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Abstract— Configuration random access memory (CRAM),
which consists of the static random access memory susceptible to
single event upset (SEU), configures all of the user logic in field-
programmable gate array (FPGA). In this article, we evaluate the
impact of SEU in CRAM on the image-based lane tracking for
autonomous driving via neutron irradiation experiments. In the
experiments, the cross section of bit upsets and its corresponding
single event function interrupt (SEFI) in the logic function
of image processing are measured. By using a virtual driving
environment, we observe whether a bit upset finally induces a
severe SEFI of the system failure. The system failure is observed
by an abnormal behavior on the virtual autonomous car driving
by lane tracking. Experimental results show the bit upset has
a maximum probability of 23% to induce SEFI and finally
8% of the bit upsets lead to failures in lane tracking. All the
SEFIs observed in irradiation experiments are reproduced in
fault injections with the same bit address. The cross section of
SEFI was estimated in fault injections with reasonable precision.
Moreover, we evaluate the improvement of system reliability by
the error correction against soft errors. Our evaluation result
shows that the error correction within the period of two-frame
processing time could reduce the 74% SEFI cross section, but
it has little benefit for system failure cross section if an error
happens during the period of the image processing.

Index Terms— Configuration random access memory (CRAM),
erroneous behaviors, field-programmable gate array (FPGA),
single event function interrupt (SEFI).

I. INTRODUCTION

SOFT errors induced by neutrons, which threaten the reli-
ability of terrestrial semiconductor devices, is attracting

attention in the automobile industry. In 2011, ISO26262 [1]
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first included the test of the random failure, which mainly
originates from soft errors, as a part of the quality examina-
tion of hardware and software used in automobiles. Besides
the traditional sensors and controllers, in the coming era
of autonomous driving, it is no doubt that the reliability
of devices for image processing will also become a major
concern. Due to its ability of parallel processing, field-
programmable gate array (FPGA) is one of the most promising
devices to achieve high-performance image processing. There-
fore, the evaluation of soft errors in FPGA is important for
autonomous driving.

At present, the mainstream of commercial FPGAs utilizes
static random access memory (SRAM) as configuration ran-
dom access memory (CRAM) to implement user logic. Once
a bit upset in a critical part of CRAM, the user logic will
be interrupted, i.e., an occurrence of a single event function
interrupt (SEFI), and not restored until the next reconfig-
uration. Meanwhile, similar to other digital circuits, FPGA
also contains block RAMs (BRAMs), flip flops (FFs), and
combination logic gates. Therefore, for FPGAs, the issue of
single-event upsets (SEUs) is a major concern. With the eval-
uation on bit upset in FPGAs using irradiation experiments,
the vendors of FPGAs, e.g., Xilinx [2], usually provide the
cross section of the bit upsets in RAM cells. The error rate in
the memory elements was also evaluated using the readback
method or simple mathematical computations [3], [4]. SEFI of
application on microprocessors was evaluated in [4], focusing
on the software codes of CoreMark and advanced encryption
standard (AES). The other characterizations of the bit upsets,
such as the energetic dependence [5], [6], were also measured
by researchers for their specific aims.

As the evaluation on a higher level of error, i.e., SEFI, lots
of work has been conducted for some general applications
such as processor and matrix multiplication including, but
not limited to [7]–[11]. On the other hand, as more highly
application-specific designs for the autonomous driving system
implemented in FPGA, some FPGA-based applications of
image processing, which is highly related to autonomous
driving applications, were evaluated in the previous work
[12]–[18]. These evaluated applications could be categorized
into two types. The first type includes a convolutional neural
network (CNN) [12]–[16]. The reliability of the final clas-
sification result was mainly focused in the evaluation with
irradiation experiments [13]–[16] and the fault injection [12].
In these works, the probability of SEFI occurrence in each
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layer [14], the difference of reliability between standard,
quantized, and triple modular redundancy (TMR) CNNs [16],
and the influence of data type used in calculation [15] is
also discussed. Meanwhile, image filters, such as the Median
filter and the Gaussian filter, are the second type of evaluation
target [17], [18], mainly evaluated using fault injection.

As stated above, the previous work mainly evaluated bit
upset-induced SEFI within the layer of image processing in
autonomous driving. However, the SEFI in its upper layer
of the whole autonomous driving system, i.e., SEFI of the
malfunction of autonomous driving, is also worth to be inves-
tigated. In this work, we evaluated an autonomous driving
application based on lane tracking, which includes the least
necessary modules of the image filters used in canny edge
detection and the calculation of lane position. Combining with
the virtual driving environment of Gazebo, we observed the
severity of bit upset-induced SEFIs in both irradiation experi-
ment and fault injection. We further classify the SEFIs accord-
ing to their severity into the minor SEFI limited to the layer
of image processing, i.e., the function of lane tracking still
works well with the errors, and the severe SEFI in the upper
layer of autonomous driving, i.e., the malfunction of lane
tracking. Here, we define such severe SEFI as system failure
throughout this article. The system failure is observed by the
abnormal behavior on the virtual autonomous car driving by
lane tracking. This work aims to advance the knowledge about
how probable and by what mechanism the bit upset in CRAM
would influence the reliability of autonomous driving applica-
tions based on image processing implemented in FPGA.

This article is organized as below. The design of the image-
based lane tracking system and the error monitoring method
are described in Section II. Next, Section III explains the set-
up for irradiation experiments including the implementation of
the lane tracking in a virtual driving environment during the
experiment. In the same section, the experimental result of
cross section of bit upsets, SEFIs, and system failures are also
discussed. Section IV evaluates the cross section of SEFI and
system failure and the improvement on the reliability of the
system with the error correction using fault injection. Finally,
Section V concludes this article.

II. DESIGN UNDER TEST AND ITS ERROR MONITORING

In this article, we evaluate the impact of SEU in FPGA
CRAM on image-based lane tracking for autonomous driving.
To focus on the image processing, the design under test
(DUT) implemented in FPGA includes only lane tracking that
processes the input image to obtain the center coordinate of
the edge lane. Host PC and the peripheral circuits/modules
deal with the rest tasks of steering the car driving according
to the center coordinate of the edge lane, generating the virtual
image for lane tracing, and the other functions related to data
transferring. In this section, we introduce the DUT and the
modules for monitoring errors in DUT. Both the DUT and
monitoring modules are implemented by programmable logic
(PL) in FPGA.

A. DUT of Lane Tracking Based on Canny Edge Detection

To achieve the function of lane tracking for autonomous
driving, the DUT mainly calculates the coordinate of the lane
edge in the input image. The general information on this

Fig. 1. Image processing flow in our DUT. The lane edge coordinate/position
is calculated based on canny edge detection. Although the full image is
processed, only the pixels on the horizontal line are utilized to calculate lane
edge coordinate.

Fig. 2. Three levels of errors: bit upset, SEFI, and system failure. The
operation of lane tracking system could be observed in the virtual environment.
Therefore we added an SEFI of upper level, namely system failure.

design is given here, while the details are described in our
previous work [19].

Fig. 1 shows the processing flow of the image. For edge
detection, the widely-used algorithm of canny edge detection
is used [20]. As shown in Fig. 1, at the red horizontal
line, we searched the pixels being judged as the edge lane
and calculated their center coordinate. After calculating the
coordinate of the lane center in image processing, the action
decision will be made to keep the distance between the lane
edge position and the current car body position within a certain
range. An action of steering left or right will be taken to track
the lane edge properly if the distance is out of the given range.

The DUT is divided into three modules in logic design
and is synthesized by high level synthesis (HLS) of Xilinx
Vivado development suite without any radiation hardening
option since our target is a terrestrial application. To collect
more error events, three DUTs are implemented with 3×
CRAM bits in the FPGA. The DUTs are implemented in the
PL of Xilinx XC7Z020-1CLG400C of Zynq 7000 series all
programmable system on chip (APSoC) in 28-nm technology
node.

B. Monitoring Errors in DUT

During irradiation experiment and fault injection in the DUT
of the lane tracking system, three levels of errors are defined:
bit upset, SEFI and system failure as shown in Fig. 2. The
bit upset includes single bit upset (SBU), multiple cells upset
(MCU), and multiple bit upset (MBU) in CRAM. Here, MCU
refers to SBUs in several words, while MBU refers to several
bits upset inside the same word due to a single event. On
the other hand, we define SEFIs as the damage in logical
function, e.g., repeated mismatch of outputs from modules
compared to the golden one due to the bit upsets. Finally,
if such repeated mismatches cause the abnormal operation
of being unable to track the lane, a severe SEFI of system
failure is determined. We could observe the operation of the
lane tracking system in the virtual environment, which will be
introduced in Section III. Both system failures and other SEFIs
(minor output mismatching) could be also observed from
the mismatched output from the golden one. The difference
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TABLE I

RESOURCE UTILIZATION OF THE DUT1. THE DUT2 AND DUT3
USE ONLY ONE AND FOUR MORE LUT(S), RESPECTIVELY,

COMPARED TO THE DUT1

Fig. 3. Floorplan in Zynq 7000 Z7020 used in both irradiation experiment
and fault injection. The DUTs are placed inside the square blocks to calculate
address of bits of CRAM used in DUTs.

is whether the mismatches are severe enough to cause the
abnormal operation of being unable to track the lane or not.

To monitor the bit upset in CRAM, soft error mitigation
(SEM) intellectual property (IP) [21] is utilized and imple-
mented independently of the DUT. During the DUT processing
of the image, SEM IP will work continuously to check each
32-bit word in CRAM with cyclic redundancy check (CRC)
and is capable of single-error correction and double error
detection (SECDED). In our design, the SEM IP is provided
with a 100 MHz clock so that it can scan the whole CRAM
of 25.7 Mbit within 8.0 ms. If bit upset is detected, the
SEM IP will report the address of the error bit. On the other
hand, the range of bit address of CRAM utilized in the DUT
could be calculated by the tool of automatic configuration
memory error-injection (ACME) [10]. Therefore, we can find
the relation between bit upset and SEFI by analyzing whether
the address of the upset falls within the range of the bit
addresses of the module suffering the SEFI or not.

To calculate the range of bit addresses used in DUT, the
DUTs are placed within a square block in the floorplan. Fig. 3
shows our placement including the DUTs in the floorplan used
in both irradiation experiment and fault injection. Although the
placement in each block is different, the logic design of all the
DUTs is identical. To test all the DUTs fairly in irradiation
experiments, we adjust the block size to keep the percentage of
utilization of CRAM 70% in these three DUTs. The resource
utilization of DUT1 is shown in Table I, while the DUT2 and
DUT3 only used one and four more look up table(s) (LUT(s)),
respectively, compared to the DUT1. In the area beyond the
block of DUTs, other user logic for SEFI monitoring modules
and receiving images from the host PC described below are
placed by the synthesis tool automatically. It should be noticed
that placing the whole DUT at such a limited block in a high

Fig. 4. Monitor modules for DUTs. We monitor status signals and data
buses, respectively, to distinguish an unintended shutdown with calculation
error in the module during SEFI. All modules are triplicated to prevent itself
suffering from soft errors.

density could increase the occurrence probability of MCU
within the DUT. We will touch on this issue in Section IV-B.

For observing SEFI, we design the monitoring modules to
monitor the input and output signals between the modules
inside the DUTs. The logic designs of each DUT consists
of grayscaling (gray.), canny edge detection (canny.), and
lane edge coordinate calculating (cal.). The image data are
transmitted from the upstream module to the downstream
module with the protocol of Advanced eXtensible Interface
(AXI) Stream, which mainly contains status signal and data
bus. By monitoring the status signal and data bus, respectively,
as shown in Fig. 4, we could distinguish between the stopping
working and incorrect calculation of the modules during SEFI.
We monitor the status signals of “ready” and “last” in the AXI
Stream interface standing for ready to receive and finishing
transmission of image data. If either ready or finish signal
is not observed at all during the processing/transmission of a
single image data, we can confirm that the related module in
DUT does not finish the transmission of the image normally
and stays in a hang. On the other hand, we monitor the data
bus of each module with comparison to their counterpart in
the other DUTs. If the comparison result shows different data
in one DUT repeatedly, we can confirm that the module in
DUT is suffering SEFI of outputting data incorrectly. The
feedback of monitoring modules is encoded such that the
location of SEFI could be identified at the module level.
All the monitoring modules are designed with triple module
redundancy (TMR) to prevent the failure inside the monitoring
module itself.

As for observing system failures, the virtual autonomous
driving based on the image processing in DUT is performed
as will be described in Section III. We discriminate a system
failure if the car failed to run along the lane edge line.

III. IRRADIATION EXPERIMENT

A. Experiment Set-Up

We utilize an open-source robot simulator Gazebo [22]
running on a host PC with Linux OS to build the virtual driving
environment including the function of providing a real-time
camera image, receiving the decision of action, and moving
the car according to the decision. Fig. 5 shows an overview
of the virtual driving environment built in Gazebo. The map
for car driving is referred to the FPGA design competition
of autonomous driving held at the international conference on
field-programmable technology (ICFPT) 2019. We design a
simple two-wheel robot car with a virtual camera on its left
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Fig. 5. Virtual driving environment running on host PC with linux OS. The
virtual car has a simple two-wheel car with a virtual camera on its left side
for supervising lane edge.

Fig. 6. Test flow of each run.

side for supervising lane edge. The image from the virtual
camera has a resolution of 640 × 480.

The test flow is shown as Fig. 6. At the beginning of an
irradiation test, all the CRAM bits are rewritten to ensure
that DUTs and peripheral logic are implemented correctly.
Simultaneously, the virtual driving environment will also be
reset including moving the car to the start point and forcing
it to wait until the first steering action decision based on
the coordinate of the center of the lane edge calculated in
DUT. Our decision policy for steering action is simple: we
try to keep the coordinate of the center of the lane edge in
an expected range. When we obtained the current coordinate
calculated by image processing in DUT, we compare it with
the current car position and decide which action among going
straight, steering left and right to take. After steering the car for
around 1 ms, Gazebo will consequently stop the movement of
the car, generate the new camera image, and send it to APSoC
via transmission control protocol (TCP) package. When an
image data arrives at the processor (PS) of APSoC, it will be
stored to dynamic random access memory (DRAM) and then
DUTs in PL could fetch the data by direct memory access
(DMA). After DUTs finish processing, PS sends back the
coordinate of the center of the lane edge, the action decision,
and the feedback of monitoring modules of each DUT. At the
end of the single loop in a test run, Gazebo on the host
PC receives the readback data from PS and moves the car
accordingly.

During an irradiation test, the DUT works at 100 MHz
and has the performance of processing 60 frames per second.
However, due to the extra time cost of transferring images
from the host PC to DUT, three frames of images are sent
to DUTs per second for lane tracking. If no upset in CRAM
for a long time, the test finishes at the 700th frame. However,
if bit upsets are detected in CRAM, the test run will end in
200 frames for detecting SEFI occurrence. Besides, we check
whether a bit flip has occurred in CRAM when a SEFI is
detected, but the number of upsets is not counted because

Fig. 7. Set-up of board under test. Both PS and PL of APSoC are irradiated.

Fig. 8. Beam spectrum of quasi-monoenergetic neutron beam produced
by 70 MeV proton in CYRIC at Tohoku University.

the uncorrected error would make the SEM IP stop working.
That means the accumulation of bit flip might happen during
the observation period of 200 frames. The possibility of error
accumulation will be discussed in Section III-B.

The host PC for Gazebo is placed inside the monitor room
shielded from the neutron beam, and therefore it is supposed
that no errors would occur in PC. Meanwhile, the board of
APSoC is placed along the beamline as shown in Fig. 7,
and the whole PS and PL are irradiated by neutrons. Indeed,
some undesirable errors, e.g., data corruptions in DRAM
or BRAM, are undetectable. However, the image data on a
DRAM is rewritten for each frame and only temporal data
is stored in BRAM in our application, such errors are less
probable to occur repeatedly while we observe the DUTs using
the monitoring modules. Therefore, we could distinguish the
undesirable errors from the SEFIs in DUT.

As for the neutron source, a quasi-monoenergetic neutron
test was conducted at Cyclotron and Radioisotope Center
(CYRIC) at Tohoku University [23]. The neutron beam is
produced by a 70 MeV proton source, and it has a flux
peak at the energy near 70 MeV as shown in Fig. 8 of the
beam spectrum. The flux at the place of APSoC board is
5.4 × 104 n · cm−2 · s−1.

B. Experimental Results

Table II shows the experiment results using the neutron
source. We ran the test for measuring cross sections of bit
upsets and SEFI in two separate rounds. In the test round
of 4.1 h, bit upsets were measured individually using SEM
IP with a single error correction. In the other round, the
function of error correction was disabled to observe SEFIs
in the unhardened system.

For the bit upsets, as we could observe in Table II, the cross
section of total bit upset events is 5.92 × 10−15 cm2/bit, which
is within the error margin of the value reported by Xilinx [2].
According to the measured cross section of bit upset,
0.07 errors can be accumulated on average during the period
of 200 frames. From this estimation, we think that the accu-
mulation concern described in Section III-A is negligible.
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TABLE II

MEASUREMENT RESULT FROM IRRADIATION EXPERIMENT USING THE NEUTRON SOURCE

On the other hand, the comparison of the cross sections
between SEFI and bit upset shows that the cross section of
SEFI is of the same magnitude as that of bit upset. The
probability of bit upset inducing a SEFI would be as high
as 23%. Moreover, we also observed that around 33% of
SEFIs lead to the system failure of lane tracking in the virtual
driving environment. To identify the cause of system failure,
we examined the location and time of the occurrence of the
observed SEFIs and bit upsets. We confirmed that the time and
location of the bit upset and the SEFI are identical for more
than half of the observed events. Thus, the bit upset of CRAM
in these events induced the SEFI with high probability.

IV. FAULT INJECTION

Due to bit upsets probably being masked, observing SEFI
and system failure requires a large number of bit upsets, but
the beam time is limited. As a complement to the irradiation
test, fault injection by intentionally flip bits in the CRAM
is an efficient way to allow us to evaluate the vulnerability
of bit upset-induced SEFIs. In this section, we conduct fault
injection and calculate the device vulnerability factor (DVF)
of the image-based lane tracking system, which represents the
probability of an upset bit inducing the SEFI [24]. Combining
with DVF obtained in the fault injection and measured bit
upset cross section in irradiation test, we further estimate
the cross section of SEFI and system failure and compare
them with the measurement result to validate the estimated
value. Furthermore, we investigate the benefit of the reliability
improvement of DUTs brought by error correction techniques.
The same implementation of DUTs are used for both fault
injection and irradiation experiments.

Before injecting a large number of errors, we reproduced the
runs, where SEFI was observed in the experiment, by injecting
fault to the same address. The reproduction validates the same
results in both experiments and fault injection. In the following
parts of this section, we will focus on the details and dis-
cussion on fault injection for calculating DVF and estimating
SEFI cross sections.

A. Flow of Evaluation on DVF

We conducted the injection on three modules in DUT1 to
calculate the DVF. The targets of error injection are the CRAM
addresses of the bits for the logical functions in DUT1, which
are hereafter called essential bits. In contrast, the bits are
nonessential bits, which were not utilized in logical function
and are supposed not to affect the system even if the bit-upset
occurs. Furthermore, if the upset in an essential bit induced

TABLE III

REQUIRED NUMBER OF THE INJECTIONS NINJECT TO EACH MODULE

IN DUT1. NEB IS THE NUMBER OF THE ESSENTIAL BITS

a SEFI, such an essential bit is a critical bit for the designed
system. The DVF is calculated with the following equation:

DVF = NCB

NEB
(1)

where NEB and NCB are the number of essential bits and
critical bits in the DUT1, respectively. Similarly, this definition
is also applicable to system failure, where the critical bit
induces system failure. We will discuss these two kinds of
DVF below, but it should be noted that the DVF of system
failures is a subset of the DVF of SEFIs, as shown in Fig. 2.

According to the ACME tool, the DUT1 has 20 12 199 con-
figuration bits (which includes 13 96 106 essential bits). Due
to a large number of configuration bits, exhaustive testing on
all the essential bits is time-consuming. Instead of exhaustive
testing, we adopted the statistical fault injection by flipping the
sampled bits in CRAM randomly. To satisfy the confidence
level and error margin of the statistical test, the required
number of the sample bits for injecting error is calculated by
the following equation proposed in [25]:

Ninject = NEB

1 + e2 · NEB−1
t2·p·(1−p)

(2)

where NEB is the total essential bits of the design, e is the
margin of error, t is the confidence level, and Ninject is the
required number of injections on NEB. To balance the error
number and statistical significance, a confidence level of 95%
and error margin 1% were selected. NEB and Ninject for each
module are shown in Table III. As mentioned in Section II-
B, “gray.”, “canny.”, and “cal.” stand for the modules of
canny edge detection, grayscaling, and lane edge coordinate
calculating, respectively.

In the fault injection, we assumed the occurrence of SBUs,
which means that we injected error to only one of the selected
addresses during each run of virtual driving. The set-up of a
virtual driving environment for fault injection is completely
the same as the irradiation experiment described in Section III.
In contrast to random timing of error occurrence in the irradia-
tion experiment, the error was injected by SEM IP at the fixed
tenth frame after the start. After error injection, we observe
200 frames as we did in the irradiation experiment. When
one run is completed, all the bits of CRAM are completely
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Fig. 9. DVF on the fault injection in essential bits, where “hang” is the
invalid state of the module, and “mismatch” is the incorrect data transferring.

rewritten and repeat the run until all the selected addresses are
evaluated.

B. Result of DVF and Estimation on Cross section of SEFIs
and System Failures

Fig. 9 shows the DVF of SEFIs and system failures obtained
by fault injection to the essential bits in each module. The sum
in the y-axis of stacked bars is the total DVF of each module.
On the other hand, because we could observe a relatively
large amount of the total errors in fault injection, we classified
the bit upset-induced SEFIs into two types: the module with
injected error falling into a hang and the mismatching output
with golden circuit i.e., incorrect calculation of the module.
We discriminate the type of SEFIs by the monitoring results
of status and data signals from the AXI Stream interface
of the module as stated in Section II-B. As the result, in
Fig. 9, the stacked bar of red and green, labeled as “hang”
and “mismatch,” stand for the DVF of the hang and the
mismatched output, respectively. From this figure, we could
observe that all the SEFI events of hangs finally induced the
system failures, while the SEFIs of mismatch led less probably
to the system failures. This could be attributed to the module
in hang state would stop any calculation and data transmission
and thus, the whole system would lose its function and fail to
track the edge lane. As the SEFIs of hangs have a proportion
of 22% to 41%, such type of SEFIs has a large impact on the
system reliability.

As the exception of the above results, in a very small
probability, we confirmed that the ten bits cause the stuck
of the PS. When these bits were flipped, the OS on the PS
completely froze. We suppose the reason is that such bits
caused an illegal operation of DRAM by the AXI Video DMA
(VDMA) IP, which is used for fetching the image data from
PS to our DUT in PL [26]. A similar result was reported by
Fleming and Thomas [27]. Since it has a main impact on PS
and its proportion is small, we did not include such part in our
calculation. On the other hand, we also confirmed that some
injected errors induced the SEFIs in the untargeted module
such as modules of DUT2 and DUT3 and monitoring modules.
These SEFIs were induced by up to 0.6% of fault injection.
We suppose that these bits are not in the successive addresses
and could not be considered by the ACME tool correctly. But
since the number of such bits is also small, we still exclude
them from the DVF calculation.

TABLE IV

REQUIRED NUMBER NINJECT−NONEB OF THE INJECTIONS TO THE
NONESSENTIAL BITS. NNONEB IS THE NUMBER OF

THE NONESSENTIAL BITS IN EACH MODULE

Fig. 10. Measured and estimated cross sections of SEFIs and system failures.

Next, for estimating cross section of SEFIs and system
failures from fault injection, the DVFDUT is calculated by

DVFDUT =
∑

DVFi · NEBi∑
NEBi

(3)

where i stands for the index of each module. The DVFDUT

is essentially the proportion of the critical bits to the total
essential bits in DUT. For SEFI and system failure, DVFDUT is
30.6% and 10.1%, respectively, which means 33.0% of SEFIs
lead to system failures.

Utilizing the DVFDUT obtained from fault injection, we
estimate the cross section of SEFIs and system failures using

σ(type) = σ(bit upset) × DVFtype × NEB

NEB + NnonEB

= σ(bit upset) × NCBtype

NEB + NnonEB
(4)

where type of cross section and DVF is either SEFIs or
system failures, and σ(bit upset) is the cross section of bit
upset measured in the irradiation experiment. In this equa-
tion, we assume nonessential bits will completely not induce
any SEFIs. To confirm this assumption, we also conducted
the fault injection to nonessential bits of the numbers shown
in Table IV, which also ensures a confidence level of 95% and
an error margin of 1%. We confirmed no SEFIs by injecting
errors to the nonessential bits.

Fig. 10 shows the cross section for SEFIs and system
failures in the fault injection and the irradiation experiment.
The error bars stand for one standard deviation. This figure
shows that the estimated value is within the error margin of
the measured value in the irradiation experiment. Therefore,
from the comparison between the irradiation experiment and
the fault injection, the result shows the impact of soft errors
on the systems could be evaluated within a small error in the
proposed virtual driving environment.

Furthermore, we considered the influence of MBU/MCU
events on the DUT placed in the given block described in
Section II-B. The fault injection targeted only SBU, although
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the irradiation experiment includes the effect of MBU/MCU.
We confirmed that these experimental results have matched
within the error margin as shown in Fig. 10. However, we
think that the effect of MBU/MCU events depending on the
floorplan of FPGA implementation is worth investigating in
the future.

C. Improvement of System Reliability by Error Correction

Currently, vendors of SRAM based FPGA tend to provide
soft error correction tools [28], including the SEM IP used
in this work. In this section, we evaluate the improvement of
system reliability by such on-chip correction tools.

For the evaluation of the system reliability for the image-
based lane tracking with error correction in an FPGA, the
selected essential bits are the same as the previous experiment
of fault injection to the system without error correction.
We repeated the injection flow described in Section IV-A
except a newly added step of the error correction. As for
the error correction, we will flip the error bit back to its
original value in a fixed period of delay time after inject-
ing the error, instead of enabling the built-in correction of
the SEM IP. The utilization of this alternative correction
method is because enabling the correction function of SEM IP
requires a resynthesis with changing the addresses of essential
bits.

Before showing the DVFs of the system with error correc-
tion, let us explain the delay before correcting the error bit.
As stated above, because we flip the error bit manually, the
delay time, which is the time for error detection and correction
by the on-chip correction module, should be determined before
evaluation on DVF of the system.

In our tested devices, the error correction tool, namely SEM
IP, works at 100 MHz and will detect and correct the single
bit error in a delay of 9 ms at most [21]. More specifically,
it takes up to 8.0 and 0.6 ms for detection and correction,
respectively. Here we considered the worst case of the latency.
It should also be noticed that SEM IP and the DUTs work
parallelly, which means the DUT would still process the data
during the SEM IP detect and correct the errors. Fig. 11
shows the image processing flow in the time axis, under the
supposed environment of the practical driving system with
the assumption of the camera at the frame rate of 60 fps.
As shown at the top two axis lines in this figure, since the
image processing of lane tracking in DUT takes 6.3 ms, which
is less than the time of 16.7 ms (60 fps) for transferring an
image from a camera, the image processing would become
idle state while waiting for the image of the next frame. If an
SBU occurred, two cases exist as shown at the two bottom
lines in Fig. 11. In the first case, the SBU happens shortly
(within 1.4 ms) after the DUT entering an idle state. Therefore,
the error could be corrected before the image processing.
Meanwhile, in the second case, the SBU happens at other
timing besides the timing of the first case and one frame of
the image was being processed with error uncorrected.

To reflect the first case that the processing of an image is not
influenced by a bit upset in the error injection, we would stop
the processing of DUT, flip the target essential bit, then flip it
back in 9 ms, and finally restart the DUT. It should be noted
that during the period of error being uncorrected, although the
DUT stops processing the image, the influence may still be

Fig. 11. Supposition of the error occurrence in the actual machine using
60 fps camera and SEM IP, where “case 1” is the situation that the bit upset
and error correction occurred in the idle state of the DUT, i.e., not doing
calculation while the time from the bit upset to the correction, and “case 2” is
the situation where the DUT is affected by the bit upset during the calculation.

Fig. 12. DVF under the fault injection with error correction, where “hang”
is the invalid state of the module, and “mismatch” is the incorrect data
transferring.

brought into the DUT due to the upset of some bit, e.g., the
CRAM bits related to external routing. In contrast, since one
frame of image is influenced by a bit upset, we would flip the
target bit at a random timing during the processing, and flip
it back immediately before the start of the transferring of the
next frame.

When the SBU occurs in the system, it could be either case
of none (the first case) or one (the second case) frame being
influenced. This means the real cross section or DVF of bit
upset-induced SEFI should be between those of cases one and
two. To show the improvement impartially in these two cases,
we conducted the error injection with the same and full set
of the sampled essential bit for the first and second cases
separately to calculate their DVFs independently.

Fig. 12 shows the DVF of the system with the error
correction in the case of none (the first case) and one frame
(the second case) being influenced, as well as the DVF of
the system without the error correction as the reference. From
this figure, we could observe a significant benefit in the DVF
reduction of SEFIs from the error correction in either case
compared with the reference of errors uncorrected. However,
when it comes to a system failure, the trend of reduction of
DVF becomes different in the two cases. The reduction is
not obvious in the DVF of system failures if the error is not
corrected before DUT starting processing in the second case.
Meanwhile, if the error is corrected before processing, the
DVF reduction is still significant as shown in the result of
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the first case. Obviously, in the figure, the key difference of
these two trends could be attributed to the SEFIs of the type
“hang.” The results of DVF suggest two facts, when an upset
occurs in the critical bit as a source of “hang:” 1) the module,
which is working, would fall into a hang immediately and stop
working and 2) such hangs are irreversible since no effects
after correcting it. As a hint for the system design of high
reliability, it might be important to ensure that the correction is
fast enough to correct an error during the idle state of circuits.

In addition, the ten reported bits in Section IV-B, which lead
to the malfunction of the OS on the PS, were confirmed with
no functional error in the first case. This is consistent with our
assumption that such bits would lead to an illegal operation of
DRAM by VDMA IP since VDMA IP stops working when
an error happens in the first case.

V. CONCLUSION

This article discussed the impact of SEU in CRAM on
image-based lane tracking implemented in FPGA. We focused
on revealing the relationship between the bit upset, SEFI,
and severe SEFI of the malfunction of the whole autonomous
driving application, namely system failure, in a virtual driving
environment. The irradiation test and the fault injection were
performed on the same DUTs and their implementation. The
result from the irradiation test shows around 23% of the bit
upsets would induce the SEFIs, and 33% of the SEFIs would
finally induce system failures. Moreover, we estimated the
cross section of SEFIs using the fault injection. The cross
section of SEFIs and system failures from the irradiation
experiment and the fault injection were compared. The com-
parison result shows a good precision of the evaluated cross
section. In addition, we investigated the improvement in the
reliability of the lane-tracking system by the error correction.
Our investigation shows a large reduction of SEFIs probability
by the error correction. In order to reduce the probability of
system failures drastically, the error should be corrected during
the idle state of DUT.
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