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Abstract— Offering a combination of low latency, high
energy-efficiency, and flexibility, field-programmable gate
arrays (FPGAs) suit applications ranging from Internet of
Things (IoT) computing to artificial intelligence (AI). The con-
ventional static random access memory (SRAM) FPGAs face
severe challenges including large standby power and low logic
density due to utilization of SRAM cell and MOS switch for
signal routing. In response, researchers have introduced emerging
non-volatile (NV) memory technologies to solve standby power
issues. However, access transistors used for NV memory cell
configuration still consume a large silicon area. In this article,
we introduce an NV via-switch (VS) FPGA featuring fully back-
end-of-line (BEOL) signal routing and front-end-of-line (FEOL)
logic computing for high logic density. The VS fabricated in
BEOL is constructed by two Cu atom switches (ASs) for signal
routing and two a-Si/SiN/a-Si varistors for AS configuration.
We demonstrate the first implementation of the VS-FPGA at
65-nm node and evaluate its performance by various basic
applications. 2.6× logic density, 1.5× energy efficiency, and
1.4× operation speed are achieved in comparison with a previous
complementary AS (CAS) FPGA in which one access transistor
is necessary for each CAS configuration.

Index Terms— Atom switch (AS), cross-point, field program-
mable gate array (FPGA), nonvolatile (NV), programmable logic,
resistive random access memory (RRAM), via-switch (VS).

I. INTRODUCTION

F IELD-PROGRAMMABLE gate array (FPGAs) are
playing an important role in both cloud and edge com-

putations of the Internet of Things (IoT). FPGAs are being
deployed as accelerators in data center infrastructure to con-
struct a configurable cloud [1], [2], introduced in various
sensors for real-time processing [3], [4], and used for in situ
artificial intelligence (AI) inference and training in edge
devices [5], [6].

A conventional static random access memory (SRAM)-
FPGA consists of routing blocks (RBs), logic blocks (LBs),
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Fig. 1. Structures of conventional SRAM- and NVM-FPGAs. (a) Structure
of a conventional SRAM-FPGA [7]. (b) Schematic of an SRAM routing
switch [7]. (c) Structure of an NVM-FPGA [12]–[34].

SRAM blocks and an external nonvolatile memory (NVM)
block as shown in Fig. 1(a). SRAM cells typically composed
of six transistors are programmed to implement logic functions
in look-up tables (LUTs) and control MOS switches (pass tran-
sistors, transmission gates, or multiplexers) to steer intercon-
nect signals for various applications as shown in Fig. 1(b) [7].
The area of the RBs and SRAM blocks is about four times
larger than that of the LBs [8]. Due to this, the chip size
of the SRAM-FPGA becomes 35 times larger than that of
an application-specific integrated circuit (ASIC) [9]. MOS
switches and long interconnection wires result in 3.4–4.6 times
lower operation speed than an ASIC [9] and consume 62%
more dynamic power [10]. The high leakage power of the
SRAM has become another critical issue in the SRAM-
FPGA [10]. Moreover, the SRAM-FPGA is volatile and needs
to reload their configuration data from the external NVM to
the internal SRAM every time after it is powered up [11].

To address the issues concerning the SRAM-FPGA,
as shown in Fig. 1(c), researchers started to replace the SRAM
by emerging embedded NVM including phase-change mem-
ory (PCM) [12], spin-transfer-torque magnetic random access
memory (STT-MRAM) [13]–[15], and resistive random access
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Fig. 2. NV routing switches. (a) Routing switch using an NVM cell
in an SRAM-like sensing structure [12]–[16]. (b) Routing switch using a
voltage-divider-based NVM cell [17]–[20]. (c) Routing switch using an NV
programmable transistor including a floating gate [21]–[23] or an FeFET [24].
(d) Routing switch using an NV programmable switch [25]–[33], a CAS is
shown as an example.

memory (RRAM) [16]. Fig. 2(a) shows a routing switch using
two NVM cells embedded in an SRAM-like sensing structure.
Instant power-on directly using configuration data stored in
NVM cells achieves almost zero standby power. However,
the additional transistors for providing programmability set
limits for advanced scaling.

To maximize the advantages of the non-volatile (NV)
routing switch, Ahari et al. [17], Tanachutiwat et al. [18],
Chen et al. [19], and Liauw et al. [20] introduced a
voltage-divider-based configuration cell shown in Fig. 2(b).
Liauw et al. [20] reported that the voltage-divider RRAM-
FPGA achieved 40% smaller die area and 28% lower
energy-delay product thanks to shorter interconnection wires.
Other researchers have attempted to replace the SRAMs
and MOS switches with programmable transistors including
floating gates [21]–[23] and ferroelectric field-effect transistors
(FeFET) [24] as shown in Fig. 2(c). However, the transistors
with high resistance and capacitance on the routing path
still result in low operation speed and high dynamic power
consumption.

To overcome the problems originating from routing transis-
tors, RRAMs and atom switches (ASs) are directly introduced
as routing switches for signal transfer control in [25]–[27]
and [28]–[34], respectively. The AS is an NV resistive switch
fabricated between back-end-of-line (BEOL) Cu layers and
has very small capacitance (∼1/10 of a transistor), low
ON-state resistance (∼500 �), and high OFF-state resistance
(∼250 M�) [28]. Its OFF/ON resistance ratio is much larger
than the RRAM whose ON-state and OFF-state resistances are
∼10 K� and ∼1 M�, respectively [24]. The AS-FPGA is first
fabricated and presented in [29]. In addition, a complementary
AS (CAS), which is composed of two ASs in series as shown
in Fig. 2(d), reduces the programming voltage to 2 V and
improves OFF-state reliability [30]. The CAS-FPGAs have
been fabricated to evaluate area and performance [31]–[34]
and achieved 78% area reduction compared with a conven-
tional SRAM-FPGA [31].

On the other hand, the switch footprint has room
for improvement. The RRAM routing switch adopts two-
transistor-one-RRAM (2T1R) structure [25] or four-transistor-
one-RRAM (4T1R) structure [26], [27]. Either the AS or
the CAS also requires an access transistor for configuration
control. Even though the switch itself has a small footprint
and is integrated above the CMOS layer, the access transistors
occupy the additional area.

To further exploit the advantage of the NV routing switch,
integrating selectors between BEOL metal layers is studied to
replace the access transistors for dramatical improvement of
logic density [35]–[39]. For pursuing further efficient FPGA
implementation, we have proposed a two-varistor one-CAS
(2V-1CAS) structure named “via-switch” (VS) [40]–[42] to
obtain high functionality with multiple cross-point program-
ming per column or row (multiple fan-outs) of the crossbar
switch. The multiple fan-outs functionality facilitates the sig-
nal routing and improves its quality in application mapping.
As for the FPGA chip design, the CMOS layer under the
VS has no layout restrictions, and hence the layout design
flexibility improves significantly, which is another advantage
in addition to the small footprint.

Previously, we have reported the first implementation of
the VS-FPGA [43] and its performance evaluation [44]. This
article provides the details of the design of the fabricated
VS-FPGA, including device characteristics of the VS, circuit
schematics, the explanation of the area efficiency, and dis-
cusses evaluation results of the VS-FPGA using additional
measurement data.

The remainder of this article is organized as follows.
Section II introduces the characteristics of the AS, the varistor,
the VS and the VS crossbar switch. Section III describes the
circuit schematics of the VS-FPGA and demonstrates its area
efficiency. Section IV provides evaluations of the VS-FPGA.
Conclusions are presented in Section V.

II. VIA-SWITCH

A. Atom Switch

The AS is a kind of cation-type electrochemical NV
resistive-change devices [28]. A polymer-solid electrolyte
(PSE) is sandwiched between an active (Cu) anode and an
inert (Ru) cathode as shown in Fig. 3. When a positive voltage
VSET is applied to the Cu electrode, Cu+ is extracted to
form a Cu bridge, and the AS is turned on, which is called
set operation. On the other hand, when a positive voltage
VRESET is applied to the Ru electrode, the Cu bridge is
removed in the electrolyte, and the AS is turned off, which
is called reset operation. The set and reset operations are
repeatable over 1000 times, and both the ON and OFF states
are NV.

In the AS-FPGA introduced in [28], an AS crossbar switch
was used for signal transfer control. Fig. 4 shows a 2 × 2 AS
crossbar switch with two input and two output terminals.
The AS located at each crosspoint is turned on or off to
control signal transfer from two input terminals to two output
terminals. Input signals A and B are applied to the two input
terminals via two buffers, respectively. Let us explain what
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Fig. 3. Set/reset operations of an AS.

Fig. 4. OFF-state reliability issue in an AS crossbar switch.

Fig. 5. OFF-state reliability improvement in a CAS crossbar switch.

the problem happens by using a single AS for signal transfer
control. If A is “1,” B is “0,” and the AS SW0 is at ON state,
a logic operation voltage VOP and a ground voltage GND are
applied to the Cu and Ru electrodes of the OFF-state AS SW1,
respectively. According to the off-to-on mechanism of Cu drift
in dielectrics [45], even though the voltage level of VOP is
much smaller than VSET, the OFF-state SW1 will change into
an ON-state AS slowly.

To secure a longer OFF-state lifetime at VOP, we have
proposed the CAS composed of two ASs connected in series
with opposite direction [30] shown in Fig. 5. In a 2 × 2 CAS
crossbar switch, if A is “1,” B is “0,” the CAS SW0 is at
ON-state, VOP and GND are applied to the two Cu electrodes

Fig. 6. Previous 1T1CAS crossbar switch with programming drivers.

of the OFF-state CAS SW1, respectively. VOP is divided by
AS0 and AS1 in SW1, and therefore, the voltage difference
between the two terminals of AS0 or AS1 is VOP/2. The set
bias stress voltage is decreased, which contributes to a higher
OFF-state reliability of AS0 than that of the single AS SW1 in
Fig. 4. Moreover, VOP/2 between the two terminals of AS1 is
a reset bias voltage. Therefore, the AS1 maintains the OFF state
until time-dependent dielectric breakdown of the electrolyte.
Thus, OFF-state lifetime can be dramatically improved and
kept more than ten years at 125 ◦C.

B. Varistor

Let us explain the role of the access transistor in the one-
transistor-one-CAS (1T1CAS) structure shown in Fig. 2(d) and
the required I–V characteristics of the varistor for the access
transistor replacement.

Fig. 6 shows a previous 2 × 2 1T1CAS crossbar switch
using the access transistors. Peripheral programming drivers
DX, DY, and DZ are necessary for programming a target
CAS. They are applied to three terminals of a CAS via access
transistors M0–M9. The programming driver can supply a pro-
gramming voltage VW (=VSET or VRESET), GND, or high
impedance (HZ). Row address signals (X0, X1) and column
address signals (Y0, Y1) control surrounding access transistors
M0–M5 at the boundary of the crossbar switch and crosspoint
access transistors M6–M9 at each crosspoint to access a target
CAS.

The varistors are used to replace the crosspoint access tran-
sistors M6–M9. In a programming operation, VW is applied
to a target CAS and M6–M9 controlled by X0 and X1 provide
programming current. In an application operation, the address
signals X0 and X1 are set to “0” to turn off M6–M9 for
isolating the sneak paths between CASs on the same column
when a data signal at voltage level VOP is transferred through
an ON-state CAS. To act in the same role, the varistor should
be a nonlinear selector device that provides programming
current in the programming operation at the high programming
voltage VW and isolates connections between CASs in the
application operation at the low logic operation voltage VOP.

Banno et al. [40]–[42] introduce the varistor with
a-Si/SiN/a-Si stacking layers achieves a high nonlinearity
performance of ∼105 and has the advantage of high compati-
bility with a CMOS process. Fig. 7 shows I–V characteristics
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Fig. 7. I–V characteristics of an a-Si/SiN/a-Si varistor.

Fig. 8. ON/OFF current characteristics of varistor for 103 cycles.

Fig. 9. 1V1CAS crossbar switch with programming drivers.

of the varistor in a 65-nm node BEOL on a 300-mm wafer,
which exhibits ON current of 251 μA at 2 V and OFF resistance
of 270 M�. Fig. 8 shows the endurance characteristic of
the varistor. The high ON/OFF current ratio is confirmed for
1000 cycles, which is enough for the FPGA application.

C. VS Crossbar Switch

Varistors can directly replace all the crosspoint access
transistors for area reduction. However, an address selectivity
problem occurs in a programming operation, which causes a
programming sneak path problem. Fig. 9 shows a 2 × 2 one-
varistor one-CAS (1V1CAS) crossbar switch as an example to
explain the programming sneak path problem of the 1V1CAS

Fig. 10. Programming sneak path in 1V1CAS crossbar switch.

structure. In the previous 2 × 2 1T1CAS crossbar switch as
shown in Fig. 6, each CAS is connected to DZ via a crosspoint
access transistor controlled by a row address signal and a
surrounding access transistor controlled by a column address
signal. However, in the 1V1CAS crossbar switch, each CAS
is connected to DZ via a varistor, and a surrounding access
transistor controlled by a column address signal. Since the
varistor is not controlled by a row address signal, all the
CASs on the same column are accessed in one programming
operation as shown in Fig. 10. To set the AS S1, both (X0, X1)
and (Y0, Y1) are set to (1, 0), and DX, DY, and DZ are set to
HZ, VSET, and GND, respectively. S2 is also on the set path
so that both S1 and S2 are turned on.

To overcome the above programming sneak path problem in
the 1V1CAS crossbar switch, the VS structure [40]–[42] was
proposed to provide both row and column address selectivity
by adding surrounding access transistors and a programming
driver in a VS crossbar switch. As shown in Fig. 11(a),
different from the 1V1CAS crossbar switch shown in Fig. 9,
the middle terminal of a CAS is connected to two varistors at
each crosspoint, and two programming drivers DZX and DZY
are used to program two ASs in one CAS, respectively. DZX
and DZY are connected to the two varistors via existing sur-
rounding access transistors M2 and M3 and added surrounding
access transistors M6 and M7. (X0, X1) and (Y0, Y1) control
M6 and M7 and M2 and M3, respectively, to make sure that
only one VS is selected. Moreover, one of the programming
drivers DX and DZX (DY and DYX) must be set to HZ to
avoid programming sneak path on the same row (column).

In a programming operation, two steps are necessary for
setting/resetting the CAS with two ASs S0 and S1 as shown
in Fig. 11(b)–(e). Both (X0, X1) and (Y0, Y1) are set to
(1, 0) to apply the programming drivers to S0 and S1. In a set
operation of S0 shown in Fig. 11(b), DX, DY, DZX, and DZY
are set to VSET, HZ, HZ, and GND, respectively, to form a
Cu bridge in S0. In a set operation of S1 shown in Fig. 11(c),
DX, DY, DZX, and DZY are set to HZ, VSET, GND, and HZ,
respectively, to form a Cu bridge in S1. On the other hand,
in a reset operation of S0 shown in Fig. 11(d), DX, DY, DZX,
and DZY are set to GND, HZ, HZ, and VRESET, respectively,
to remove the Cu bridge in S0. In a reset operation of S1 shown
in Fig. 11(e), DX, DY, DZX, and DZY are set to HZ, GND,
VRESET, and HZ, respectively, to remove the Cu bridge in S1.

Authorized licensed use limited to: Kyoto University. Downloaded on July 01,2022 at 08:49:04 UTC from IEEE Xplore.  Restrictions apply. 



2254 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 7, JULY 2022

(a) (b) (c)

(d) (e) (f)

Fig. 11. VS crossbar switch with programming drivers and its programming (set/reset) and application operations. (a) 2V1CAS crossbar switch. (b) Set
operation of S0. (c) Set operation of S1. (d) Reset operation of S0. (e) Reset operation of S1. (f) Application operation.

In an application operation shown in Fig. 11(f), the address
signals are set to “0” to isolate the signal transfer path from
the programming drivers. DX, DY, DZX, and DZY are set to
HZ for avoiding source-drain leakage current of surrounding
access transistors. Varistors are at a high-resistance state to
isolate connections between CASs. S0 and S1, which are at
ON state, provide a signal transfer path IN0→OUT0.

Fig. 12 shows a cross-sectional TEM image of a VS which
is fabricated between Cu metal layers M4 and M5 and above
a CMOS layer. Two series-connected TiN/a-Si/SiN/a-Si/TiN
varistor and Ru-alloy/PSE/Cu AS are clearly separated from
each other. The VS occupies 48F2 whereas its footprint
can be reduced to 18F2 if four metal layers are used for
VS implementation [42]. The VS can be fabricated between
any adjacent Cu metal layers. For example, the VS is fab-
ricated between M1 and M2 in [40]–[42] to evaluate its
characteristics. In the FPGA application introduced in [43]
and [44], M1–M3 are used for CMOS circuits, and therefore
the VS is fabricated between M4 and M5.

In research [42], the VS was fabricated in a 65-nm node
BEOL to test set and reset operation. Fig. 13 shows the
set/reset I–V characteristics of a single side of the integrated
VS. In set operation of the AS S0, VSET and GND are applied
to T0 and T2, respectively. When VSET is increased to 3 V,
the Cu bridge is formed in the AS S0 which is turned on. The
resistance RON of the ON-state AS S0 is determined by the
ON current of the varistor since AS and varistor are connected
in series. On the other hand, in the reset operation of S0, GND
and VRESET are applied to T0 and T2, respectively. When
VRESET is increased to 3 V, the Cu bridge is cutoff, and S0 is

Fig. 12. Cross-sectional TEM image of a VS.

turned off. The retention characteristics depending on the AS
have been confirmed in [46]. No failure is observed in the
ON-state ASs for 1 h at 260 ◦C and for 3000 h at 150 ◦C.

Fig. 14 shows ON- and OFF-state I–V characteristics of a
VS with leakage current between varistors. In an application
operation, ∼104 ON/OFF current ratio is large enough to
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Fig. 13. Set/reset I–V characteristics of a VS single side.

Fig. 14. ON- and OFF-state I–V characteristics of a VS with leakage current
between varistors.

control a data signal transfer in a VS crossbar switch. It should
be noted that the varistor is still under development to improve
the nonlinearity for higher ON/OFF current ratio and lower
leakage current between varistors.

Next, let us introduce the advantages obtained from the
replacement of the access transistors by the varistors. We need
to use high voltage (HV) transistors (usually I/O transis-
tors with high breakdown voltage) as the access transistors
since VW (around 2V [33]) applied to them is much higher
than VOP. In the previous 2 × 2 1T1CAS crossbar switch
shown in Fig. 6, the count of the surrounding access tran-
sistors M0–M5 is larger than that of the crosspoint access
transistors M6–M9. Practically, in a 65-nm CAS-FPGA to
implement simple applications such as a 4-bit counter and
a 2-bit adder [31], a 19 × 16 1T1CAS crossbar switch
requires 304 crosspoint access transistors which are more than
54 surrounding access transistors. Thanks to the replacement
of the crosspoint access transistors by the varistors, the access
transistor count of the 19 × 16 VS crossbar switch is reduced
from 358 to 70 in comparison with the 19 × 16 1T1CAS
crossbar switch [31]. The crosspoint access transistor count
increases dramatically with the 1T1CAS crossbar switch size
increasing. Therefore, their replacement by the varistors leads
to further improvement of area efficiency, operation speed, and
power efficiency for the large-scale FPGA application.

In Section III, we will introduce the structure of the 65-nm
VS-FPGA using the VS crossbar switch [43], [44] in detail
and its superiority over the CAS-FPGA using the 1T1CAS
crossbar switch in the same 65-nm node [31], [32].

III. VIA-SWITCH FPGA

A. Architecture of a VS-FPGA

As shown in Fig. 15, the VS-FPGA is constructed by a
6 × 6 cell array with its periphery circuits including a row
decoder, a column decoder, and programming drivers. A cell
(such as cell A) is connected to four adjacent cells and their
next four cells (eight cells in total) in four directions through
unidirectional wires which are superior to bidirectional wires
in terms of area, delay, and area-delay product [47]. Row and
column address signals are generated by the row and column
decoders, respectively, and they control access transistors in
each cell to apply the programming drivers DX, DY, DZX,
and DZY shown in Fig. 11 to a target VS. The programming
drivers are shared for programming the VSs in all the cells,
and therefore their area overhead is much smaller than that of
the cell array.

Each cell includes a configurable LB, a switch multiplexer
(SMUX), and an input multiplexer (IMUX). The LB composed
of two four-input LUTs (4-LUTs), two D-flip-flops (DFFs),
and two multiplexers (MUXs) implements a logic circuit
including a combinational circuit or a sequential circuit. The
SMUX is used for signal routing from the last cells to the next
cells. On the other hand, the IMUX is used for signal routing
from the last cells to the LB.

A VS crossbar switch is used in the SMUX, IMUX, and
4-LUT. Sixteen wires from eight cells and two wires from
the LB are connected to the inputs of the SMUX and IMUX.
To avoid the through current in the CMOS gates connected to
the outputs of the SMUX and IMUX, GND is also applied to
the SMUX and IMUX. As a result, either SMUX or IMUX
has nineteen inputs in total. The SMUX provides eight outputs
to four directions, and the IMUX’s eight outputs are applied
to the two 4-LUTs. Therefore, the SMUX and IMUX are
constructed by a 19 × 16 VS crossbar switch. The 4-LUT
consists of a 16:1 MUX and a 2 × 16 VS crossbar switch. The
2 × 16 VS crossbar switch is used as a 16-bit memory array to
store logic configuration data. One input is connected to VOP,
and the other one is connected to GND. Two VSs on one row
form a memory cell. In case that the VS connected to VOP is
turned on and the VS connected to GND is turned off, a logic
value “1” is stored in the memory cell. Conversely, a logic
value “0” is stored. If both VSs are turned off, the memory
cell provides HZ. To avoid the through current from VOP to
GND, both VSs cannot be turned on simultaneously. Users can
configure the sixteen memory cells to implement an arbitrary
four-input logic operation in one 4-LUT.

B. VS-FPGA Cell Versus CAS-FPGA Cell

In this section, we will introduce the VS-FPGA cell using
the VS crossbar switch and demonstrate its area efficiency in
comparison with the previous CAS-FPGA cell.

Authorized licensed use limited to: Kyoto University. Downloaded on July 01,2022 at 08:49:04 UTC from IEEE Xplore.  Restrictions apply. 



2256 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 7, JULY 2022

Fig. 15. Architecture of the VS-FPGA.

Fig. 16. VS-FPGA cell using VS crossbar switches.

Let us show how to use the VS crossbar switch in the
VS-FPGA cell. As shown in Fig. 16, the VS-FPGA cell has
a 19 × 16 crossbar switch used as IMUX + SMUX and
two 2 × 16 crossbar switches used as LUT memory arrays.
In a programming operation, programming drivers DX, DY,
DZX, DZY, DH, and DL are applied to CASs via surrounding
access transistors controlled by row address signals X0–X15
and column address signals Y0–Y22. In an application mode,
DH and DL applied to the two 2 × 16 crossbar switches
are set to VOP and GND, respectively, and their connected
surrounding transistors are turned on to apply VOP and GND
to each memory for providing configuration data to 4-LUTs.

The inputs IN0–IN18 mentioned in Section III-A are con-
nected to the 19 × 16 crossbar switch via HV separating
transistors for isolating the core input buffers from the crossbar
switch in the programming operation. An enable signal CE

used to control the HV separating transistors is set to high in
an application operation to enable signal transfer between cells
and low in a programming operation to avoid collision of core
input buffers and the programming driver DY, respectively.
The outputs of the 19 × 16 crossbar switch and two 2 ×
16 crossbar switches are connected to HV separating transis-
tors since the voltage level of their inputs becomes VW in the
programming operation which is higher than the breakdown
voltage of the core transistor.

Fig. 17 shows the previous CAS-FPGA cell using
the 1T1CAS crossbar switch. The difference between the
VS-FPGA cell and the previous CAS-FPGA cell is that
one more programming driver DZX is provided to avoid
the programming sneak path mentioned in Section II, and
the horizontal surrounding access transistors are increased
twice. However, thanks to the replacement of the crosspoint
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Fig. 17. Previous CAS-FPGA cell using 1T1CAS crossbar switches.

Fig. 18. Area comparison by layouts of the VS-FPGA and previous
CAS-FPGA cells.

access transistors used in the previous CAS-FPGA cell by
the varistors in BEOL, the total access transistor count is
reduced by 69% (462 → 142). Moreover, we use the HV
separating transistors and core buffers to replace the HV
buffers connected to the outputs of the 19 × 16 crossbar switch
and two 2 × 16 crossbar switches for area reduction.

As reported in [31], the CAS-FPGA cell achieved 78% area
reduction compared with an equivalent SRAM-FPGA cell. Let
us compare the areas of the CAS-FPGA and VS-FPGA cells
by their layouts shown in Fig. 18. 55% area is consumed
by the crosspoint access transistors in the CAS-FPGA cell.
In the VS-FPGA cell, the crosspoint access transistors are
replaced by the varistors fabricated above the LB, core buffers,
HV separating transistors, and surrounding access transistors.

Fig. 19. Die micrograph and specification of VS-FPGA.

Therefore, no area is consumed by the crosspoint access
transistors, and the floorplan is changed. Moreover, high-
voltage buffers are replaced by HV separating transistors and
core buffers, which leads to further area reduction. As a
result, the area of the VS-FPGA cell is reduced by 61.4%
in comparison with that of the CAS-FPGA cell. Furthermore,
its area is reduced to 8.3% compared with the SRAM-FPGA
cell [43]. Logic density is calculated by the number of 4-LUTs
per area. The VS-FPGA achieves 2.6× and 12× logic density
of the CAS-FPGA and SRAM-FPGA, respectively.

IV. EVALUATION OF VS-FPGA

Fig. 19 shows the die micrograph and specifications of
a chip fabricated in 65-nm CMOS, where front-end-of-line
(FEOL) and M1–M4 are fabricated in a commercial fab and
VS, M5, M6, and M7 (semi-global) are processed by our-
selves. The die includes 6 × 6 cells, peripheral circuits includ-
ing a controller, programming drivers, and address decoders
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Fig. 20. VS-FPGA design flow.

in 293 × 395 μm2. Note that the area of peripheral circuits
is negligible for larger cell arrays. It is estimated that the area
of peripheral circuits is less than 1% of the whole area in the
case of a 1000 × 1000 cell array.

Fig. 20 shows a flow to implement an application circuit in
the VS-FPGA using in-house tools including LUT mapping,
packing, placement, routing, and bitstream generation tools.
The application circuit is described in terms of registers and
logic operations called register-transfer level (RTL). The RTL
file passes through technology-independent logic optimization
(Synthesis) by a Synopsys design compiler (DC) tool. The
LUT mapping tool maps the gate-level netlist generated by
the Synopsys DC tool into LUTs. The packing tool which has
the same algorithm with the conventional T-VPACK (timing
driven packing) tool [48] clusters LUTs and DFFs together into
LBs. The placement tool developed based on the simulated
annealing algorithm [48] implements timing driven location
of LBs. The routing tool developed based on the pathfinder
algorithm [48] optimizes data transfer path for a small delay
time. The bitstream generation tool generates a bitstream file
that contains VS ON/OFF information for VS-FPGA config-
uration. Finally, VSs are configured by controlling program-
ming drivers and address signals according to the generated
VS ON/OFF bitstream.

We measure the fabricated VS-FPGA under automotive
temperature grade (−40 ◦C–125 ◦C) [49] to demonstrate high
reliability of the VS-FPGA in a harsh environment. An area-
minimized 4-bit multiplier (MPY4) is implemented on the
fabricated VS-FPGA with VS programming. Fig. 21 shows
Shmoo plots of the MPY4 on the fabricated VS-FPGA at
−40 ◦C, 25 ◦C (room temperature), and 125 ◦C, respectively.
The plots confirm the correct operation of the MPY4 at logic
operation voltage range 0.9–1.2 V under the automotive tem-
perature grade. It achieves 83-MHz operation at the standard
supply voltage 1.2 V of 65-nm technology node and the room
temperature 25 ◦C.

In the SRAM-FPGA, the ON resistance variation of the
MOS switch used for signal transfer control affects the signal
delay in high temperatures because the electron transport
suffers from phonon scattering at high temperature. However,

Fig. 21. Measured Shmoo plots of a 4-bit multiplier implemented on the
fabricated VS-FPGA at −40 ◦C, 25 ◦C and 125 ◦C.

the Cu bridge formed in the ON-state VS is almost not affected
by temperature [50]. The research in [51] evaluates the impact
of temperature on the delay of the SRAM-FPGA. Its delay
increases up to 47% for 0 ◦C→100 ◦C. The delays at −40 ◦C,
25 ◦C, and 125 ◦C of the MPY4 on the fabricated VS-FPGA
at 1.2 V are shown in Fig. 22. The delay of the VS-FPGA
increases up to only 7% for −40 ◦C→125 ◦C thanks to the
replacement of the MOS switch by the VS for signal transfer
control.

To demonstrate the performance advantages of the
VS-FPGA, we evaluate the energy per cycle, delay, and
energy-delay product (EDP) of the VS-FPGA and previous
CAS-FPGA by implementing three basic applications includ-
ing a 16-bit counter (CNT16), a 24-bit linear feedback shift
register (LFSR24), the MPY4 as shown in Fig. 23. The EDP
is a metric that combines measures of energy and delay [52].
The CNT16 and MPY4 are evaluated at the standard supply
voltage 1.2 V of 65-nm node technology. The LFSR24 is
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Fig. 22. Impact of temperature on the delay of the MPY4 implemented on
the fabricated VS-FPGA.

Fig. 23. Energy per cycle, delay, and energy-delay product (EDP) compar-
isons between CAS- and VS-FPGAs.

TABLE I

SUMMARY OF PERFORMANCE COMPARISON

evaluated at 0.8 V due to the delay measurement limit of
the equipment that we used. In comparison with the previous
CAS-FPGA, the VS-FPGA has shorter interconnection wires

Fig. 24. Energy per cycle, delay, and EDP versus operation voltage of the
MPY4 implemented on the CAS- and VS-FPGAs.

between cells due to its dramatically reduced area. Smaller
resistance and capacitance of the shortened interconnection
wire result in both the energy and delay reduction. As a
result, the energies per cycle of the CNT16, LFSR24, and
MPY4 implemented on the VS-FPGA are reduced by 31%,
23%, and 34%, respectively, in comparison with those of the
CNT16, LFSR24, and MPY4 implemented on the previous
CAS-FPGA [32]. On the other hand, the delays are reduced
by 29%, 45%, and 29%, respectively. Totally, the EDPs are
reduced by 51%, 58%, and 53%, respectively.

The performance comparison of the MPY4s implemented
on the VS-FPGA, previous CAS-FPGA [32], and equivalent
SRAM-FPGA [32] is summarized in Table I. At logic oper-
ation voltage 1.0 V, delay, energy per cycle, and EDP of the
VS-FPGA are reduced by 24%, 25%, and 45%, respectively,
in comparison with the previous CAS-FPGA. On the other
hand, delay, energy per cycle, and EDP of the VS-FPGA are
reduced by 80%, 70%, and 94%, respectively, in comparison
with the equivalent SRAM-FPGA.

Fig. 24 shows energy per cycle, delay, and EDP versus logic
operation voltage of the MPY4 implemented on the CAS- and
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VS-FPGAs. A higher logic operation voltage reduces the delay
but elevates the energy per cycle. It is worth evaluating the
logic operation voltage dependence of the EDP to find an
optimum logic operation voltage [52]. Both the CAS- and
VS-FPGAs achieve minimum EDP at 0.9 V. The VS-FPGA
attains twice wider operation voltage range 0.8–1.2 V of low-
EDP (EDP < 1.1 × EDPmin) than that of 0.8–1.0 V in the
CAS-FPGA thanks to shortened interconnect wires.

V. CONCLUSION

For the first time, an NV VS-FPGA was fabricated by a
65-nm CMOS process. The VS integrated between BEOL
Cu metal layers (M4 and M5) is constructed by two ASs
for signal routing and two varistors for AS configuration.
Its utilization in routing matrixes for signal routing and
memories for logic operations leads to 2.6× and 12× logic
density improvement compared with the previous CAS-FPGA
with access transistors and the conventional SRAM-FPGA
with MOS switches, respectively. Correct operation and small
delay variation of 7% under automotive temperature grade
(−40 ◦C∼125 ◦C) were confirmed by testing the fabricated
chip. The silicon results show that the VS-FPGA % energy per
cycle reduction, 29% delay reduction, and 53% energy-delay
product reduction in comparison with the previous CAS-FPGA
at a standard operation voltage.

To improve the operation speed of the VS-FPGA, we are
developing a new varistor with higher programming cur-
rent to reduce ON-state resistance of the AS. Also, a VS
bidirectional interconnect structure without using tristate
buffers is being developed to achieve further area effi-
ciency improvement [53], [54]. Furthermore, a near-memory
computing-oriented VS-FPGA is being developed for AI
applications [43].
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