feature space. Finally,
the output of RC is obtained using the trainable linear layer.

In comparison with the conventional CNNs with hard-
ware implementation techniques e.g., BNNs and XOR Net,
the design strategy of RC systems effectively avoid the use
of complex training method in the reservoir part, and thus
the learning process is simplified to a classical regression
problem. Because of its simplicity and low computational
cost in both the training and inference phases, RC systems
have been successfully applied in many different fields, such
as image recognition and robot control [5]. However, the
frequent use of floating-point (FP) arithmetic found in most
existing RNN models makes the implementation of RC sys-
tems on hardware challenging.

To reduce the massive usage of arithmetic units, the use
of cellular automata (CA) has been proposed as a promising
alternative to reservoirs [6]. A CA consists of multiple cells
aligned in a one-dimensional array, where each cell takes
two possible discrete states (“1” or “0”) and evolves in dis-
crete time steps. This evolution process is guided by specific
rules and interactions between the nearest neighbors. With
rich pattern dynamics, CA is very well suited to the hard-
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ware implementation of reservoir structures.
Hyperdimensional (HD) computing is also considered

as a feasible way to implement pattern recognition systems.
HD computing uses a large number of hypervectors, that
is, binarized high-dimensional vectors that can be combined
using well-defined vector space operations. The first step
in HD computing is to map data points from the original
domain to a high-dimensional space. In training, HD com-
bines the mapped hypervectors to generate a hypervector
representing each class. The utilization of these hypervec-
tors aims to map the input data into a high-dimensional for-
mat, an approach which is similar to the idea of the reser-
voir structure in RC systems. The classification task at the
inference phase is performed by checking the similarity of a
mapped test hypervector with all trained classes. The math-
ematics governing the high-dimensional space enables HD
models to be easily applied to many different fields, such as
image processing [7]–[12], computer version [11]–[13], and
language classification [14].

The Bloom filter (BF) is a space-efficient probabilistic
data structure aimed at approximate member queries, that
is, testing whether an element belongs to a given set [15].
This filter can be treated as a special case application of HD
computing models. By adopting the BF, a weightless neural
network has been proposed for image classification tasks,
successfully eliminating costly FP calculations while main-
taining fast single-pass training and yielding satisfactory ac-
curacy performance [16], [17]. In contrast to conventional
neural networks, the BF-based model is characterized by
its simple implementation in both software and hardware.
However, the large amount of memory required remains as
the bottleneck for the application of BF, which makes it
impractical when used for a portable device or hardware-
resource-constrained system.

To further reduce the memory footprint, we propose a
novel RC model: EnsembleBloomCA. Similar to the ReCA
proposed in [18], EnsembleBloomCA adopts CA as the
reservoir. The uniqueness of EnsembleBloomCA lies in the
utilization of the ensemble Bloom filter as a classifier, which
can alleviate the pollution of Bloom filters, even when mem-
ory capacity is limited, and thus contribute to the significant
reduction of memory cost. The main contributions of our
model are the following:

• Eliminating all floating-point calculation and integer
multiplication, which makes EnsembleBloomCA suit-
able for hardware implementation.
• Achieving 43× memory reduction during inference in

comparison with [16] without hurting the accuracy.
• Achieving reductions of over 23× and 8.5× in area and

power consumption, respectively.

The remainder of this paper is organized as follows.
Section 2 summarizes related research. Then, in Sect. 3, the
preliminaries required to introduce EnsembleBloomCA are
provided. Section 4 describes the proposed method, Ensem-
bleBloomCA, and ensemble BF, followed by the details of
our experiment and the evaluation results in terms of soft-

ware and hardware in Sect. 5). Finally, concluding remarks
are provided in Sect. 6.

2. Reservoir Computing in Digital Circuit

2.1 Basics of Reservoir Computing

Reservoir computing (RC) circumvents the difficulty of
learning a number of RNN parameters, which has been
successfully applied in numerous fields such as robot con-
trol [19] and image/video processing [20]. More recently,
echo state networks [21] and liquid state machines [22] have
been proposed for the use in different research domains.
These technologies are collectively referred to as RC be-
cause both have a component called a reservoir [23]. The
fixed and nonlinear hidden layers are generally referred to as
the reservoir part, which can map the original input data into
a higher-dimensional feature space. Meanwhile, the output
layer is considered as a classifier.

Compared with conventional neural networks, RC sys-
tems use fixed weights in the input and hidden layers and
only modify the weights of the output layer in the training
process [4]. Because most of the weights can be fixed during
training and inference, they can be implemented using hard-
wired logic and thus do not require memory circuits. Hence,
RC is considered to be a promising alternative to replace
DNNs, the model size of which continues to increase expo-
nentially [5]. The state of each node is updated over M steps
according to a nonlinear mapping F, which aims to map the
low-dimensional input signal into the high-dimensional fea-
ture space as follows:

xi(k) = F[x(k − 1),u(k − 1)]. (1)

Here, xi(k) is the state of the i-th node at time step k,
where i ∈ {1, 2, · · · ,N} and k ∈ {1, 2, · · · ,M}. x(k) =
{x1(k), x2(k), · · · , xN(k)} is the N-dimensional node state
vector. Further, u(k) = {u1(k), u2(k), · · · , uN(k)} is the N-
dimensional input vector, where ui(k) is the input to the i-th
node at step k. As Eq. (1) shows, the state of node xi(k) de-
pends on the previous state xi(k − 1) and input ui(k − 1).

Note again that the weights in the reservoir, that is, the
nonlinear mapping F in Eq. (1), can be fixed during train-
ing and inference. Hence, the reservoir can be implemented
using hardwired logic, which contributes to a reduction in
hardware resources. However, the nonlinear mapping F
still requires floating-point computations, which may lead to
constraints when considering the implementation of RC in
portable devices. To eliminate floating-point computations
in the reservoir, several studies [6], [18], [24] have proposed
exploiting cellular automata (CA) as an alternative to tra-
ditional reservoirs, which are summarized in the following
Sect. 2.2.1.

2.2 Suitable Components for Hardware Implementation

The key idea of RC is to may the input to a higher-
dimensional space to facilitate the classification. As the
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basic components of the RC system, various methods have
been proposed to perform the reservoir and classifier. The
following techniques are commonly used because they are
considered suitable for hardware implementation.

2.2.1 Cellular Automata

A cellular automaton is a discrete computational model con-
sisting of a regular grid of cells, each in one of a finite num-
ber of states. The state of an individual cell evolves in time
according to a fixed rule, depending on the current state and
the states of its neighbors. CA governed by certain rules
have been proven to be computationally universal, that is,
capable of simulating a Turing machine [25].

Both [18], [24] perform exhaustive studies of the per-
formance of different CA rules when applied to pattern
recognition of time-independent input signals using an RC
scheme. For [24], the authors evaluate the model on a 5-
bit task, which is insufficient for the complicated applica-
tion field. For [18], they select the most accurate CA rules
to represent the reservoir structure, which can easily be re-
produced using a set of XOR gates and shift registers. They
achieve a high-performance alternative for RC hardware im-
plementation in terms of circuit area, power, and system ac-
curacy, which can be considered as a low-cost method to im-
plement fast pattern recognition digital circuits. However,
this model exploits the softmax function as its classifier,
which still requires FP calculations; hence, it is not suitable
for implementation on resource-constrained devices. For
[6], authors utilize a random forest algorithm as the clas-
sifier, which avoids the costly FP calculation during the in-
ference but also brings higher consumption for the training.

2.2.2 Hyper-Dimensional Computing

HD computing is another popular computing paradigm that
emulates the activity of neurons in a high-dimensional
space, an approach which is similar to the non-linear map-
ping idea of reservoir structure in RC systems. The main
difference is that most reservoir structures accomplish non-
linear mapping via specific computations or operations,
whereas HD computing requires reading hypervectors from
pre-stored memory. However, HD models also incur a huge
memory cost, which also limits the application of HD mod-
els. For further applications, there are three mainstream
methods for solving these problems in most existing HD
computing models.

The first method is to adopt emerging nanoscale resis-
tive memory or memristive devices for storage. Compared
with SRAM/DRAM, HD computing has recently been im-
plemented at scale for multi-class classification tasks us-
ing emerging phase-change memory devices. In [26], [27],
3D vertical resistive random access memory (ReRAM) de-
vices were used to perform individual operations for HD
computing. In another study, a carbon nanotube field-effect
transistor-based logic layer was integrated into ReRAMs for
more efficient memory implementation [28]. In [29], the au-

thors proposed a complete integrated in-memory HD com-
puting system in which all HD computing operations are
implemented on two planar memristive crossbar engines to-
gether with peripheral digital CMOS circuits. For the same
scale of HD computing models (memory cost), the hardware
efficiency was shown to improve when using the ReRAM in
these studies. While emerging devices have the potential to
open up new possibilities in HD computing, their incompat-
ibility with CMOS circuits still makes it difficult to realize
large-scale systems.

The second general idea is replacing binary operations
with costly FP calculations. The systems proposed in [7]–
[12] need to map the data points to hypervectors with non-
binary elements. This means that to perform even a sin-
gle addition between hypervectors, HD needs to compute
thousands (e.g., 10,000) of FP operations. Moreover, in HD
computing, training is achieved by the accumulation of sev-
eral hypervectors, which makes the training operations very
expensive.

The third idea is to adopt iterative training for model
optimization, which does not require FP calculations [7]–
[9], [11]–[13]. After mapping all the training data points
into high-dimensional binary vectors, these hypervectors are
stored in associative memory. Utilizing the labeled train-
ing data, the similarity between the encoded hypervectors
and stored hypervectors of each class can be measured. The
HD models are then adjusted and optimized iteratively ac-
cording to the correctness of the classification results. By
employing such a gradient descent, the error rate of the HD
model can be significantly reduced. The disadvantage of this
training strategy is that it requires tens of iterations to adjust
the model, which leads to a long training time and expensive
computational cost in comparison with single-pass training.

2.2.3 Bloom Filter

Bloom filters (BFs) are probabilistic data structures that rep-
resent a set as a small bit array allowing the occurrences of
false positives, i.e., in a Bloom filter, an element can be in-
correctly classified as a member of a set when it is not. Such
memory-oriented classifiers for pattern recognition are typ-
ically very simple and can be easily implemented in hard-
ware and software.

In [17], Bloom WiSARD was presented as an optimized
framework that utilizes the BFs in a memory-segment way.
Compared with the standard BFs, this model significantly
reduces the memory requirement to some extent at the cost
of allowing false positives and shows practically useful per-
formance in image recognition tasks. The elimination of FP
calculation and fast single-pass training are important ad-
vantages of Bloom WiSARD in terms of hardware efficiency.
However, a large amount of memory required remains a key
bottleneck. Take the MNIST classification task [30] as an
example, when the false positive rate is 10%, the memory
requirement is over 800MB for the inference implementa-
tion. It makes the adoption of Bloom WiSARD impractical
for use in portable devices or memory-constrained systems.
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3. Preliminary

3.1 Cellular Automata (CA)

Because CA provides a simple method to map the input into
a high-dimensional space, it is useful as a hardware reser-
voir. Therefore, we adopt CA as a reservoir in the pro-
posed method, similar to the existing methods [18]. Ele-
mentary cellular automata (ECA) is the simplest class of
1-dimensional CA [31], where each cell takes binary states,
i.e., either “1” or “0.” The updated state of a cell is deter-
mined by three cells, i.e., the cell and two neighboring cells,
and hence, the time evolution of cell states can be written as

xi(k) = F[xi−1(k − 1), xi(k − 1), xi+1(k − 1)]. (2)

There are 223
= 256 possible evolution rules in total which

can be labeled from Rule 0 to Rule 255. Figure 2 is an ex-
ample of ECA Rule 90.

3.2 Cellular Automata Applied to Reservoir Computing

For the image classification tasks, assume the image u as the
input data of the RC system. To apply CA to RC, the internal
nodes and inputs should be converted into a binary format.
[18] proposed the use of thermometer encoding, where an
n-bit integer value is converted into a 2n-bit binary string as
follows:

u(l) =

⎧⎪⎪⎨⎪⎪⎩
1, R·l

d < u,

0, R·l
d ≥ u,

(3)

where d is the length of the binary data, R is the range of
intensity for each pixel, u is the original input image with
decimal data, and u(l) represents the l-th channel of the bi-
nary input data. For each pixel, the vector is initialized with
d bits of 0s. The bits ranging from the most significant bit
(MSB) to the first bit with a threshold higher than the pixel
value are changed to 1. All the integer values u ∈ [0,R].
Thus, the thresholds of thermometer encoding can be ob-
tained by dividing the pixel space R into d parts.

Fig. 2 Cellular automata evolution Rule90.

This encoding mechanism has been proven to signif-
icantly increase the error tolerance of neural networks, es-
pecially in terms of constructing adversarial samples [32].
Meanwhile, we note that there is another advantage of our
model for hardware implementation, which benefits from
thermometer encoding and is rarely noticed. This binary en-
coding mechanism can implement the max-pooling function
utilizing only bitwise OR gates. This hardware friendliness
decreases the energy consumption for both the training and
inference phases.

After obtaining the binarized input signal, the ECA rule
is applied to rows and columns independently with a fixed
boundary condition. These two image results are combined
with a bitwise XOR operation. This process is repeated for
M iterations; for all images, rows and columns are indepen-
dently iterated over with the same ECA rule, and the result-
ing vectors are combined with a bitwise XOR operation.

After decomposing the original images into d binary
channels, we obtain the l-th channel of the input signal u(l),
where l ∈ [1, d]. There is no communication between binary
channels. The same ECA rule is repeated M times in total.

Let gk be the function g applied k times, and let x(l)(k)
be a Boolean time-dependent image, which can be ex-
pressed as

x(l)(k) = gk(u(l)) =

⎧⎪⎪⎨⎪⎪⎩
u(l), k = 0,

g1(x(l)(k − 1)), k > 0.
(4)

We can obtain the state of the reservoir in the i-th posi-
tion, k-th iteration, and l-th binary channel as x(l)

i (k), where
i ∈ {1, 2, . . . ,N}, k ∈ {1, 2, . . . ,M} and l ∈ {1, 2, . . . , d}.
Thus,

x(l)(k) = [x(l)
1 (k), x(l)

2 (k), . . . , x(l)
N (k)]. (5)

The images are iterated over independently by rows
and columns. We define x(l)

row(k) as the result of iterating
images by rows, that is, the state of each updated cell is de-
termined by two horizontal neighboring cells and the cell it-
self. Similarly, x(l)

col(k) represents the results of iterating over

images by columns. The vectors x(l)
f eature(k) are obtained by

combining x(l)
row(k) and x(l)

col(k) with an XOR operation:

x(l)
f eature(k) = x(l)

row(k) ⊕ x(l)
col(k). (6)

The x f eature(k) is defined as

x f eature(k) =
d−1∑

l=0

x(l)
f eature(k), (7)

where k ∈ [0,M]. Subsequently, we apply a max-pooling
layer to improve the generalization of the network and re-
duce the weights in the classifier. Because the internal states
are binarized, the CA is suitable for digital hardware imple-
mentation. However, the classifier still requires a softmax
operation in [18], which should be eliminated for ease of
implementation on resource-constrained devices.
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3.3 Application of Bloom Filter

To completely eliminate the FP calculations, we propose the
exploitation of the Bloom filter (BF) to construct the classi-
fier in the RC system. The Bloom filter is considered as
a space-efficient probabilistic data structure, which aims to
test whether an unknown item is a member of the given
set [15]. As the term “probabilistic” suggests, the query re-
sult may contain errors, i.e., the Bloom filter returns either
“possibly in the set” or “definitely not in the set.” From a
neural processing point of view, BFs are a special case of an
artificial neural network with two layers (input and output),
where each position in a filter is implemented as a binary
neuron. Such a network does not have interneuronal con-
nections; that is, output neurons (positions of the filter) have
only individual connections with themselves and the corre-
sponding input neurons. The most significant advantage of
the Bloom filter is its memory space efficiency over other
data structures, which is suitable for error-resilient applica-
tions such as machine learning [33].

The standard BF allows the addition of new elements to
the filter and is characterized by a perfect true positive rate
(i.e., 1), but a nonzero false positive rate. The false positive
rate depends on the number of elements to be stored in the
filter, as well as the filter parameters, including the number
of hash functions and the size of the filter. In the BF model,
the element is considered as an L-bit binarized vector, which
represents the position within the Bloom filter. Thus, each
Bloom filter contains 2L bits. We define B(index) as the
index-th bit in the Bloom filter, where index ∈ [0, 2L − 1].

In the insertion phase, all the values in the Bloom fil-
ters are initially set to zero. Each training sample is inserted
into the corresponding Bloom filter based on their labels.
The value of the accessed bit B(index) is set to one. In the
query phase, the testing sample is sent to all the Bloom fil-
ters and returns the value of the accessed bit B(index) in
every Bloom filter. When it returns positive (logic “1”), the
testing sample is considered as “possibly in this category.”
When it returns negative (logic “0”), the sample is judged as
“definitely not in this category.”

Figure 3 shows an example of Bloom filter operations

Fig. 3 Example of Bloom filter operations with a 16-bit array and three
hash functions.

with a 16-bit array and three hash functions. In the inser-
tion operation, each element is mapped into three positions
according to the three different hash functions (e.g., Mur-
murHash [34]). Then these corresponding hashed bits are
set to 1. The query operation looks up the positions mapped
from the input element, indicating whether it is a member of
the set. As Fig. 3 shows, d is a false positive, as it was re-
turned as a member of the set (only a, b and c were inserted).

4. Proposed Method

4.1 EnsembleBloomCA

EnsembleBloomCA is a novel RC architecture comprising
an ingenious combination of CA and an ensemble Bloom
filter. Figure 4 shows the overview of EnsembleBloomCA,
which consists of CA for extracting a high-dimensional bi-
nary feature vector from an input figure, and Bloom filters,
each of which corresponds to a class label. Once an input
image is provided, EnsembleBloomCA first extracts the bi-
narized feature vector in the same manner as in Sect. 3.1.
Then, the similarity between the extracted feature vector and
each Bloom filter is computed and the class whose corre-
sponding Bloom filter exhibits the maximum similarity is
output as the model prediction. In the following, we de-
tail the algorithm of EnsembleBloomCA, which exploits the
benefits of CA and Bloom filters.

Training Phase: Initially, the Bloom filter classifier is
blank, that is, all the values are set to zero (logic “0”). Then,
the input image is fed into the CA part for feature extrac-
tion. Here, the evolution rule is applied M times to elevate
the pattern dynamics that are ready for classification. In the
next step, we extract patches of the CA output by applying
a Wrec × Hrec size receptive field with a stride of Lrec and
again apply a simple hash function to each extracted patch
to obtain a binary feature vector. Details regarding the hash
function are provided in Sect. 4.2. Finally, the extracted fea-
ture vector is fed into the Bloom filter, which is specified
by the corresponding training label, with bitwise OR gates,
and the training for this image is completed. For example, a
training image labeled “5” is inserted into Bloom filter #5.

Inference Phase: Similar to the training phase, the in-
put images are fed into the CA, followed by image patch
extraction and application of the hash function to obtain the
feature vector for the input image. Then, using counters and
bitwise AND gates to calculate the similarity between the
feature vector and Bloom filters, the Bloom filter with the
highest response is chosen as a representative category for
the testing image.

As can be seen, the similarity should reach the maxi-
mum value if the input pattern belongs to the correspond-
ing category, which enables us to determine which class the
unseen input pattern belongs to without using computation-
ally expensive floating-point arithmetic. Although the pat-
tern dynamics are extremely elevated by the CA reservoir,
this also increases the number of Bloom filters in every cat-
egory, which results in untenable memory usage during the
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Fig. 4 Overview of EnsembleBloomCA.

inference phase. Nsub, which represents the number of sam-
ples inserted into each Bloom filter, has a significant corre-
lation with the performance of the Bloom filter. The more
elements are added to a single Bloom filter, the higher the
probability of false positives (FPR) [35]. To optimize this
data structure, we propose utilizing an ensemble Bloom fil-
ter as the classifier in our RC system.

4.2 Ensemble Bloom Filter

Ensemble learning is a machine learning paradigm in which
multiple base learners are trained to solve the same problem.
The generalization ability of an ensemble is usually much
stronger than that of the base learners. The base learners
are usually generated from training data using a base learn-
ing algorithm that can be a decision tree, neural network, or
other type of machine learning algorithm [36].

Several algorithms are commonly used for ensemble
learning, including bagging. In this method, training data
subsets are randomly drawn from the entire training dataset.
Each training data subset was used to train a classifier of the
same type. Individual classifiers are then combined by tak-
ing a simple majority voting in the classifier or using rela-

tively weak classifiers (such as decision stumps, an approach
which constitutes a random forest classifier). Another popu-
lar method, boosting, also creates an ensemble classifier by
resampling the data and then combining it through major-
ity voting. However, in boosting, resampling is strategically
geared to provide the most informative training data for each
consecutive classifier [37].

In our case, we apply the bagging algorithm. The train-
ing dataset is divided into Nsub subsets and inserted into
different Bloom filters as base learners. Then, the results
of these base learners are summed up together, a process
which can be considered as an ensemble Bloom filter clas-
sifier. The basic operations of the ensemble Bloom filter
model involve adding elements to the corresponding set (in-
sertion phase) and querying for element membership in the
probabilistic set representation (query phase).

For the ensemble Bloom filter, a binarized pattern with
N · L bits is split into N vectors of L bits. We define Bn(i)
as the i-th bit in the n-th mini Bloom filter, where n ∈
{1, 2, . . . ,N}. In our case, the patterns from the Wrec × Hrec

size receptive field need to be memorized by a different en-
semble Bloom filter. Similar to [16], each binarized pattern
is split into Wrec and Hrec vectors in rows and columns.
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Fig. 5 Accuracy-ECA rules.

During the insertion phase, the vectors are inserted into
the corresponding Bloom filters, which we call “mini Bloom
filters.” These vectors are considered as addresses within
the mini Bloom filters, as well as the results of the hash
function. In the query phase, if and only if all the values
of accessed bit Bn(i) in the mini Bloom filters are positive
(logic “1”), this Bloom filter returns one. Otherwise, this
Bloom filter returns zero. All the returned results of Bloom
filters in each category are summed together and considered
as the discriminator response r, which also represents the
similarity between the testing sample and the corresponding
category. The discriminator with the highest response r is
chosen as the representative category.

After training each Bloom filter, we select those ex-
hibiting good classification accuracy using validation sam-
ples. Similar to the training phase, the class labels of the
validation images are predicted to evaluate the classification
accuracy of each Bloom filter. Then, we select Nin f Bloom
filters exhibiting the top Nin f performance rankings; these
filters construct the classifier used in the inference phase.

The key idea behind using the Bloom filter as a classi-
fier is to store the pattern information within the given set,
which means that an excessive difference between patterns
leads to the pollution of Bloom filters. Instead of using a
single standard Bloom filter with high memory cost, utiliz-
ing Bloom filters in an ensemble can effectively improve
the performance of image recognition tasks. Meanwhile,
the number of well-trained Bloom filters in each Bloom fil-
ter pool decreases, which leads to a significant reduction in
memory cost during the inference phase.

5. Experiment

5.1 Experiment Setup

In our experiment, we focused on the handwritten digit num-
ber classification task based on the MNIST dataset, which is
a collection of 70k handwritten digits in grayscale format.
This task is extensively used to compare the performance of
many classification models by evaluating the performance
of a machine learning algorithm [30]. Among 60k images,
we randomly selected 55k images for training and 5k im-
ages for validation. The training images were used to pop-
ulate Bloom filters, while the validation images were used
to optimize the hyperparameters, such as the CA evolution
rules or evolution times. The remaining 10k images were

used for testing. We will make a comparison between the
following three methods:
Bloom WiSARD is the baseline algorithm in [16]. It is an
optimized application of standard BFs, which utilizes BFs in
a memory-segment way. The input images belonging to the
same category with the size of 28×28, are split into 28 rows,
and individually stored into the 28 BFs during the training.
When it comes to the inference phase, each BFs returns the
query results as logic “0” or “1”. The sum of these query re-
sults represents the response of the corresponding category.
Hence, the class with the highest response is considered as
the output of the classification.
Ensemble Bloom filter is a special case of our proposed
method. For the comprehensive exploration, we also evalu-
ate the performance of our model without utilizing CA. In
this case, no reservoir architecture is applied and we directly
use the proposed ensemble Bloom filter in Sect. 4.2 as the
classifier, which can help us to evaluate the contribution of
CA and ensemble Bloom filter individually.
EnsembleBloomCA is our proposed method. 55k training
images were inserted into the ensemble Bloom filter as the
training set. We then divided 55k training images into Nsub

subsets for every category in order. The other 5k training
images were used as the validation set for adjusting the en-
semble Bloom filter classifier. Then, we utilized 10k testing
images as the inference set to evaluate the performance of
our approach.

In our experiment, w = 28, h = 28, d = 16, and
R = 256. For the reservoir, CA maps the original input into a
higher-dimensional space and obtains high-dimensional pat-
terns. The max-pooling layer was selected to have a stride
of two, a squared window of size two, and zero padding. A
5×5 receptive field was applied to every binary channel and
iteration of the reservoir output, with a stride of 3. The soft-
ware implementation was emulated in C++ to evaluate the
performance of EnsembleBloomCA.

5.2 Optimization of ReCA

Although the reservoir using CA recreates a rich pattern for
the EnsembleBloomCA model, extra features also require
more memory resources and data transfers. In [18], an ap-
proach using only the 8th iteration to train the classifier was
proposed. Every time the iterative patterns are obtained with
a fixed CA evolution rule, the pattern is changed to some ex-
tent.
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Considering the difference in contribution from every
iterative pattern, we only choose the first iterative pattern
which represents the original input data and the latest itera-
tive pattern as features. This strategy can effectively refine
the input feature for the ensemble Bloom filter and reduce
the memory cost in both the training and inference phases.

5.3 Experiment Results

Using the EnsembleBloomCA model described in Sect. 4.1,
we examined the performance of all existing CA evolution
rules. The iteration count M is in the range from 1 to 24.
As shown in Fig. 5, the RC system achieves different accu-
racy performances under different ECA rules. According
to the hyperparameter optimization from the validation set,
we adopt the ECA evolution Rule 184 and iteration count
M = 8.

Figure 6 shows the classification accuracy as a function
of the number of samples inserted into a single Bloom filter
and memory cost required during training. The dashed hor-
izontal line shows the classification accuracy of [16], which

Fig. 6 Accuracy - Nsub / Training Memory Cost.

Table 1 Performance Comparison.

Bloom WiSARD
Ensemble Ensemble-

Bloom filter -BloomCA

(baseline) (proposed) (proposed)

Arithmetic multiplication addition addition

Number of hash 3 1 1

Accuracy(%) 91.50 89.58 91.86

Inference
819.05 18.75 18.75

Memory (KB)

Table 2 Hardware Performance Comparison.

Area (mm2) Power consumption [mW] Maximum propagation delay

Reservoir Memory Total Reservoir Memory Total [10−9 s]

Bloom WiSARD (baseline) 0.206 7.805 8.012 258.9 1059.8 1318.7 33.77

EnsembleBloomCA (proposed) 0.095 0.253 0.348 121.4 34.5 155.9 3.78

Reduction 2.2× 30.8× 23.0× 2.13× 30.7× 8.5× 8.9×

is the baseline of our work. When the training memory cost
is lower than 400 KB, the accuracy drops sharply. In these
cases, an excessive number of feature vectors are inserted
into the same Bloom filter, which pollutes the Bloom filter
and affects the accuracy of the ensemble Bloom filter. When
the training memory cost is up to 825 KB, the accuracy trend
appears to be saturated.

Table 1 shows the results of several different models in
the MNIST handwritten number classification task. The En-
sembleBloomCA model achieved over 819.05/18.75 ≈ 43×
memory reduction compared with the baseline while main-
taining the same accuracy.

This reduction in memory cost mainly comes from the
use of Bloom filters in an ensemble. Although this method
also leads to a slight decrease in accuracy, this disadvan-
tage can be overcome by using CA as the reservoir. The
rich pattern dynamics recreated by CA can effectively pro-
vide more candidates for Bloom filter pools and improve
accuracy from 89.58% to 91.86%, which also illustrates the
impact of CA in our model.

Overall, in comparison with another state-of-the-art
model, Bloom WiSARD [16], EnsembleBloomCA signifi-
cantly reduced the memory cost for the inference phase.
Meanwhile, the simplicity of the hash function avoids high
computational costs, allowing for practical hardware imple-
mentation.

5.4 Hardware Implementation

The hardware architecture of the baseline Bloom WiSARD
and our proposed EnsembleBloomCA were designed using
SystemVerilog. We used Synopsys Design Compiler to syn-
thesize and report the area and power consumption of our
approach in a 65-nm ASIC flow. The hardware costs of
the memory part were individually simulated using CACTI,
which is an integrated memory access time, area, leakage,
and power model. In addition, the memory type was cho-
sen to be the main memory in the 65-nm ASIC flow, which
does not contain any tag array, and every access occurs at
a page granularity. Table 2 shows the comparison between
EnsembleBloomCA and [16] in terms of ASIC area and en-
ergy consumption. The maximum propagation delay of our
model is 3.78 ns.

The memory takes 0.253/0.348 ≈ 72.7% of the area of
EnsembleBloomCA, while the other circuits take 37.3%. In
terms of power consumption, the memory portion only uses
34.5/155.9 ≈ 22.13%, and the power consumption percent-
age of other circuits is increased to 77.87%. Although the
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memory occupies almost half of the entire circuit area, the
energy is mainly consumed by the non-memory part, that is,
CA, owing to the high switching activity of the non-memory
part. Overall, EnsembleBloomCA achieved over 23× and
8.5× reductions in area and power, respectively.

6. Conclusion

In this work, we propose a novel RC architecture, the En-
sembleBloomCA model, which is a combination of a reser-
voir using CA and an ensemble Bloom filter classifier. By
utilizing EnsembleBloomCA, we achieved a 43× reduction
in memory cost for the inference phase while maintaining
accuracy. Our hardware implementation also demonstrated
that EnsembleBloomCA achieves over 23× and 8.5× reduc-
tions in area and power, respectively. The experimental re-
sults also illustrate the efficacy of using CA as a reservoir.
Mapping the input signal into a higher-dimensional feature
space, the rich dynamics recreated by CA can effectively
improve the performance of the ensemble Bloom filter clas-
sifier. This model can completely eliminate expensive com-
putational operations, such as floating-point calculation and
integer multiplication. Owing to the simplicity of Ensem-
bleBloomCA, our model shows promising potential for hard-
ware implementation.
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[17] L.S. de Araújo, L. Verona, F. Rangel, F.F. de Faria, D. Menasché,
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