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Abstract—Deep neural networks (NNs) have shown high infer-
ence performance in the field of machine learning, but at the same
time, researchers require their speeding-up and miniaturization
methods due to the computational complexity. Distillation is
drawing attention as one of the ways to overcome this problem.
NNs usually have better expression power than its learning
ability. Distillation bridges the gap between expressive power and
learnability by training a small NN with additional information
obtained from a larger already trained NN. This gap does not
exist only in neural networks but also in other machine learning
methods such as support vector machine, random forest, and
gradient boosting decision tree. In this research, we propose a
distillation method using information extracted from NNs for
non-NN models. Experimental results show that distillation can
improve the accuracies of other machine learning methods, and
especially, the accuracy of SVM increases by 2.80%, 90.15% to
92.95%.

I. INTRODUCTION

Recently, in the field of machine learning, neural networks
(NNs) have achieved high inference performance. Especially,
convolutional neural networks (CNNs) are attracting attention
in image recognition. By convolution and pooling, CNNs
are highly resistant to the displacement, and they can rep-
resent various spaces that conventional models could not ex-
press. In ILSVRC (ImageNet Large Scale Visual Recognition
Challenge) 2012, AlexNet [1] outperformed existing machine
learning methods in accuracy, which is one of the CNN
models. Since then, CNN continues to improve its accuracy
year by year [2], [3].

However, this improvement entails an increase in compu-
tational cost and network scale, which makes it challenging
to apply NNs to embedded systems. For accelerating and
miniaturizing NNs, there is a method called distillation. NNs
usually have better expression power than its learning ability,
i.e., a small NN may not be trainable even if it has enough
power to express a proper model. Distillation bridges the gap
between expressive power and learnability by training a small
NN with additional information obtained from a lager already
trained NN. However, even a small distilled NN still requires
a huge amount of calculation and memory resources, and it is
now a challenging problem to apply NNs to embedded systems
of practical applications.

On the other hand, the gap between expressive power and
learnability exists not only in NNs but also in other machine
learning methods such as support vector machine (SVM) [4],
random forest (RF) [5], and gradient boosting decision trees
(GBDT). This paper proposes a distillation method from
NNs to other machine learning methods for exploiting both
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Fig. 1. Schematic of NN.

advantages of NN learnability and smaller computation of
other machine learning methods.

The rest of this paper is organized as follows. Section II
introduces related existing methods. Next, Section III describes
the proposed method distilling from a NN into other machine
learning methods, and Section IV shows experimental results.
Finally, Section V concludes this paper and discusses future
work and remaining issues.

II. RELATED RESEARCH

This section introduces machine learning methods and the
distillation required to understand the proposed method. Sec-
tion II-A presents a basic structure of NN and describes
a typical architecture of CNN. Section II-B explains the
conventional distillation method. Then Section II-C and II-D
explain SVM, RF, and GBDT.

A. Neural network and convolutional neural network

A NN is a mathematical model in which neurons are
connected between multiple layers in various forms as shown
in Fig. 1. The first layer is called an input layer, the last layer
is called an output layer, and the other layers between input
and output layers are called hidden layers. By performing
various transformations in the hidden layers, NNs improve
their expressive power.

Among various types of NNs, CNNs have achieved good
performance in the field of image recognition. A CNN mainly
consists of three components: convolutional layer, activation
function, and pooling layer. The convolutional layer generates
its output by convoluting 3-D filters called kernels with the
input. This convolution process makes it possible to overcome
displacements of features. Given that A, B, and C are width,
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Fig. 2. Max pooling without overlap.

height, and depth of the k-th kernel, and P , Q, and R are
width, height, and depth of output, the convolution process is
expressed as the following (1):

yp,q,r =
∑
a,b,c

w
(k)
a,b,cxp+a,q+b,c, (1)

where xp,q,c, yp,q,r and w(k)
a,b,c are a value at coordinate (p, q, c)

of input x, a value at (p, q, r) of output y, and a value at
(a, b, c) of k-th kernel, respectively.

The activation function nonlinearly transforms the output
yp,q,r of each neuron in convolutional layers into zp,q,r, and it
is the most important part contributing inference accuracy. In
recent CNNs, rectified linear unit (ReLU) is the most widely
used activation function:

zp,q,r = max(0, yp,q,r). (2)

The pooling layer shrinks the output zp,q,r of the activation
function while retaining important information. There are var-
ious types of pooling methods: max pooling, average pooling,
and so on. Fig. 2 shows an example of 2×2 max pooling with
a 4× 4 input. By extracting the maximum value from regions
of interests, max pooling compresses the 4× 4 input space to
2× 2 and makes it possible to achieve high resistance against
displacement and noise of extracted features [6].

B. Distillation

Distillation [7] trains a smaller NN with the additional
information obtained from a pretrained larger NN: the smaller
and the larger NNs are called student and teacher models,
respectively. In contrast to the conventional training process
using only training datasets, distillation can provide detail
information about the pretrained space of a teacher model and
help a student model learn a similar space.

In distillation, temperature softmax plays an important role
to transfer the information from a teacher model to a student
model. Softmax function generally used in classification is
defined as

pi =
exp(yi)∑
j exp(yj)

, (3)

where yi is the i-th value of the output layer, and pi is
the probability that the current input data belongs to i-th
class. Here, a well-trained teacher model provides almost no
additional information over its target label since its output
through the softmax operation tends to be a one-hot vector. The
temperature softmax function, on the other hand, smooths the

(a) Input data. (b) Divided space.

Fig. 3. An example of space division by SVM.

distribution of output and makes it easy to extract additional
information. Temperature softmax is defined as

pi =
exp(yi/T )∑
j exp(yj/T )

. (4)

Note that temperature T is introduced as a new hyperparam-
eter, and the probability distribution becomes smoother as the
temperature T increases.

C. Support vector machine

A SVM separates an input space by finding the maximum
margin between two groups of data, where the data closest to
the boundary are called support vectors. For example, given
two groups of data shown in Fig. 3(a), a SVM divides them
into two spaces as in Fig. 3(b), where two data pointed by
arrows are support vectors. Even for spaces with nonlinear
boundaries, a SVM can divide the spaces by mapping training
data to high-dimensional feature spaces. The functions used
for the conversion to a high dimensional feature space are
called kernels. Representative kernels, a RBF kernel and a
polynomial kernel are shown in (5) and (6):

KRBF(x,y) = exp(−γ∥x− y∥2) (5)

and

Kpoly(x,y) = (γ(x · y) + r)d, (6)

where γ, r, d are hyperparameters.

D. Decision tree ensemble

Decision Tree (DT) ensemble builds a classifier or a regres-
sor consisting of multiple DTs, where each DT is a weak
learner. Fig. 4 shows an example of a DT and the space
partitioned by it. As the depth of a DT increases, the expres-
sion power improves. However, it also causes overfitting, and
hence it is necessary to set an appropriate depth. Besides, DT
ensemble further enhances the expression power by combining
relatively shallow multiple DTs. This section briefly explains
two types of DT ensembles: RF and GBDT.
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(a) DT. (b) Divided space.

Fig. 4. Space represented by a DT.

1) Random forest: RFs train each DT with randomly sam-
pled training data. This random sampling can avoid training
similar trees since training data have diversity. Although a RF
uses multiple DTs, it can operate faster than NN because each
DT can be processed by comparison operation and they are
much faster than multiply-accumulate operations.

2) Gradient boosting decision trees: A RF gives diversity
to each DT by using randomly sampled training data used. On
the other hand, GBDT increases the weights of training data
that cannot be classified by the current DT and trains the next
DT with the newly-weighted training data. Therefore, GBDTs
cannot learn in parallel so that learning takes time compared
with RFs.

III. DISTILLATION FOR OTHER MACHINE LEARNING
METHODS

This section explains the proposed distillation method from
NNs to other machine learning methods. Section III-A de-
scribes the basic framework for applying distillation to other
machine learning methods. Then, Section III-B explores vari-
ations of the proposed distillation.

A. How to distill to other machine learning methods

The processing flow of the proposed method is as follows:
1) Training a NN as a teacher model,
2) Building a new training dataset consisting of input data

and corresponding output from the teacher model, and
3) Training a non-NN model in the manner of regression

with the new training dataset.
The proposed method starts with training a teacher model as
the conventional distillation does. After preparing a teacher
model, it creates a new dataset by associating the training data
with the corresponding output of the teacher model. Here, the
output of the teacher model used in the proposed method will
be discussed in the next subsection. The proposed distillation
uses this new dataset for training SVM, RF, and GBDT. The
corresponding output of the dataset are real numbers, and
hence the proposed distillation trains other machine methods
in the training manner of regression for both classification and
regression. For multiclass classification, the proposed method
trains learners as many as the number of classes and selects
the output with the maximum value as the classification result.

input
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Fig. 5. Two variations of the proposed distillation.

Fig. 6. Spiral dataset. Fig. 7. Teacher model.

B. Variations of the proposed distillation

This section explores two variations of the proposed distil-
lation, which are illustrated in Fig. 5: the first one associates
the temperature softmax and the other associates the output of
activation with the training data. For preliminarily evaluating
both the variations, 2-D spiral data in Fig. 6 is used as training
data, and a teacher model is trained as shown in Fig. 7. Student
models are trained using the output of a NN instead of the
target label of the training data.

Figs. 8, 9, and 10 compare results of a genuine training
method and the variations of the proposed method for SVM,
RF, and GBDT, respectively. In each figure, (a) is trained using
intact training data, (b) and (c) are trained by the proposed
distillation with temperature softmax, and (d) is trained by the
proposed distillation with activation output. Here, we provide
two results of temperature softmax with T = 1 and T = 7 to
investigate the influence of hyperparameter T.

As shown in (a) and (b) of each figure, the spaces trained
using temperature softmax with a small T are not much
different from the spaces trained using intact training data. In
this case, the proposed distillation hardly contributes to better
inference performance than genuine training. As hyperparam-
eter T increases, the proposed distillation can extract more
information from the teacher model, and the spaces become
smoother as shown in (c) of each figure. On the other hand,
the proposed distillation using activation output shows similar
spaces with the teacher model as shown in (d) of each figure.
The following section will evaluate these two variations with
more complicated dataset and discuss the details.

IV. EVALUATION

This section evaluates and compares the effectiveness of the
proposed distillation under various setups. First, Section IV-A
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(a) genuine SVM. (b) temperature softmax (T = 1). (c) temperature softmax (T = 7). (d) activation output.

Fig. 8. Comparison of spaces trained by SVMs: (a) is trained using intact training data, (b) and (c) are trained by the proposed distillation using temperature
softmax, and (d) is trained by the proposed distillation using activation output.

(a) genuine RF. (b) temperature softmax (T = 1). (c) temperature softmax (T = 7). (d) activation output.

Fig. 9. Comparison of spaces trained by RFs: (a) is trained using intact training data, (b) and (c) are trained by the proposed distillation using temperature
softmax, and (d) is trained by the proposed distillation using activation output.

(a) genuine GBDT. (b) temperature softmax (T = 1). (c) temperature softmax (T = 7). (d) activation output.

Fig. 10. Comparison of spaces trained by GBDTs: (a) is trained using intact training data, (b) and (c) are trained by the proposed distillation with temperature
softmax, and (d) is trained by the proposed distillation with activation output.

describes the evaluation environment, and then Section IV-B
shows the distillation results.

A. Environment

For evaluation, we use the CIFAR-10 dataset1. CIFAR-10
consists of 60,000 32× 32 color images of ten classes: 6,000
images per class. There are 50,000 training images and 10,000
test images. Only two of ten classes are used in the evaluation
for simplicity. A CNN is adopted as a teacher model, and
Fig. 11 shows the network configuration. Accuracy of the
teacher model is 98.75% in two-class classification. The Keras
library is used for implementing the CNN, and scikit-learn is
used for implementing SVMs, RFs, and GBDTs.

B. Experimental results

Section IV-B1, IV-B2, and IV-B3 evaluate the proposed
distillation with SVMs, RFs, and GBDTs in order. For tem-
perature softmax, each section uses the following three tem-
peratures as a hyperparameter: T = 50, T = 100, T = 250.

1https://www.cs.toronto.edu/∼kriz/cifar.html

Fig. 11. Schematic of convolutional neural network.

1) Distillation to SVM: TABLE I shows accuracy changes
due to distillation for SVMs using activation output. This ex-
periment uses RBF kernel and polynomial kernel and changes
C, which is a parameter that penalizes errors. SVMs achieved
remarkable accuracy improvements when C = 1, 000. Be-
sides, SVMs trained with distillation break the accuracy record
of conventional training in both the RBF kernel and the
polynomial kernel.

We also perform distillation using output after tempera-
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TABLE I
ACCURACY COMPARISON OF DISTILLING SVM WITH ACTIVATION(%)

kernel function
no distill distill w/ act. diff.

RBF poly RBF poly RBF poly

C

0.1 89.00 88.90 73.90 76.45 −15.10 −12.45
1 92.55 91.80 82.20 82.05 −10.35 −9.75

10 94.20 91.55 88.15 87.10 −6.05 −4.45
100 93.25 90.35 93.00 92.85 −0.25 2.50

1,000 93.30 90.15 94.40 92.95 1.10 2.80
10,000 93.33 89.50 94.20 91.45 0.90 1.95

(a) Using RBF kernel. (b) Using Polynomial kernel.

Fig. 12. Accuracy change of distilling to SVM (%).

ture softmax function at temperature T = 1，T = 50，
T = 100，and T = 250. As the case of using activation
output, distillation using temperature softmax achieved high
accuracy, especially at temperature T = 50 and T = 100.
Fig. 12(a) and Fig. 12(b) summarize the change in accuracy
when T = 50 and T = 100 and when using activation output.
We omit the part where the inference accuracy degraded. These
figures show that distillation using a temperature softmax
also provides the same or better effect. Distillation to SVM
achieved remarkable accuracy improvements, especially when
C is large. This result can be explained by the fact that a large
C tends to overfit the SVM model to outputs of NN.

2) Distillation to RF: TABLE II shows accuracy changes
of distillation for RFs using activation output. We perform
distillation by changing the number of trees and the depth of
trees. RFs achieved accuracy improvements when the number
of trees was small and the trees were deep. On the other hand,
unlike SVMs, RFs trained with distillation failed to break the
accuracy record of the conventional training. As in the case
of the SVM, we performed distillation using a temperature
softmax at temperature T = 1，T = 50，T = 100， and
T = 250, and Fig. 13(a) to Fig. 13(d) show the results. From
these figures, RFs improve the accuracy when the number of
trees is small and the trees are deep regardless of the used
output. This result also can be explained in the same manner
with the above. It is by the fact that the small number of deep
trees tends to overfit the RF model to outputs of NN.

3) Distillation to GBDT: TABLE III shows accuracy
changes of distillation for GBDTs using activation output. We
perform distillation by changing the number of trees and the
depth of trees. When the number of trees was 4 and the depth
of trees was 16, GBDTs achieved large accuracy changes.
As in RFs, GBDTs failed to update the maximum value of
inference accuracy.

We performed distillation using a temperature softmax at
temperature T = 1，T = 50，T = 100， and T = 250, and
achieved high accuracy at T = 50，T = 100， and T = 250.
Fig. 14(a) to Fig. 14(d) show the results. Although GBDTs
also improve accuracy, it is difficult to identify the condition in
which the accuracy improves, and further analysis is necessary.

V. CONCLUSION

This paper proposed a distillation method from a NN to
other machine learning methods. The evaluation experiment
shows that it is possible for the proposed distillation to transfer
the information of a NN to SVMs, RFs, and GBDTs in image
classification using CIFAR-10. Especially, the accuracy of
SVM increases by 2.80%, 90.15% to 92.95%. The accuracy
of RFs and GBDTs also increases, but they failed to break the
accuracy record of conventional training. As future work, we
are planning to confirm the validity of the proposed method
against more difficult classification problems.
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TABLE II
ACCURACY COMPARISON OF DISTILLING RF WITH ACTIVATION (%).

number of trees
no distill distill w/ act. diff.

10 50 100 10 50 100 10 50 100

de
pt

h
4 80.68 81.88 82.06 78.85 78.85 78.95 −1.83 −3.03 −3.11
8 85.26 87.41 87.77 85.87 86.54 86.91 0.61 −0.87 −0.86

12 85.30 88.23 88.55 86.92 88.01 88.21 1.62 −0.22 −0.34
16 85.12 88.50 88.82 86.74 88.09 88.20 1.62 −0.41 −0.62

(a) T = 1. (b) T = 50. (c) T = 100. (d) T = 250.

Fig. 13. Accuracy change of distilling to RF with softmax (%).

TABLE III
ACCURACY COMPARISON OF DISTILLING GBDT WITH ACTIVATION OUTPUT (%).

number of trees
no distill distill w/ act. diff.

10 50 100 10 50 100 10 50 100

de
pt

h

4 84.25 88.80 90.83 80.40 88.55 91.01 −3.85 −0.25 0.18
8 86.06 89.62 90.32 85.60 89.83 90.49 −0.46 0.21 0.17

12 84.78 87.05 87.29 84.84 87.91 88.16 0.06 0.86 0.87
16 82.18 84.56 85.53 83.95 85.37 85.32 1.77 0.81 −0.21

(a) T = 1. (b) T = 50. (c) T = 100. (d) T = 250.

Fig. 14. Accuracy change of distilling to GBDT with softmax (%).
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