
Minimizing Energy of DNN Training
with Adaptive Bit-width and Voltage Scaling

TaiYu Cheng
Osaka University

t-cheng@ist.osaka-u.ac.jp

Masanori Hashimoto
Osaka University

hasimoto@ist.osaka-u.ac.jp

Abstract—Training DNN mostly relies on GPUs with FP32
format. While FP16 is acknowledged for its advantage of high
computation and memory efficiencies for training DNN, the
training must be accompanied with techniques dedicated for a
particular dataset. Therefore, a hardware engine with a config-
urable bit-width feature is desirable for covering any datasets
and applications. This work proposes an adaptive bit-width and
voltage scaling (ABVS) scheme for DNN training. The key idea
is to increase fraction bit-width (FB) gradually from a small
value according to current training quality (e.g., accuracy, mAP).
Since less FB achieves shorter hardware latency, this training
scheme concurrently adapts bit-width and voltage scaling and
intensify energy reduction. Experimental results show that the
ABVS scheme achieves the comparable quality to FP32 with at
most 0.5% accuracy drop, but up to 63% energy reduction.

Index Terms—deep learning training, floating-point, config-
urable bit-width, bit-width scaling, voltage scaling

I. INTRODUCTION

Deep neural network (DNN) has thrived in many applications
[1], [2], where there is a trend that deeper models require
more computation would attain higher accuracy [3]. Training
demands more complicated operations and larger amount of
data than inference through tens of iterations, resulting in
overwhelming computations. Let us exemplify the CPU time
difference between inference and training for ImageNet dataset
[4], showing that training with 50 epochs demands 1,300 times
CPU time than inference. Although training is basically a one-
time effort, the recent increases in the size of training datasets
and model complexity strongly motivate us to improve the
training efficiency while sustaining the training quality.

DNN is inherently error-tolerant, and then approximate
computing (AC) is compatible with DNN. Several represen-
tative AC techniques like approximate arithmetic unit [5]–[11],
voltage-over-scaling [12], [13], bit-width scaling (quantization)
[13]–[17] can be either solely or hybridly applied for gaining
efficiency. However, most of them [5], [11]–[14] focus on
inference, whereas [8]–[10], [15]–[17] aim at training. Besides,
the AC techniques are conventionally applied to forward prop-
agation only, and back propagation rely on exact computation
[5], [11]–[14] or additional training stages are required [5],
[11]. Although the inference and forward propagation enjoy
AC benefits, the efficiency improvement of back propagation
in training has less explored despite its importance.

DNN training with GPU often adopts 32-bit floating-point
(FP32) since a large dynamic range is necessary for gradient
computation in back propagation. Meanwhile, training in which
a shorter format is applied to back propagation as well is
recently studied supposing that training with FP32 is more than

30%

40%

50%

60%

0 10 20 30 40 50

T
e

s
ti

n
g

 A
c

c
u

ra
c
y

Epochs

FB: 10

FB: 14

FP32

Fig. 1: FP16 (FB:10) cannot attain FP32
training quality (ImageNet).

Fig. 2: Gradual training approximation
(GTA).

necessary. Especially, FP16 is drawing attention since it im-
proves computation throughput, mitigates memory bandwidth,
and reduces power consumption [15]–[17]. However, there is
a concern that the FP16 format may not have representation
capability enough for modern DNN training. Fig. 1 shows an
example of the training curves for the image classification of
ImageNet. FB stands for fraction bit-width, where FB = 23 in
FP32 format and 10 in FP16. Here, the exponent bit-width is
fixed to 8 to sustain the dynamic range, and thus, the training
quality entirely depends on FB. We observe that 10-bit FB has a
significant gap compared with FP32, and 14-bit FB is necessary
to reach the same accuracy with the FP32 case. For certain
public datasets, state-of-the-art researches are dedicated to
achieving training with FP16 while sustaining the quality. Such
sophisticated techniques like mixed-precision training [15],
[16], chunk-based accumulation [17], or stochastic rounding
[17] enable those datasets to be trained with FP16. However,
it is not sure whether FP16 can always guarantee the training
quality comparable with FP32 one for a new real-world dataset.
Therefore, to pursue both the quality and efficiency in modern
DNN training, we consider that a hardware engine possessing
FB adjustability, or configurable FB, could be a solution.

This work proposes an adaptive bit-width and voltage scaling
(ABVS) scheme to achieve energy minimization for DNN train-
ing. The key idea is to adopt less FB in the early training stage
while the FB is gradually increased depending on the present
training quality. Since the computation with less FB reduces the
complexity of the hardware engine and shortens the latency, the
extra timing margin can be used for voltage lowering. Note that,
in this work, at a training stage (epoch), all the computations in
both forward and back propagation share the same data format
with one type of FB to guarantee that scaled voltage applies
to whole circuit once the FB is determined. Several datasets
across different applications, such as CIFAR-10, CIFAR-100,
and ImageNet in image classification, and Pascal VOC in object
detection, are used for validation. The contributions are:

• ABVS can achieve comparable training quality (0%-0.5%
loss) against FP32 for various datasets in size. We also
provide a guideline to tackle with a new unknown dataset.

• ABVS can achieve energy reduction by 9% to 37% than

978-1-7281-9201-7/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
C

A
S)

 |
97

8-
1-

72
81

-9
20

1-
7/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
S5

15
56

.2
02

1.
94

01
55

6

Authorized licensed use limited to: Kyoto University. Downloaded on January 21,2022 at 06:40:15 UTC from IEEE Xplore. Restrictions apply.

training even with “least sufficient FB” without extra
iterations (epochs). Compared to common FP32, ImageNet
and Pascal VOC enjoy 57%-63% energy reduction.

II. RELATED WORK

Table I briefly categorizes the existing works. All the works
in the list already involve BWS or approximate arithmetic unit.
The AC techniques are applied to only forward propagation in
[5], [11]–[14], and the back propagation still relies on FP32 to
compensate the error induced in the forward propagation, or
[5], [11] execute additional training stages. Besides, the main
purpose of [5], [11]–[14] is to perform inference efficiently
exploiting approximations for forward computation. Efficiency
improvement of back propagation in training is beyond their
interests. On the other hand, [8]–[10], [15]–[17] address effi-
ciency improvement including back propagation. Reference [8]
applies BWS and approximate multipliers hybridly to training,
while [15], [16] adopt training with FP16 and [17] even
conducts training with FP8 partially. To enable training with
FP16 or even less, sophisticated efforts are required and [15],
[16] even demand computations in FP32 partially.

Researches [9], [10] propose a gradual training approx-
imation (GTA) scheme in Fig. 2, inspiring us to develop
ABVS. They claim that the early stage in training accepts
rough approximation while the late stage requires accurate
computing. However, their works focus on the approximation
for multipliers only and the accumulators remain FP32 accurate
type, where FP32 accumulators would hinder VS efficiency.
Besides, large-scale datasets and sophisticated applications are
not included in their validations.

III. PROPOSED ABVS SCHEME FOR DNN TRAINING

The proposed ABVS scheme adopts less FB in the early
training stage while the FB is gradually increased depending
on the present training quality. The proposed scheme supposes
a configurable FP hardware unit whose FB can be dynamically
changed. Furthermore, the configurable FP unit operates at the
minimum voltage at which the FP multiply-accumulate (MAC)
result is correct for each FB configuration. In this case, the
computation with small FB saves power thanks to fewer signal
transitions in the FP unit and lower operating voltage. For
minimizing training energy, we should keep the FB as small as
possible throughout the training process.

Fig. 3 illustrates the procedure of the proposed ABVS
scheme. We start the training with a pre-determined smallest
FB denoted as FBmin, and set the initial Acheck to 0. For
every epoch, the training engine would provide a metric that

TABLE I: Existing works applying AC techniques. FP/BP: forward/back propagation.
Ref. [5], [11], [14] [12], [13] [8]–[10], [15]–[17] ABVS

FP-AC X X X X
BP-AC X X

VS X X

Fig. 3: ABVS flow. Training ends when i reaches T , but this process is omitted here.

Common Layers 1

Conv3 128 x 3 Maxp Drop

Conv3 256 x 3 Maxp Drop

Conv3 512 x 3 Drop

,

,

,

,

,

,

,

,Conv3 16 Maxp

Conv3 32 Maxp,

Conv3 64 Maxp,

Conv3 128 Maxp,

Conv3 256 Maxp,

Conv3 512 Maxp,

Conv3 1024 Maxp,

Common Layers 2

,

,

,

,

,

,

Conv1 10 Avgp, Softmax,,Common Layers 1

Conv1 100 Avgp, Softmax,,Common Layers 1

Avgp Conv1 1000, Softmax,

Conv3 1024 , Conv1 125 , detection

,Common Layers 2

,Common Layers 2

CIFAR-10 :

(#: 50000)

CIFAR-100 :

(#: 50000)

ImageNet :

(#: 1281176)

Pascal VOC :

(#: 16551)

ConvN : Convolutional with NxN kernels

Maxp : Max-pooling with 2x2 kernels

Drop : Drop-out (probability = 0.5)
Avgp : Average-pooling

#: Number of training dataset

Tiny YOLO

Darknet Reference

Fig. 4: DNN structures used in our experiments.

we can use for estimating the training quality, e.g., classification
accuracy for validation dataset, and we assign it to Acur. Then,
at a certain epoch assigned for checking quality improvement,
we compare the latest Acur with Acheck. If the difference is
smaller than ε, we increase the FB by 1 for the next epoch, until
reaching the pre-determined maximum FB, denoted as FBmax.
f(i) is a function that determines the schedule of quality
checking and gives the checking interval, where i represents
the current epoch number. In a simple case, f(i) is constant.
T is the total epoch count given to training. This scheme is
independent of the training architecture while the amount of
VS depends on the architectures and circuits.

When there is preliminary information on the training
dataset, the least sufficient FB might be known, where “least
sufficient FB” is the FB that can achieve the same quality as
FP32. In this case, we can assign it to FBmax. For a new
dataset, on the other hand, the least sufficient FB is unknown.
A guideline for this case is to enlarge the range between FBmin

and FBmax, e.g., FBmin = 6 and FBmax = 23. As for the
checking schedule, when FBmax − FBmin is large, frequent
checking is necessary to make sure FBmax is reachable during
the training. On the other hand, when FBmax − FBmin

is small, sparse checking is desirable since sparse checking
prevents unnecessary FB elevation originating from the noisy
metric trend. We consider this tendency and suggest

f(i) = T/(α× (FBmax − FBmin)), (1)

where α is a tuning coefficient. The appropriate α value is
experimentally determined in Section IV-B.

IV. EXPERIMENTAL RESULTS

A. Evaluation strategy and experimental setup

We evaluate the energy reduction in two steps. The first step
checks whether FB scaling keeps the training quality and how
much FB can be reduced. The second step estimates the energy
reduction supposing a FB configurable FP unit.

For experiments, we apply the proposed ABVS scheme
to Darknet [18], one of the most popular frameworks for
image classification and object detection. Darknet supports
GPU acceleration and is easy to apply in-depth modifications
since it is fully developed by C and CUDA based program-
ming. Therefore, we can easily implement the BWS rounding
algorithm in it and enjoy the GPU acceleration. We emulate
adaptive FB scaling such that the rounding is applied after each
basic floating-point computation, where this implementation is
leveraged by QPyTorch in [19].

Authorized licensed use limited to: Kyoto University. Downloaded on January 21,2022 at 06:40:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 4 shows the DNN structures and the datasets used in
our experiments. CIFAR-10/100 [20], and ImageNet [4] are
for image classification, and Pascal VOC [21] is for object
detection. The DNN structure used in our experiments for
CIFAR-10/100 is the one recommended by [18]. The DNN
structures we selected for ImageNet and Pascal VOC are named
Darknet reference [22] and Tiny YOLO [22]. Tiny YOLO is
constructed based on Darknet reference, where most of the
composition of the layers are identical, while only the last
layers are replaced with detector. The developer of Tiny YOLO
adopts transfer learning to improve the training quality of
YOLO. Therefore, we initialize the weights with those pre-
trained for ImageNet.

All training cases are performed with 50 epochs in total.
Learning rate decay is applied with a poly-nominal formula,
rinit×(1−i/50)P , where rinit is the initial learning rate and i is
the current epoch. P is set to 2 for image classification and 1 for
object detection. The learning rate becomes 0 once it reaches
i = 50. Therefore, with this setup of the learning rate, training
beyond 50 epochs is meaningless. For applying the ABVS
scheme, we use “accuracy” as the metric of training quality
and ε = 0.005 for image classification, and we use “mAP” and
ε = 0.01 for object detection. In most experiments, FBmax is
set to the associated least sufficient FB. With this setup, we can
demonstrate that the ABVS scheme reduces computation and
energy further even compared with the baseline training with
the least sufficient FB. For reproducing the situation that prior
information is available for each dataset, we trained the NNs
with various FBs as preliminary experiments. The obtained FB
information is used to determine FBmin and FBmax for the
experiments in the following sections.

B. FB reduction by ABVS

CIFAR-10 and CIFAR-100: Figs. 5 and 6 show the results
of the proposed ABVS scheme for CIFAR-10/100, respectively,
with two checking schedules described above the figures. Here,
FBmax is set to 9 for CIFAR-10 and 10 for CIFAR-100, and
the FBmin is 6 in both cases. The FB varies along the training
stage, which corresponds to the right Y-axis. We can see that
the duration where FB is lower than 9 in Fig. 5b is longer
than in Fig. 5a. Then, the average FB across the entire training
process in Fig. 5b is 7.66 and smaller than Fig. 5a despite
the second schedule decreases the testing accuracy by 0.3%.
Similar observations are found in the results of CIFAR-100
of Fig. 6. Smaller average FB involves a small penalty of the
accuracy, but the FB drop is not significant. Even while the
training in Fig. 6b ends with 9 bits, the accuracy difference
is only 0.4%. The energy reduction obtained from a smaller
average FB will be discussed in the next section.

Next, consider the situation that the dataset is new and
unknown. We carried out the training with ABVS using
FBmin = 6 and FBmax = 23. Fig. 7 shows the results for
CIFAR-10/100 with different checking schedules. You can see
that checking for every two or three epochs works well since
the training quality is the same or almost comparable as FP32
one while the FB is smaller. These results indicate that α is

5

6

7

8

9

10

40%

60%

80%

100%

0 10 20 30 40 50

F
B

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

f(i) = 3
(AVG FB: 7.98)

FB ABVS FB: 9

Accuracy:

ABVS: 91.5%

FB-9: 91.5%

(a)

5

6

7

8

9

10

40%

60%

80%

100%

0 10 20 30 40 50

F
B

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

If i > 30, f(i) = 2; else f(i) = 4
(AVG FB: 7.66)

FB ABVS FB: 9

Accuracy:

ABVS: 91.2%

FB-9: 91.5%

(b)

Fig. 5: ABVS results w/ two checking schedules (CIFAR-10).

5

6

7

8

9

10

0%

20%

40%

60%

80%

0 10 20 30 40 50

F
B

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

If i > 30, f(i) = 2; else f(i) = 3
(AVG FB: 7.72)

FB ABVS FB: 10

Accuracy:

ABVS: 74.8%

FB-10: 74.8%

(a)

5

6

7

8

9

10

0%

20%

40%

60%

80%

0 10 20 30 40 50

F
B

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

If i > 30, f(i) = 2; else f(i) = 4
(AVG FB: 7.18)

FB ABVS FB: 10

Accuracy:

ABVS: 74.4%

FB-10: 74.8%

(b)

Fig. 6: ABVS results w/ two checking schedules (CIFAR-100).

5

8

11

14

17

20

23

40%

60%

80%

100%

0 10 20 30 40 50

Epochs

(AVG FB: 15.68)

5

7

9

11

13

15

17

40%

60%

80%

100%

0 10 20 30 40 50

Epochs

(AVG FB: 11.20)

5

6

7

8

9

10

11

40%

60%

80%

100%

0 10 20 30 40 50

Epochs

(AVG FB: 8.12)

CIFAR-10

Accuracy: 91.8%

5

8

11

14

17

20

23

0%

20%

40%

60%

80%

0 10 20 30 40 50

Epochs

(AVG FB: 15.04)

5

7

9

11

13

0%

20%

40%

60%

80%

0 10 20 30 40 50

Epochs

(AVG FB: 9.30)

5

7

9

0%

20%

40%

60%

80%

0 10 20 30 40 50

Epochs

(AVG FB: 7.68)

CIFAR-10

Accuracy: 91.8%

CIFAR-10

Accuracy: 91.4%

CIFAR-100

Accuracy: 74.0%

CIFAR-100

Accuracy: 74.4%

CIFAR-100

Accuracy: 73.7%

ABVS Accuracy (1st Y-axis) FB (2nd Y-axis)

f(i) = 1 f(i) = 2 f(i) = 3

f(i) = 1 f(i) = 2 f(i) = 3

Fig. 7: Applying ABVS flow (FBmax = 23, CIFAR-10/100).

between 1 and 2. We would suggest such f(i) in Eq. (1) to
apply ABVS for the training with a new dataset.

ImageNet: Next, we evaluate ABVS on ImageNet [4].
Fig. 8a shows the results, where FBmin and FBmax are set to
11 and 14, respectively. The training curve of ABVS traces that
of FB = 14, and 0.5% accuracy loss is considered acceptable.

Pascal VOC: Figs. 8b demonstrates the results of Pascal
VOC, where FBmin and FBmax are 10 and 12, respectively.
The mAP degradation of 0.5% compared with FB = 12 is still
considered acceptable. The above results show the applicability
of the ABVS scheme even for a large-scale dataset and more
sophisticated networks. Note that, ImageNet and Pascal VOC
cases all indicate training with FP16 (FB: 10) is not really
convincing to meet FP32 quality. On the other hand, though
detailed parameters tuning are required, the ABVS scheme is
not confined by dataset and is applied to any new dataset.

Discussion: Let us discuss the reason why ABVS achieves
a similar training quality with fewer FB. K. You, et al. point out
that a large learning rate in the early training stage perturbates
the training, which prevents the network from memorizing
noisy data and results in better generality [23]. On the other
hand, BWS injects noise originating from the FB truncation
error, especially in the earlier stage with smaller FB. Mean-
while, the large learning rate at the beginning may tolerate

Authorized licensed use limited to: Kyoto University. Downloaded on January 21,2022 at 06:40:15 UTC from IEEE Xplore. Restrictions apply.

10

11

12

13

14

15

0%

20%

40%

60%

0 10 20 30 40 50

F
B

T
e

s
ti

n
g

 A
c

c
u

ra
c

y

Epochs

f(i) = 3
(AVG FB: 12.62)

FB ABVS FB: 14

Accuracy:

ABVS: 57.5%

FB-14: 58.0%

(a)

7

8

9

10

11

12

13

0%

20%

40%

60%

0 10 20 30 40 50

F
B

m
A

P

Epochs

If i > 30, f(i) = 2; else f(i) = 4
(AVG FB: 10.56)

FB ABVS FB: 12

Max mAP:

ABVS: 55.7%

FB-12: 56.2%

(b)

Fig. 8: ABVS results for (a) ImageNet and (b) Pascal VOC.

Mode (FB: 7)

Mode (FB: 8)

Mode (FB: 9)

Mode (FB: 10)

�

FB-mode Selector

� Increase timing

margin for VS

(a)

0.80

0.85

0.90

0.95

1.00

1.05

6 8 10 12 14 16 18 20 22

M
A

V
 (v

)

FB-mode

(b)

Fig. 9: (a) Assumed FP-MAC with FB configurability. (b) MAV results for each FP-MAC
with different FBs.

larger noise, which provides high compatibility with ABVS.

C. Energy reduction by ABVS

This section evaluates the power reduction thanks to ABVS.
We suppose, in DNN training, the majority of power consump-
tion originates from MAC computation, especially in convolu-
tion layers. Thus, we prepare a hardware unit with configurable
FB, which is shown in Fig. 9a. Note that developing a more
sophisticated FB-configurable unit is our future work. The input
of “FB mode selector” determines the FB for MAC operation.
We implemented it with verilog and synthesized it with Nangate
45nm library at 1.0 GHz by Synopsys Design Compiler.

An important design consideration is that the FP-MAC
should be able to operate at the lowest voltage for each
FB configuration. For this purpose, the FP-MAC consists
of separate circuits with different FBs that are synthesized
individually at the lowest voltage achieving the same operating
frequency. Fig. 9b shows the architecture of each FP-MAC,
where N = FB + 9 since sign and exponent bits are also
included. To include optimized floating-point multiplier and
adder modules, we used Synopsys DesignWare IP in synthesis.
The minimum acceptable voltage (MAV) for each N -bit FP-
MAC is defined as the voltage at which the circuit can be
synthesized with 0 worst negative slack (WNS). The MAV
results are shown in Fig. 9b within the range 0.85V-1.02V.

For power estimation, we prepared a test input pattern
representing convolution computation. The power of each N -bit
FP-MAC is reported by Synopsys PrimeTime using the logic
simulation result. Then, we estimate the training energy as

Energy = Tepoch × (
∑
i

(P (i) ×N
(i)
epoch)), (2)

where Tepoch is the computation duration for one epoch, P (i)

is the power of i-bit FP-MAC and the number of epochs in
which i-bit FP-MAC is applied (denoted as N (i)

epoch). Here, we
take Fig. 5b as an example to explain energy improvement
calculation. Tepoch is assumed to be identical for all the epochs
because of the same clock frequency. We count the number of
epochs for each FB-mode (13, 8, 12, 17 epochs for 6, 7, 8, 9
FBs, respectively) and multiply them with the corresponding

86% 82%
63% 70%

87% 91%93% 90%
78% 81%

94% 92%

A B A B

CIFAR-10 CIFAR-100 Tiny YOLO +
Pascal VOC

ImageNet

E
n

e
rg

y

C
o

n
s

u
m

p
ti

o
n ABVS BWS

(a)

73% 70% 63% 70%

37% 43%

83% 81% 78% 81%
46% 50%

A B A B

CIFAR-10 CIFAR-100 Tiny YOLO +
Pascal VOC

ImageNet

E
n

e
rg

y

C
o

n
s

u
m

p
ti

o
n

ABVS BWS FB: 10 FB: 23

(b)

61%
38%

75%
58%

31%

69%

f(i) = 1 f(i) = 2 f(i) = 3 f(i) = 1 f(i) = 2 f(i) = 3

CIFAR-10 CIFAR-100

E
n

e
rg

y

C
o

n
s

u
m

p
ti

o
n

FB: 10 FB: 23

(c)

Fig. 10: Energy of ABVS training (a) normalized by that of least sufficient FB (b)
normalized by that of FB: 10 or FB: 23 (c) normalized by that of FB: 10 or FB: 23
for CIFAR-10/CIFAR-100 with unknown dataset treatment.

power values obtained by PrimeTime. Then, based on Eq. (2),
we obtain energy. Finally, we calculate the improvement by
comparing to the energy for FB: 9 (FBmax of CIFAR-10 and
the least sufficient FB) times 50 (=13+8+12+17) epochs.

Fig. 10a shows the energy reductions, which correspond to
Figs. 5, 6, 8a, and 8b. The values in Fig. 10a are normalized by
the energy consumed by the training with the least sufficient
FB. The results show that even comparing with the training
with the least sufficient FB, the proposed ABVS can achieve
9% to 37% energy reduction.

Let us assume another case that only either of FP16 and
FP32 is choosable. In this case, the proposed ABVS scheme
provides larger values of energy saving. Fig. 10b shows the
energy reduction, where the energies of CIFAR-10/100 are
normalized by those of FB = 10 (the same precision as FP16),
and the energies of ImageNet and YOLO are normalized by
those of FP32. The ABVS achieves larger energy reduction.
Especially for ImageNet and YOLO, 57%-63% energy reduc-
tion is achieved. On the other hand, if the VS is not applied,
i.e., only BWS is applied, the energy reduction becomes less, as
shown in Fig. 10a. There is a 15% difference in CIFAR-100.
Thus, simultaneous FB and VS in the proposed scheme are
effective. Finally, the energy reduction for CIFAR-10/100 with
unknown dataset treatment are performed in Fig. 10c, where
the ABVS can reduce energy by 25%-69%.

V. CONCLUSION

In this paper, we proposed the ABVS scheme for DNN
training to minimize energy consumption. With a hardware unit
with FB configurability, we can concurrently perform bit-width
and voltage scaling during training, which enlarges energy
saving. The proposed ABVS is proved to apply to various
datasets across different applications with negligible quality
loss (less than 0.5%) while saving up to 63% energy comparing
to FP16 or FP32 cases. Also, up to 37% energy is reduced even
comparing to the training with the least sufficient FB.

Authorized licensed use limited to: Kyoto University. Downloaded on January 21,2022 at 06:40:15 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[2] S. Siddiqui, G. Rasool, R. P. Ramachandran, and N. C. Bouaynaya, “Us-
ing deep speech recognition to evaluate speech enhancement methods,” in
2020 International Joint Conference on Neural Networks (IJCNN), 2020,
pp. 1–7.

[3] B. Zhang, A. Davoodi, and Y. H. Hu, “Exploring energy and accuracy
tradeoff in structure simplification of trained deep neural networks,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8,
no. 4, pp. 836–848, 2018.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
F. Li, “Imagenet large scale visual recognition challenge,” CoRR, vol.
abs/1409.0575, 2014. [Online]. Available: http://arxiv.org/abs/1409.0575

[5] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
in 2014 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2014, pp. 27–32.

[6] M. Imani, D. Peroni, and T. Rosing, “Cfpu: Configurable float-
ing point multiplier for energy-efficient computing,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, pp. 1–6.

[7] M. Imani, R. Garcia, S. Gupta, and T. Rosing, “Rmac: Runtime
configurable floating point multiplier for approximate computing,”
in Proceedings of the International Symposium on Low Power
Electronics and Design, ser. ISLPED ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3218603.3218621

[8] T. Cheng, Y. Masuda, J. Chen, J. Yu, and M. Hashimoto,
“Logarithm-approximate floating-point multiplier is applica-
ble to power-efficient neural network training,” Integra-
tion, vol. 74, pp. 19–31, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167926019305826

[9] M. Imani, M. Masich, D. Peroni, P. Wang, and T. Rosing, “Canna: Neural
network acceleration using configurable approximation on gpgpu,” in
2018 23rd Asia and South Pacific Design Automation Conference (ASP-
DAC), 2018, pp. 682–689.

[10] M. Imani, P. Wang, and T. Rosing, “Deep neural network acceleration
framework under hardware uncertainty,” in 2018 19th International
Symposium on Quality Electronic Design (ISQED), 2018, pp. 389–394.

[11] J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware digital feedfor-
ward neural network platform with backpropagation driven approximate
synapses,” in 2015 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), 2015, pp. 85–90.

[12] S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze, and V. Sathe,
“Matic: Learning around errors for efficient low-voltage neural network
accelerators,” in 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), 2018, pp. 1–6.

[13] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Dvafs:
Trading computational accuracy for energy through dynamic-voltage-
accuracy-frequency-scaling,” in Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2017, 2017, pp. 488–493.

[14] Y. Mishchenko, Y. Goren, M. Sun, C. Beauchene, S. Matsoukas, O. Ry-
bakov, and S. N. P. Vitaladevuni, “Low-bit quantization and quantization-
aware training for small-footprint keyword spotting,” in 2019 18th
IEEE International Conference On Machine Learning And Applications
(ICMLA), 2019, pp. 706–711.

[15] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos, E. Elsen, D. Garcı́a,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu,
“Mixed precision training,” CoRR, vol. abs/1710.03740, 2017. [Online].
Available: http://arxiv.org/abs/1710.03740

[16] D. D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen,
J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu,
M. Smelyanskiy, B. Kaul, and P. Dubey, “A study of BFLOAT16 for
deep learning training,” CoRR, vol. abs/1905.12322, 2019. [Online].
Available: http://arxiv.org/abs/1905.12322

[17] N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point
numbers,” CoRR, vol. abs/1812.08011, 2018. [Online]. Available:
http://arxiv.org/abs/1812.08011

[18] J. Redmon, “Darknet: Open source neural networks in c,” 2013-2016.
[Online]. Available: http://pjreddie.com/darknet

[19] T. Zhang, Z. Lin, G. Yang, and C. D. Sa, “Qpytorch: A low-precision
arithmetic simulation framework,” CoRR, vol. abs/1910.04540, 2019.
[Online]. Available: http://arxiv.org/abs/1910.04540

[20] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 2012.

[21] M. Everingham, S. M. Eslami, L. Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A
retrospective,” Int. J. Comput. Vision, vol. 111, no. 1, p. 98–136, Jan.
2015. [Online]. Available: https://doi.org/10.1007/s11263-014-0733-5

[22] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” CoRR, vol. abs/1612.08242, 2016. [Online]. Available:
http://arxiv.org/abs/1612.08242

[23] K. You, M. Long, M. I. Jordan, and J. Wang, “Learning
stages: Phenomenon, root cause, mechanism hypothesis, and
implications,” CoRR, vol. abs/1908.01878, 2019. [Online]. Available:
http://arxiv.org/abs/1908.01878

Authorized licensed use limited to: Kyoto University. Downloaded on January 21,2022 at 06:40:15 UTC from IEEE Xplore. Restrictions apply.

