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Performance Evaluation of Software-Based Error Detection
Mechanisms for Supply Noise Induced Timing Errors

Yutaka MASUDA†a), Nonmember, Takao ONOYE†, and Masanori HASHIMOTO†b), Members

SUMMARY Software-based error detection techniques, which includes
error detection mechanism (EDM) transformation, are used for error local-
ization in post-silicon validation. This paper evaluates the performance of
EDM for timing error localization with a noise-aware logic simulator and
65-nm test chips assuming the following two EDM usage scenarios; (1) lo-
calizing a timing error occurred in the original program, and (2) localizing
as many potential timing errors as possible. Simulation results show that
the EDM transformation customized for quick error detection cannot locate
electrical timing errors in the original program in the first scenario, but it
detects 86% of non-masked errors potential bugs in the second scenario,
which mean the EDM performance of detecting electrical timing errors af-
fecting execution results is high. Hardware measurement results show that
the EDM detects 25% of original timing errors and 56% of non-masked
errors. Here, these hardware measurement results are not consistent with
the simulation results. To investigate the reason, we focus on the following
two differences between hardware and simulation; (1) design of power dis-
tribution network, and (2) definition of timing error occurrence frequency.
We update the simulation setup for filling the difference and re-execute
the simulation. We confirm that the simulation and the chip measurement
results are consistent.
key words: electrical timing error, software-based error detection, EDM
transformation, error detection

1. Introduction

Electrical timing error, which causes a system failure in a log-
ically correct design due to electrical property of the chip,
is becoming one of the most serious concerns in post-silicon
validation. Electrical timing errors originate from supply
voltage variation, temperature gradient, crosstalk noise, and
so on [1], and these factors dynamically fluctuate depend-
ing on the circuit operation, such as a program running on
a processor, and operation environment. In design time,
accurately predicting the occurrence of electrical timing er-
rors and their conditions is difficult, and hence unexpected
electrical timing errors are often observed in post-silicon
validation.

Post-silicon validation gives a wide variety of test pat-
terns at various operating conditions. Once an unexpected
system behavior is observed, we start on analyzing the cir-
cuit operation. In this analysis, we need to (1) notice error
occurrence, (2) localize the error in place, e.g., ALU and
cache controller, and time, and (3) manifest the occurrence
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condition [1]. The most efforts for this analysis are made
in (1) and (2) [2], and hence reducing these efforts is highly
demanded.

Error occurrence is often detected by observing abnor-
mal behaviors, such as system crash, segmentation fault and
invalid op code. End-result-check, which compares the ex-
ecution result with the expected result, can be also used to
find error occurrence. The next step is error localization and
it is challenging, because the time interval between the error
occurrence and the detection of such an abnormal behavior is
quite long. It sometimes reaches billions of cycles [3]. Due
to such a long error detection latency, it is difficult to know
when and where it occurred, since the trace buffer, which is
often used to record signals on a chip for post-silicon debug,
has limited record depth of, for example, thousands of cycles
[4]. Therefore, reducing the error detection latency is help-
ful to facilitate the error localization. Assertion-based error
detection with additional hardware is also proposed [5], [6].
In this approach, it is important when, where and how as-
sertions are inserted for efficient detection with smaller area
overhead [7].

Another approach that reduces error detection latency is
software based approach, and Quick Error Detection (QED)
transformation [3] is one of the software based methods.
QED decomposes the input program into blocks and du-
plicates each block within the program at assembly level.
Also for every pair of the original and duplicated blocks,
QED inserts a register-level consistency check that compares
calculation results. With this fine-grained checking, QED
succeeded in dramatically reducing error detection latency.
Reference [3] reported that for specific logic errors, QED
improved error detection latency by six orders of magnitude,
i.e., from billions of cycles to a few thousand cycles. This
shorter error detection latency helps improve the efficiency
of post-silicon validation.

Error detection mechanism (EDM) transformation [8]
is another software-based error detection approach that was
originally proposed for detecting soft errors. Reference [8]
reported that for random bit flips injected to data memory the
error detection coverage was over 90%. In [9], the coverage
of over 80% was achieved for a single bit flip occurred in
registers. EDM adds data and code redundancy to an input
program written in a high-level source language (e.g. C and
C++), and generates a special program. Here, various pro-
grams, e.g., random instruction tests, architecture-specific
focused tests, and end-user applications such as operating
systems and games can be given as an input program. The
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main advantage of EDM transformation lies in the fact that
it can be applied to a high-level source code independent
of the underlying hardware. To detect errors affecting data,
EDM duplicates each variable in the program and adds con-
sistency checks after every read operation. Here, the con-
sistency check after the read operation makes the error de-
tection latency longer while it is acceptable for soft error
detection. Therefore, we devise another EDM implementa-
tion that adds consistency checks after every write operation
aiming at shorter error detection latency. We will evaluate
both EDM implementations in this paper.

On the other hand, the performance of software-based
error detection techniques for electrical timing error has not
been studied explicitly, and their effectiveness against elec-
trical timing errors is not clear. This paper focuses on the
performance of EDM for electrical timing error localiza-
tion. Firstly, this paper presents a case study that considers
program-dependent supply noise with a supply noise aware
simulation framework supposing supply noise is the most
primary source of electrical timing errors. Next, we eval-
uate and report the EDM performance for electrical timing
error localization using 65-nm test chips. In addition, we
investigate the reason of the inconsistency between the mea-
surement and simulation results and point out two possible
reasons; (1) the design of power distribution network, i.e.,
the magnitude of dynamic power supply noise, and (2) the
definition of timing error occurrence frequency. By updating
the simulation setup, we confirm that the measurement and
simulation results are well correlated. Preliminary results of
simulation and measurement were reported in [10] and [11],
respectively.

Throughout this paper we consider two scenarios of
EDM usage in post-silicon validation; (1) localizing the ex-
act electrical timing error occurred in the original program,
and (2) localizing as many potential errors as possible which
could lead to abnormal behaviors. For the first scenario, two
necessary conditions must be satisfied; error reproducibil-
ity, and diversity between the executions of the duplicated
blocks. On the other hand, for the second scenario, only the
diversity must be satisfied. We discuss the utility of EDM
for electrical timing error localization in these two scenarios
on the basis of experimental results.

The rest of this paper is organized as follows. Section 2
explains EDM transformations and examines the necessary
conditions in which EDM localizes an electrical timing er-
ror. Section 3 presents a case study that investigates whether
EDM transformation is helpful to localize an electrical tim-
ing errors with a supply noise aware simulation framework.
Section 4 presents performance evaluation of EDM with
fabricated test chips, and Sect. 5 examines the experimental
results and discusses the consistency between the measure-
ment and simulation results. Lastly, concluding remarks are
given in Sect. 6.

2. Localizing Electrical Timing Error with EDM

This section explains EDM transformations, discusses two

Fig. 1 Error detection by EDM transformation.

Fig. 2 An example of EDM-O code.

scenarios of EDM usage in post-silicon validation, and de-
scribes the necessary conditions for error localization in each
scenario.

2.1 EDM Transformation

To detect an error quickly after its occurrence, EDM converts
an input program to a special program using several trans-
formation techniques. The EDM transformation and error
detection described in [8] are exemplified in Fig. 1, where
the original EDM transformation in [8] is hereafter called
EDM-O.

The transformation is performed at C/C++ level. Fig-
ure 2 gives an example of EDM-O-transformed code. First,
EDM-O divides an input program into blocks, where each
block consists of a set of operations in series. In the EDM-O
block generation, a new block starts when a branch operation
or variable read operation is found [8]. Here, variable read
operations include those that read values stored in a register
or stored in a memory. In the example code in Fig. 2, opera-
tions “a = b;” and “c = b;” are variable read operations since
the value of variable b stored in a register or a memory is
read. On the other hand, operation “b =1;” is not treated as
a variable read operation since the constant value of 1 often
comes from the immediate field of processor instructions.
Second, we duplicate each block. The paired original and
duplicated blocks are aligned in sequence. In the example
code shown in Fig. 2, operation “a = b;” is duplicated to “a0
= b0;” and “a1 = b1;”, and operations “b = 1;” and “c =
b;” are duplicated similarly. Third, for all the pairs of the
original and duplicated blocks, EDM-O inserts check oper-
ations to compare the read values, i.e., in Fig. 2, the values
stored in b0 and b1 are compared after “a1 = b1;” and “c1 =
b1;”. Consequently, the EDM-O-transformed program exe-
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Fig. 3 Difference of error detection latency between EDM-O (left) and
EDM-L (right).

cutes the original block, the duplicated block and the check
operation in sequence for all the pairs of the original and
duplicated blocks, where in some cases a branch operation is
sandwiched between the check operation and the next origi-
nal block.

EDM-O is originally developed for the purpose of im-
proving soft-error detection coverage [8], and hence the
check is constantly inserted after each variable read to know
whether bit flips occurred in the memory, registers, or FFs.
EDM-O is useful for soft error detection, but it can be im-
proved for shortening error detection latency of electrical
timing errors, i.e., the elapsed time between occurrence of
electrical timing error and its detection. An electrical timing
error arises as a write fail to memory, registers or FFs, and
once a correct value is stored the value will not be corrupted
by electrical timing errors. This means we can know whether
an electrical timing error occurred or not immediately after
the write operation. This is the main difference from soft
error. Therefore, to use EDM for quickly detecting electrical
timing errors, EDM should check the values in the memory,
register or FFs after they are written. For this purpose, check
operations should be performed immediately after variables
are written, not read. The left figure of Fig. 3 illustrates such
an example. Suppose the memory write of variable a0 at the
first line failed. In this case, the memory of a0 is not accessed
for a long time and the inserted check is performed after a
long time elapses. To shorten the error latency, the check is
performed immediately after the memory/register/FF write
access (right figure of Fig. 3). Motivated by this, we devised
EDM for short Latency (EDM-L). Figure 4 shows an ex-
ample of EDM-L-transformed code. EDM-L inserts check
operations for every variable write. We note that EDM-L
performs check operation after “b1 = 1;” whereas EDM-O
does not check after this operation, which means EDM-L
can quickly check whether timing error occurred in b0 or
b1 compared to EDM-O. Consequently, when an error oc-
curs in the original block, we can expect that the next check
operation detects the error occurrence.

Furthermore, to satisfy detectability, the diversity be-
tween the original block and the duplicated block is crucially
important. If the original block and the duplicated block are
identical, the same error would occur in both the blocks and
the check operation fails to detect the error as illustrated
in Fig. 5. In the EDM transformation, the original blocks
and the duplicated blocks often split the memory space to
gain the diversity, where the different memory addresses are
expected to have different access times. EDM can include
various transformations to maximize the diversity.

Fig. 4 An example of EDM-L code.

Fig. 5 Diversity is necessary to satisfy detectability.

2.2 EDM Usage Scenarios and Necessary Conditions for
Error Detection

In this section, we list two EDM usage scenarios in post-
silicon validation and discuss the necessary conditions that
EDM needs to satisfy in each scenario.

We consider the following two scenarios.

Scenario1:
When an original program was running, an electrical
timing error occurred. We want to localize this error
using EDM transformation.

Scenario2:
We want to localize as many potential bugs as possible.

We first examine the necessary conditions for the first
scenario. In Scenario1, EDM should satisfy the two condi-
tions below simultaneously (Fig. 6).

COND1:
EDM-transformed program reproduces the error which
occurred in the original input program.

COND2:
EDM gives enough diversity so that the paired original
and duplicated blocks output different computational
results.

The first COND1 condition is necessary to investigate
the root cause of the error observed in the original program.
To reproduce the error occurrence, the EDM-transformed
program should maintain the similar behavior of the original
program. If EDM does not reproduce the same error, the
error localization of the original program is impossible.

The second COND2 is the fundamental condition for
EDM to work. If the original and duplicated blocks output
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Fig. 6 Two conditions for EDM to localize electrical timing error in
Scenario1.

the same wrong values, the inserted check operation misses
the error. Focusing on the second COND2 condition, dy-
namically fluctuating factors, such as supply noise, might
help increase the diversity. The diversity originates from the
timing characteristics of the fabricated chip under test and
dynamically fluctuating factors. For example, power supply
noise varies depending on the running program, which may
improve the diversity.

On the other hand, COND1 is thought to become more
difficult to satisfy as dynamically fluctuating factors become
more significant. The supply noise, for example, of the chip
on which the original program is running can be different
from the noise of the EDM-transformed program. In this
case, the error observed in the original program may disap-
pear in the EDM-transformed program, and a new error may
arise at another program location.

As stated above, Scenario1 requires that both COND1
and COND2 are satisfied. However, previous studies did
not focus on COND1. It is not clear whether or how often
COND1 can be satisfied in the EDM-transformed programs.
In addition, it is not clear whether EDM satisfies COND2 for
realistic electrical timing error. The next section experimen-
tally investigates whether these two conditions are satisfied
under dynamic power supply noise with a noise-aware logic
simulation framework.

In Scenario2, the error observed in the original program
does not need to be reproduced. Moreover, inducing a new
error could be preferable since potential bugs could be lo-
calized. Therefore, COND1 is not necessary. Only COND2
needs to be satisfied. The necessary condition for Scenario2
is the subset of the condition for Scenario1 and hence the
experiments for Scenario1 are valid for Scenario2 as well.

3. Simulation-Based Evaluation of EDM Transforma-
tion

This section experimentally investigates whether EDM trans-
formation works well in Scenario1 and Scenario2. The ex-
periment supposes that dynamic power supply noise is the
primary source of electrical timing bugs, and it accurately
reproduces the impact of EDM on the dynamic supply noise
and the consequent timing variations.

3.1 Experimental Setup

Our experimental evaluation was performed for an indus-
trial embedded processor (Toshiba MeP processor). This
processor was synthesized and laid out with an industrial

Table 1 Impact of EDM-L transformation on cycle time and cache miss.
execution cycles inst. cache misses data cache misses
orig. EDM orig. EDM orig. EDM

dijkstra 24512 69838 45 161 11 20
(1.00) (2.85) (1.00) (3.58) (1.00) (1.82)

sha 30757 97831 44 167 25 42
(1.00) (3.18) (1.00) (3.80) (1.00) (1.68)

crc 19975 57252 9 29 35 71
(1.00) (2.87) (1.00) (3.22) (1.00) (2.03)

A value in parentheses is the ratio of full-EDM-L divided by original.

65nm library. In this experiment, the post-layout design was
used for the simulations which will be explained later. We
took three C-language benchmark programs, dijkstra, crc,
and sha from MiBench [12] as original input programs. We
implemented an EDM translator and used this translator to
get EDM-transformed programs.

In EDM transformation, two types of check operations
are inserted [8]; (1) data check and (2) code flow check. For
the data checking, each variable v is duplicated as v0 and v1.
Then, the consistency check is performed every time v0 (v1)
is read in EDM-O. In EDM-L, the data check is performed
every time v0 (v1) is written. The code flow check aims to
detect an illegal change of the code execution flow, such as
an illegal jump operation. The code flow check is inserted
as follows.

First, EDM identifies all the basic blocks, i.e., branch-
free sequences, in the program and checks whether all the
statements in every basic block are executed in sequence by
numbering the basic blocks. Second, checks for every test
statement (e.g. if, else if, while) are inserted. EDM inserts
the opposite test to both the true and false clauses to detect
an illegal execution flow. The last target is call and return
operation. Every procedure, i.e., function in the program,
is associated with its unique number, and the number is
checked for every call of the procedure. In this section, we
duplicated all variables, and inserted all data checks and code
flow checks. We call this transformation as full-EDM.

For the original and duplicated blocks, the same input
data was stored at two different addresses of data memory,
and each block accessed its own data in the data memory.
Tables 1 and 2 list increases in the number of execution
cycles and the number of cache misses by full-EDM-L and
full-EDM-O, respectively. The number of execution cycles
increased three to four times, and the increase in the number
of instruction cache misses was similar. The increase in
the data cache miss was roughly double, which is consistent
with a fact that the data size is doubled in the full-EDM-
transformed program.

We evaluated and compared the error occurrences in
the original and EDM-transformed programs by logic simu-
lation. Our logic simulation framework concurrently simu-
lates two MeP designs; one is at register transfer (RT) level
and the other is at gate level. The RT-level logic simulation
is performed with zero-delay model, and hence the output
is always correct disregarding the clock frequency and the
given supply voltage. On the other hand, the gate-level logic
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Table 2 Impact of EDM-O transformation on cycle time and cache miss.
execution cycles inst. cache misses data cache misses
orig. EDM orig. EDM orig. EDM

dijkstra 24512 65693 45 150 11 20
(1.00) (2.68) (1.00) (3.33) (1.00) (1.82)

sha 30757 120487 44 213 25 52
(1.00) (3.92) (1.00) (4.84) (1.00) (2.08)

crc 19975 60000 9 23 35 65
(1.00) (3.00) (1.00) (2.56) (1.00) (1.86)

A value in parentheses is the ratio of full-EDM-O divided by original.

simulation includes timing information and then may output
wrong values. In this work, a noise-aware logic simulation
method [13] is adopted to take explicitly into consideration
program-dependent dynamic supply noise. This simulation
method will be explained in the next subsection. Once an
inconsistency is detected at a FF between RT-level and gate-
level simulations, we can immediately notice a timing error
occurrence. Thanks to this, we can know the exact location
of timing error in time and space.

The comparisons of error occurrence between the orig-
inal and full-EDM-L programs were performed for the fol-
lowing 300 situations. Due to manufacturing variability,
each chip has different delay characteristics. To reproduce
this, we virtually fabricated 10 MeP chips by Monte-Carlo
method assuming that each instance delay randomly fluc-
tuated with the standard deviation of 25% of the typical
instance delay. In addition, depending on the final products,
the LSI package may change. We assumed 10 package con-
ditions, i.e. 10 sets of equivalent circuit parameters of power
distribution network. The equivalent circuit model will be
shown in the next subsection. In summary, 100 = 10 × 10
samples were evaluated for each program, i.e. 300 samples
in total. Similarly, the full-EDM-O program was evaluated
in 300 situations.

We focused on the first error occurred in the program
execution, and its location was considered to check whether
COND1 was satisfied. The minimum clock cycle that caused
timing errors was searched with 2ps interval. When we de-
composed the program into blocks, we numbered the blocks
from the beginning. We regarded the difference of the
block numbers as the proximity of error occurrence loca-
tions. When the difference is zero, the timing error is repro-
duced at the same block in the EDM-transformed program
and COND1 is satisfied. COND2 was evaluated by checking
whether the program was terminated by the check operation.
Even if a timing error occurred in the EDM-transformed pro-
grams, the check operation sometimes miss the error. This
case can be categorized into two groups; silent error and
masked error. In the silent error case, the execution result is
different from the correct result. On the other hand, in the
case of masked error, the execution result is correct.

3.2 Noise-Aware Logic Simulation

In this paper, we used a noise-aware logic simulation method
that could consider dynamic power supply noise in gate-

Fig. 7 An equivalent circuit of power distribution network.

level logic simulation [13]. The dependence of gate delay
on supply voltage was first evaluated with HSPICE and it is
expressed using a delay element whose delay is controlled
by digital signals representing the supply voltage. Here, this
delay element is described at RTL. By attaching this delay
element to every gate and dynamically changing the digi-
tal signal that represents supply voltage, we can reproduce
voltage-dependent gate delay in logic simulation.

When performing the above noise-aware logic simula-
tion, we need to give a waveform of dynamic power supply
noise. We prepared noise waveform information with the fol-
lowing two steps. First, we simulated the post-layout MeP
design with the original and EDM-transformed programs
by a transistor-level circuit simulator, and obtained wave-
forms of the current consumed by MeP for each program.
Here, it should be noted that the transistor-level simulation
to obtain the current waveform is very time consuming and
it took three days for sha-full-EDM-O program. To make
the CPU time needed for the entire evaluation in this work
acceptable, the two-step procedure was adopted. Next, we
gave this current waveform to the equivalent circuit of Fig. 7
and obtained the waveform of dynamic power supply noise.
The nominal supply voltage was 1.0V. To reproduce various
package assemblies and obtain corresponding noise wave-
forms, we used 10 sets of power distribution network (PDN)
parameters in Fig. 7. The parameter setting is explained in
the following.

We varied three parameters of CPKG, RESR_PKG
and LESL_PKG representing the package capacitor, and
one parameter of CCHIP representing the on-chip ca-
pacitor. The other five parameters were fixed as
follows; LBOARD=0.1nH, RBOARD=5mΩ, LBOND=0.3nH,
RCHIP=0.1Ω and RESR_CHIP=0.3Ω. We prepared five config-
urations of the package capacitor; (1) no package capacitor,
(2) one NPO capacitor, (3) one X7R capacitor, (4) ten NPO
capacitors in parallel and (5) ten X7R capacitors in parallel,
where NPO and X7R are commercially available popular
ceramic capacitors [14]. CPKG, RESR_PKG and LESL_PKG of
NPO and X7R are (100pF, 0.3Ω, 0.6nH) and (1nF, 0.6Ω,
0.6nH), respectively [14], [15]. As for the on-chip capaci-
tance CCHIP, two values of 3.5nF and 0.3nF were prepared.
Consequently, 10 (=5×2) sets of PDN parameters were pre-
pared and used to obtain the noise waveforms. Examples of
the noise waveforms are shown in Figs. 8 and 9. These noise
waveforms were given to the noise-aware logic simulation.
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Fig. 8 A waveform example of inductive fluctuation.

Fig. 9 A waveform example of resistive drop.

Fig. 10 Evaluation results of full-EDM.

3.3 Evaluation Results

Figure 10 shows how many samples satisfied COND1 of
reproducibility and COND2 of detectability. For every tim-
ing error in the original program, we checked if COND1
and COND2 are satisfied in the EDM-transformed program.
Among 600 timing error samples, we could not find a sample
that satisfied COND1 and COND2 simultaneously, which
suggests EDM is less helpful in Scenario1. In addition,
over 75% of errors satisfied neither COND1 nor COND2.
Comparing full-EDM-L with full-EDM-O, we can see the
difference in the proportion that only COND1/COND2 is sat-
isfied. In the following, we examine the results for COND1
and COND2 separately in detail.

3.3.1 COND1

Figures 11 and 12 show the proximity of the errors occurred
in the original and full-EDM dijkstra, crc, and sha programs.
Remind that the proximity is defined as the difference of the
block numbers of the error occurrence. The block number
difference of zero means that the same error is observed in the
original and EDM-transformed programs. In EDM-L, 10%
of errors in crc and 2% of errors in dijkstra were reproduced.
On the other hand, in sha, no errors were reproduced. In
EDM-O, over 30% of errors were reproduced in crc, but
no errors were reproduced in dijkstra and sha. As a whole,

Fig. 11 COND1: difference of block numbers of first error occurrence
between original and full-EDM-L programs. For each program, the number
of samples is 100.

Fig. 12 COND1: difference of block numbers of first error occurrence
between original and full-EDM-O programs. For each program, the number
of samples is 100.

EDM-L and EDM-O reproduced only 4% and 11% errors,
respectively. Such low reproduction ratios are mainly due to
the following two reasons.

The first reason is that EDM changes supply voltage
noise since the block duplication and check insertion change
the instruction sequence and the usage of circuit blocks, such
as memory and general purpose registers. In other words,
even when the same instructions are performed, the supply
noise could change, because the used registers and memory
addresses are different and the inductive noises excited in
the previous clock cycles are superposed. Figure 13 shows
a comparison of noise waveforms between the original and
full-EDM dijkstra programs, where the same instruction was
performed in this clock cycle. We can see that the voltage
waveforms are not identical. For further investigation, we
evaluated the minimum supply voltage within a clock cycle
every time mov instruction was performed. Figure 14 shows
a histogram of the minimum voltage in the original crc pro-
gram. We can see that the minimum voltage value ranges
from 941 mV to 947 mV even though the same instruction
of mov is performed. This waveform difference prevents the
error reproduction.

The second reason is that EDM lengthens the program
execution as previously shown in Tables 1 and 2. As the
program becomes longer, a new timing error, which is dif-
ferent from the error observed in the original program, is
more likely to occur. In addition, the duplication and fre-
quent check insertion change the instruction composition of
the program. Figure 15 shows the ratios of the instructions
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Fig. 13 Voltage inconsistency between original and full-EDM programs.

Fig. 14 The histogram of the supply voltage when MOV instructions
were executed (crc-original).

Fig. 15 Proportion of executed instructions in sha-original, sha-full-
EDM-L.

executed in sha-original and sha-full-EDM-L programs, re-
spectively. We can see that instruction ratios of the EDM and
original programs are considerably different. For example,
in EDM, the number of load word (lw) instruction executions
increases because the used memory space is doubled, and a
number of branch if equal (beq) instructions are introduced
due to check insertion. These instruction variations not only
affect the processor behavior but also enlarge the noise dif-
ference, which makes the error reproduction difficult.

3.3.2 COND2

Next, COND2 is examined. Figures 16 and 17 show the
proportions of silent errors, masked errors and detected er-
rors. For detected errors, the histogram of the error detection
latency is presented. In EDM-L, we can see that 77% of er-
rors are masked and 2% are silent errors, whereas 87% are
masked errors and 7% are silent errors in EDM-O. In other
words, most of the electrical timing errors did not propagate
to the memory and general purpose registers.

Among the non-masked errors, 86% errors were de-
tected within 1000 cycles in EDM-L, while 38% in EDM-O.
This result indicates that the EDM-L performance of detect-

Fig. 16 COND2: Error classification in full-EDM-L. For each program,
the number of samples is 100.

Fig. 17 COND2: Error classification in full-EDM-O. For each program,
the number of samples is 100.

ing electrical timing errors that affect execution results is
high. We can say EDM-L is helpful to detect noise induced
errors with shorter error detection latency. In other words,
we can use EDM-L in Scenario2. For the errors having long
error detection latency, we found a tendency that the first er-
ror was not detected and the second or later error was detected
by the check operation. On the other hand, the EDM-O per-
formance was not good. The proportion of silent errors was
larger, and the detection latency was longer. Clearly, for the
purpose of quick error detection in post-silicon validation,
EDM-L is much better than EDM-O.

4. Hardware Measurement

This section experimentally investigates whether EDM trans-
formation works well in Scenario1 and Scenario2 with 65-
nm test chips, and compares theses results with previous
simulation.

4.1 Measurement Setup

First, we explain the experimental setup. We used a 32-bit
embedded processor (Toshiba MeP processor) implemented
and fabricated in 65-nm CMOS technology. A chip photo is
shown in Fig. 18. The chip size is 4.2 mm × 2.1 mm.

We took three C-language benchmark programs, dijk-
stra, crc, and sha from MiBench [12] as similar to Sect. 3.
Figure 19 shows the measurement setup consisting of a test
chip, a device under test (DUT) board, a DC voltage source
and a PC. The packaged test chip is mounted on a DUT board.
The DUT board, which also includes a Stratix III FPGA and
SDRAM, is used as a logic analyzer and a pattern generator.
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Fig. 18 A photo of 65-nm test chip of MeP processor. Die size is 4.2 mm
× 2.1 mm.

Fig. 19 Measurement setup.

For example, the data that should be stored in the instruc-
tion memory and the data memory of MeP processor is first
transferred from PC to the DUT board through USB cable,
and then the data is loaded to the on-chip SRAMs. Also, af-
ter the program execution of MeP processor, the data in the
on-chip data memory is downloaded to PC through the DUT
board. We also use an external DC source (Agilent6611C)
to supply the voltage to the test chip.

With this setup, we can obtain the shmoo plot taking
the following procedure. In each measurement, we set the
clock frequency and supply voltage given to the test chip.
Then, the data uploading, the program execution and the
data downloading are executed as explained before. When
the downloaded data is identical to the expected data, the
program execution is thought to be correct. When there is
inconsistency, it is thought that the program execution failed.
This measurement is repeated sweeping clock frequency and
supply voltage. We obtained the shmoo plots of the original
and EDM-L programs (dijkstra, crc, and sha) for five test
chips. The frequency interval was 5 MHz and the supply
voltage was swept between 1.0 and 1.4 V with 0.1 V inter-
val. Figures 20 and 21 are the shmoo plots of the fastest and
slowest test chips among the five chips, where the sha-full-
EDM-L program was executed. Even while the five chips
were taken from the same wafer, the chip speed is different.
Here, we define a term of FMAX. For each program exe-
cution, each chip and each supply voltage, we can find the
FMAX at which the execution result starts to be incorrect.
This frequency is defined as the FMAX. For example, in
the shmoo plot of Fig. 20, the FMAX at 1.0 V is 225 MHz,
which is 15 MHz lower than that in Fig. 21.

Fig. 20 Shmoo plot of the slowest chip (chip #1).

Fig. 21 Shmoo plot of the fastest chip (chip #5).

Fig. 22 Procedure of error cycle identification.

4.2 Performance Evaluation Method

In this work, we focus on the first error that affects the
execution result and check whether EDM satisfies COND1
and COND2.

For this purpose, we need to know when the timing er-
ror occurs. However, in the hardware it is difficult to know in
which clock cycle the timing error occurs unlike the simula-
tion. Therefore, we take the following evaluation procedure.
We change the clock frequency during the program execu-
tion as shown in Fig. 22. The program execution starts at
10 MHz, and the processor initialization completes at this
frequency. Note that 10 MHz is low enough for the cor-
rect processor operation. When the user program execution
starts, the clock frequency is changed to the FMAX. After
Nf ast clock cycles have passed, the clock frequency is again
changed to 10 MHz. Under this configuration, if the execu-
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Fig. 23 Results of chip measurement. (a) COND1+COND2(Scenario1), (b) COND1, and (c)
COND2(Scenario2).

tion result is incorrect, we can know the first error occurred
within the first Nf ast cycles. If the execution result is correct,
no error occurred. We repeat this measurement by changing
Nf ast in binary search manner and finally identify the clock
cycle when the first error occurred.

Remind that, when we decomposed the program into
blocks, we numbered the blocks from the beginning. Accord-
ingly, we can know in which block the first error occurred
from Nf ast . We regard the difference of the error occur-
rence block numbers as the proximity of error occurrence
locations in a similar way to previous simulation. When the
difference is zero, the timing error is reproduced at the same
block in the EDM-transformed program and COND1 is sat-
isfied. Evaluation for COND2 was also similar to Sect. 3. If
checker works, we subtract the error occurrence clock cycle
from terminated clock cycle of the program and obtain the
error detection latency.

4.3 Evaluation Results

Figure 23(a) shows the ratio of the samples that satisfied
COND1 of reproducibility and COND2 of detectability. The
chip measurement result shows that 25% of the errors in the
original program can be reproduced and quickly detected.

On the other hand, in the simulation result, which is
shown in the left figure of Fig. 10, EDM could not satisfy
COND1 and COND2 simultaneously. In addition, the pro-
portion that only COND1/COND2 is satisfied differs be-
tween the chip measurement and simulation. These differ-
ences will be discussed in the next section.

4.3.1 COND1

Figure 23(b) shows the proximity of the errors occurred in
the original and the full-EDM dijkstra, crc and sha programs
in the chip measurement. In our chip measurement, 66% of
errors in crc and 20% of errors in dijkstra were reproduced.
On the other hand, in sha, no errors were reproduced. As a
whole, EDM-L reproduced 29% errors in the chip measure-
ment whereas 4% of errors were reproduced in the simulation
as shown in Fig. 11. These differences of the reproducibility
are supposed to be due to the following two reasons.

The first reason is the difference in the power distri-
bution network (PDN) between the simulation model and
the hardware. In the previous simulations, ten different

Fig. 24 Histogram of cycle time difference between FMAXs of timing
error and incorrect execution.

PDNs are used for the simulation to evaluate the performance
against various supply noises, and they are not prepared aim-
ing to model the test chip.

The second reason is the definition difference of the
FMAX of the error occurrence between simulation and hard-
ware measurement, whereas MeP processor was operated at
the FMAXs in both the simulation and hardware measure-
ment. In the simulation, the FMAX was defined as the fre-
quency at which a timing error started to occur at a flip-flop
no matter whether the timing error affected the execution
result or not (i.e., no matter whether it is masked or not).
Hereafter, this FMAX is called as the FMAX of timing er-
ror. On the other hand, in the chip measurement, the FMAX
was defined as the frequency at which timing errors started
to affect the execution result, because the FMAX of timing
error cannot be obtained in the hardware measurement. This
FMAX is called as the FMAX of incorrect execution. Here,
the FMAX of incorrect execution is equal to or higher than
that the FMAX of timing error. In other words, we executed
the original and the EDM programs at higher frequency in
the measurement compared to simulation setup. Figure 24
exemplifies the cycle time difference between the FMAXs
of timing error and incorrect execution. This result was ob-
tained by the simulation with full-EDM-L programs. We
can see that 70% of the samples have ≥ 0.2 ns difference.

4.3.2 COND2

Next, COND2 is examined. We first categorized the mea-
sured samples into detected samples and not detected sam-
ples. In the chip measurement, we focused on the errors af-
fecting the execution result, and hence not detected samples
correspond to silent errors, whereas not detected samples in-
clude silent errors and masked errors in the simulation. Fig-
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ure 23(c) shows the proportions of detected errors and silent
errors in the chip measurement. For detected errors, the
histogram of the error detection latency is presented. From
Fig. 23(c), we can see that 56% of the errors are quickly
detected and 33% are silent errors. Compared with Figs. 16
and 23(c), the EDM-L performance of detecting electrical
timing errors affecting execution result in simulation eval-
uation is higher than in the chip measurement (86% versus
56%).

5. Correlation between the Measurement and Simula-
tion

The experimental results in the previous section show that in
the chip measurement, COND1 is more satisfied and COND2
is less satisfied compared to the simulation. The possible rea-
sons of these differences are (1) the difference of the power
distribution network, and (2) the difference of the FMAX
definition, as described in the previous section. In this sec-
tion, we improve the correlation between the measurement
and simulation by updating the simulation setup taking into
account these two possible reasons.

5.1 Power Distribution Network

The chip measurement results in the previous section lead to
a hypothesis that the supply noise in the test chip is smaller
than that in the simulation and hence the errors are more
likely to be reproduced in the chip measurement.

To verify the above hypothesis, we suppose the test chip
has ideal PDN as an extreme case. In other words, we execute
the simulation based evaluation in a similar way to Sect. 3
except that the supply voltage is fixed and the supply noise
is zero. In this simulation, we prepare 3 programs (dijkstra,
crc, and sha) and 10 chips, and hence totally 30 samples are
evaluated.

Figure 25(a) shows the evaluation results of Scenario1.
We can see that EDM could not satisfy COND1 and COND2
simultaneously, which is not consistent with chip measure-
ment results. On the other hand, the proportion of COND1
satisfaction increased from 4% to 13%, approaching to the
measurement result of 29% (Fig. 23(a)).

Next, Fig. 25(b) shows the results of Scenario2, and we
can see that 76% of the errors are masked error and there
are no silent errors. Focusing on the non-masked error, 70%
were quickly detected. The ratio of quick detection degraded
from 86% but it approaches to 56% of the chip measurement
result (Fig. 23(c)).

5.2 FMAX

In the chip measurement, the FMAX of incorrect execution
was used while the FMAX of timing error was used in the
simulation in Sect. 3. To clarify the difference originating
from this difference of FMAX, we applied the FMAX of
incorrect execution to the simulation. In the simulation here,
the FMAX of incorrect execution was searched with 200 ps

Fig. 25 Simulation results with ideal PDN. FMAX of timing error is used
for evaluation. (a) Scenario1, and (b) Scenario2.

Fig. 26 Simulation results with not ideal PDN. FMAX of incorrect exe-
cution is used for evaluation. (a) Scenario1, and (b) Scenario2.

interval, which is also similar to the measurement setup.
We used 3 programs and 10 chips in a similar way to the
previous evaluation. In addition, we prepared ten PDNs
used in Sect. 3. Consequently, we evaluated whether EDM
satisfied COND1/COND2 for 300 samples.

Figure 26(a) shows the result for Scenario1. Comparing
Figs. 26(a) and 23(a), we can find a large difference in the
proportion that both the reproducibility and detectability are
satisfied, which is 0% in the simulation and 25% in the chip
measurement. Figure 26(b) shows the result for Scenario2.
The detectability for the non-masked error has become close
to between the simulation and chip measurement, where it
is 39% in the simulation and 56% in the chip measurement
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Fig. 27 Simulation results with ideal PDN. FMAX of incorrect execution
is used for evaluation. (a) Scenario1, and (b) Scenario2.

(Fig. 23(c)).

5.3 Power Distribution Network and FMAX

Finally, we applied the ideal PDN with no noise and the
FMAX of incorrect execution to the simulation.

Figure 27(a) shows the result for Scenario1. Fig-
ures 27(a) and 23(a) indicate that the proportions that both
reproducibility and detectability are satisfied are almost the
same and they are 23% in the simulation and 25% in the
chip measurement. We can also see that the portions of only
reproducibility/detectability is satisfied and neither satisfied
are consistent between the simulation and chip measurement.

Figure 27(b) shows the Scenario2 results. 43% of the
errors are quickly detected and 13% are silent errors. Com-
paring Fig. 27(b) with Fig. 23(c), we can see that detectabil-
ity for the non-masked error is similar, that is 43% in the
simulation and 56% in the chip measurement.

Based on the discussion above, we can conclude that the
simulation with ideal PDN and FMAX of incorrect execution
reproduced the chip measurement results. This means that
the supply noise in the test chip is smaller than that in the
simulation, which is quite natural since the test chip was not
designed for the purpose of EDM performance evaluation
and hence the PDN was robustly designed.

6. Conclusion

This work experimentally evaluated the error detection per-
formance of the EDM transformation, which is one of C-level
code transformation, for supply noise induced timing errors.
To discuss the effectiveness of EDM for electrical timing
error localization, we supposed two EDM usage scenarios;
localizing an electrical timing error occurred in the original

program (Scenario1), and localizing as many potential er-
rors as possible (Scenario2). We experimentally evaluated
the error detection performance in these two scenarios with
a noise-aware logic simulator and 65-nm test chips. Simu-
lation results showed that the EDM cannot locate electrical
timing errors in the original program in the first scenario,
but it detects 86% of non-masked errors potential bugs in
the second scenario, which mean the EDM performance
of detecting electrical timing errors affecting execution re-
sults is high. Hardware measurement results showed that
the EDM detects 25% of original timing errors and 56% of
non-masked errors. On the other hand, these measurement
results were not consistent with the simulation results. We
found that this inconsistency came from (1) the design of
power distribution network, and (2) the definition of FMAX
used for evaluation. By updating the simulation setup, we
confirmed that the EDM performance evaluated by the sim-
ulation was consistent with that by the chip measurement.
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