
1668 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Analyzing DUE Errors on GPUs With Neutron
Irradiation Test and Fault Injection

to Control Flow
Kojiro Ito , Yangchao Zhang , Hiroaki Itsuji , Member, IEEE, Takumi Uezono , Member, IEEE,

Tadanobu Toba, and Masanori Hashimoto , Senior Member, IEEE

Abstract— As GPU applications expand, the reliability of GPU
is drawing more attention since even reliability-demanding appli-
cations are executed on GPUs. Silent data corruption (SDC) is
widely studied both in irradiation experiments and fault injection
experiments. On the other hand, detectable uncorrected error
(DUE) is not well studied. This work focuses on DUEs reported
by the GPU driver and analyzes those observed in fault injection
and neutron irradiation experiments, where faults are injected in
the control flow to change the program counter value unexpect-
edly. The DUE errors of GPU engine exception, GPU memory
page fault, and GPU processing stop are observed in both the
experiments. On the other hand, the DUE error categorized as
internal microcontroller halt by the GPU driver, which is not
found in the fault injection experiment, is observed frequently,
suggesting the necessity of investigating the failures originating
from the faults in the components invisible to programmers.

Index Terms— GPU, neutron, silent data corruption (SDC),
soft error.

I. INTRODUCTION

IN A terrestrial environment, neutrons in the secondary
cosmic ray are a severe concern for reliability-demanding

applications. One such application is autonomous driving,
which requires a massive amount of computation on GPUs.
Therefore, soft errors occurring in GPUs are drawing a lot of
attention, and several irradiation experiments are performed
and reported to evaluate the soft error immunity [1]–[5].
de Oliveira et al. [1] completed a pioneering work that
irradiates modern GPU cards and evaluates the error rates
of parallel applications. dos Santos et al. [2] evaluated con-
volutional neural network applications running on various
GPU architectures. Lotfi et al. [3] reported the resiliency
of object detection applications running on GPUs, where

Manuscript received April 30, 2021; revised June 14, 2021; accepted
July 15, 2021. Date of publication July 21, 2021; date of current version
August 16, 2021. This work was supported in part by the Japan Science
and Technology Agency, Program on Open Innovation Platform with Enter-
prises, Research Institute and Academia (JST-OPERA) Program under Grant
JPMJOP1721 and in part by Grant-in-Aid for Scientific Research (S) from
Japan Society for the Promotion of Science (JSPS) under Grant JP19H05664.

Kojiro Ito, Yangchao Zhang, and Masanori Hashimoto are with the
Department of Information Systems Engineering, Osaka University, Osaka
565-0871, Japan (e-mail: sankou.pinoko0601@gmail.com).

Hiroaki Itsuji, Takumi Uezono, and Tadanobu Toba are with the Center for
Technology Innovation—Production Engineering, Research and Development
Group, Hitachi Ltd., Yokohama 244-0817, Japan.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2021.3098845.

Digital Object Identifier 10.1109/TNS.2021.3098845

the bounding box mismatch is categorized into small shift,
inclusion, and nonoverlapping, and their proportions are
demonstrated. The impacts of FinFET and ECC are evaluated
by Lunardi et al. [4], and the effects of core architecture and
mixed precision are studied by Basso et al. [5].

On the other hand, the commercial GPU has difficulty
in radiation immunity characterization and estimation since
the circuit structure is only disclosed partially. For example,
the numbers of cores and registers and the sizes of shared
and cache memories are available since they are necessary for
programmers to develop applications. For such visible memory
components, the error rate characterization is performed with
neutron irradiation tests [1], and fault injection experiments
with an architecture-level fault injection tool called SAS-
SIFI [6] are widely performed (e.g., [2], [7]–[11]). On the
other hand, pipeline registers, FFs, and registers in datapaths,
schedulers, and dispatchers must exist in GPUs, but their
counts are unknown. Our previous work pointed out that the
circuit components invisible to programmers contributed to
silent data corruption (SDC) more than the visible memory
components [12].

On the other hand, detectable uncorrected error (DUE)
is less studied though the DUE occurs frequently, and its
occurrence rate is comparable to the SDC rate [1]. The DUE
categorization and consistency analysis with fault injection
are crucial to understand the error occurrence mechanism
and improve the application reliability. However, the previous
works of radiation experiments [1]–[5], which were men-
tioned in a previous paragraph, and fault injection experiments
[2], [7]–[11] focused on the categorization between SDC and
DUE and SDC pattern analysis, and detailed categorization of
DUE was not investigated. Lunardi et al. [7] analyzed transient
fault propagation to the application output and reported that
not all the output errors observed under radiation could be
replicated in fault injection. Previlon et al. [8] categorized
the DUE errors observed in fault injection into DUE and
potential DUE, but the correlation with irradiation experiments
is not investigated. Davidson and Bridges [9] evaluated the
error resilience of image processing applications for space and
reported that general-purpose registers had a higher contribu-
tion to SDC and DUE than predicate register (PR), conditional
code (CC), and memory store. Ibrahim et al. [10] studied the
error resilience of deep neural networks with fault injection,

0018-9499 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Kyoto University. Downloaded on August 18,2021 at 01:43:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7962-2990
https://orcid.org/0000-0001-6148-2654
https://orcid.org/0000-0002-1910-4526
https://orcid.org/0000-0002-1804-2714
https://orcid.org/0000-0002-0377-2108

ITO et al.: ANALYZING DUE ERRORS ON GPUs WITH NEUTRON IRRADIATION TEST 1669

TABLE I

GPU DEVICE INFORMATION OF NVIDIA QUADRO
P2000 AND GEFORCE GTX960

TABLE II

GPU DEVICE AND PERFORMED EXPERIMENTS

but their focus is only SDC. Previlon et al. [11] revealed that
the error resilience was time-varying, and this characteristic
was explained by code block analysis and exploited for
accelerating fault injection.

This work evaluates and categorizes the DUE by analyzing
the syslog that records GPU errors in a neutron irradiation
test. This work also performs a fault injection experiment that
disturbs the control flow by inserting a parallel thread execu-
tion (PTX) [13] code of jump. This fault injection experiment
reproduces graphics engine exception, GPU memory page
fault, and GPU processing stop, while the errors categorized
as internal microcontroller halt are not reproduced. On the
other hand, in the irradiation experiment, the errors of internal
microcontroller halt occur frequently. This result suggests the
hardware that is not disclosed to the users contributes to DUE
errors substantially.

The rest of this article is organized as follows. Section II
describes GPU cards under evaluation and explains GPU errors
reported by the GPU driver. Section III discusses the fault
injection method focusing on the control flow disturbance
and presents the fault injection results. Section IV shows the
results of neutron irradiation experiments, and Section V gives
concluding remarks.

II. GPU ERRORS AND PROGRAMS UNDER EVALUATION

A. GPUs and Programs Under Evaluation

The target GPU devices in this work are NVIDIA Quadro
P2000 and GeForce GTX960. Table I shows their main specifi-
cations. P2000 and GTX960 are based on Pascal and Maxwell
architectures, respectively. Both GPUs do not have ECC capa-
bility for on-chip SRAMs, register files, or off-chip DRAMs.
The operating system in the host PCs is Ubuntu 18.04.

Table II lists the experiments performed in this work.
On P2000 and GTX960, we run Yolov3-tiny [14],
a neural network-based object detection framework consisting
of 13 convolutional layers for the irradiation experiment.
During the experiment, 200 images selected from COCO

dataset [15] are used for inference, that is, object detection.
On P2000, we also run a single-precision matrix multiplication
program implemented with C++ and CUDA in the irradiation
experiment. The multiplicand and multiplier matrixes are both
240 × 240. This matrix multiplication program is used for the
fault injection experiment explained in Section III as well.

B. GPU Errors

In this work, we evaluate Xid message [16], which is
generated by NVIDIA driver and recorded in syslog. Xid
is often used for large server maintenance and reliability
analysis [17]. Xid message covers driver issues, hardware
issues, NVIDIA software issues, and user application issues.
We explain the Xid errors listed in Table III, where Xid 13, 31,
43, and 62 are observed in this work. Here, the errors found
only once are omitted. Table III also indicates the error causes
for each Xid, where they include HW error, driver error, user
app error, system memory corruption, bus error, thermal issue,
and frame buffer (FB) corruption. We first introduce Xid errors
of 13, 31, 43, and 62. Note that the detailed explanations of
those errors are found in [16].

13: Typically, this is an out-of-bounds error where the user
has walked past the end of an array, but it could also
be an illegal instruction, illegal register, or other cases.
All the possible causes except HW bring this error.

31: This event is logged when a fault is reported by the
memory management unit (MMU), such as when a
functional unit makes illegal address access on the chip.
Typically, these are application-level bugs but can also
be driver bugs.

43: This event is logged when a user application hits a
software-induced fault and must terminate. The GPU
remains in a healthy state. In most cases, this is not
indicative of a driver bug but rather a user application
error.

62: This event is named internal microcontroller halt, but
its detailed explanation is not provided in [16]. Also,
the role of the internal microcontroller is not disclosed.

Additionally, we explain Xid 79 and 80 since they are the
failures that originate from hardware issues in the GPU cards
used in this work. Other Xid errors caused by hardware issues
occur in ECC or video output, which is not utilized in our
experiments.

79: This event is logged when GPU has fallen off the bus.
Not only hardware issues but also thermal issues can
cause this error.

80: This event is observed when corrupted data is sent to
GPU. The error also occurs when there is a problem
with the GPU bus.

III. FAULT INJECTION EXPERIMENT

A. Fault Injection Strategy

This work supposes that the control flow disturbance is
one of the main causes for DUE and then performs fault
injection that disturbs the control flow. SASSIFI [6], which
is a popular fault injector for NVIDIA GPUs, can disturb

Authorized licensed use limited to: Kyoto University. Downloaded on August 18,2021 at 01:43:59 UTC from IEEE Xplore. Restrictions apply.

1670 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

TABLE III

XID MEANING

the control flow by manipulating the instructions that write
to CC and a PR. Instead, this work manipulates the program
counter (PC) to disturb the control flow directly. The direct
PC manipulation is expected to accelerate the fault injection
experiment since single instruction multiple thread (SIMT)
stack, which includes PC, has higher susceptibility, that is,
higher architectural vulnerability factor (AVF) [19]. Then,
the injected faults disturb the control flow more frequently.

Let us review conventional fault injection methods regarding
whether they can inject a fault into the PC. Fault injection
at a high-level language [20] cannot reproduce the PC fault.
SASSIFI cannot directly manipulate the PC as mentioned
above. GPU-Qin [21] injects a fault into ALU and load-
store unit (LSU), but it cannot inject a fault into the PC.
GPU-SODA [19] can inject a fault into the PC, but the code
is not available in public, and the reproduction is difficult.
GUFI [22] can also inject a fault into the PC, but the applicable
GPU architectures are limited. When writing a dedicated code
to inject a fault into the PC, there is a significant differ-
ence in the necessary effort between SASS and PTX levels.
Especially, SASS code is not portable to various GPU chips
and architectures, which discouraged us from adopting SASS-
level code insertion. Therefore, we took the approach that
directly manipulates the PC with PTX-level code insertion.
It should be noted that bit-flips did not directly cause our
control flow disturbance in memory components and flip-flops.
Therefore, the injected disturbance can be different from that
triggered by bit-flips. However, it can analyze what Xid error
could be triggered by the control flow disturbance.

B. Fault Injection Setup

The actual fault injection is performed as follows. First,
we compile the CUDA code of the matrix multiplication and
obtain the PTX code. Then, we edit the PTX code such that an
unexpected jump happens, and the value of the PC varies in
one of the active warps, where the threads in a warp share the
same PC. The original program consists of 32 blocks, but only
a single block that includes the warp with the faulty jump is
executed in the fault injection experiment since all the warps
share the same PTX code. The difference is only the thread
and warp numbers. The control flow disturbance in each warp
is expected to have the same impact, though, rigidly speaking,
there might be a boundary or similar effect depending on the
warp locations.

List 1 exemplifies a PTX code for fault injection.
Instructions at lines 4 and 6 limit the number of unex-
pected jumps to 1. To specify the warp that executes

Listing 1. Sample PTX code for fault injection.

unexpected jump as a fault, we use compare and branch
instructions at lines 10 and 12. In PTX code, %tid register,
which is denoted as %tid.x, %tid.y, and %tid.z in
three-dimensional thread number specification, is a special
register that stores the thread number. List 1 assumes that
%r1 copies from %tid.y beforehand. In this example, when
%r1 = 0, unexpected jump to L1 occurs. Note that this
warp specification depends on the user program and execution
specification. Any place can be labeled as L1 within the PTX
code of the user program.

The PTX code of the matrix multiplication consists of the
following three parts.

1) An inner loop that executes multiply-accumulate (MAC)
computation.

2) An external loop that changes the address of the data
for the MAC computation and stores the values in the
shared memory.

3) Other codes outside the loops load arguments, config-
ure threads and blocks, and store the data into memory.

For each code-line execution in one of the three parts,
we inject a single fault during the program execution, which
means an unexpected jump happens only in a particular loop
in the first two cases. We tested all jump target addresses.
Namely, all the combinations of the timing of fault injection
and the jump address are tested. Note that due to the PTX
specification, the jump address is limited within the PTX code
of the matrix multiplication.

When performing the above fault injection, we must pay
attention to how the inserted PTX code is executed on GPU
since SASS optimization is applied. Then, we considered

Authorized licensed use limited to: Kyoto University. Downloaded on August 18,2021 at 01:43:59 UTC from IEEE Xplore. Restrictions apply.

ITO et al.: ANALYZING DUE ERRORS ON GPUs WITH NEUTRON IRRADIATION TEST 1671

TABLE IV

ERROR COUNTS IN MATRIX MULTIPLICATION
UNDER FAULT INJECTION (E1 OPTION)

TABLE V

ERROR COUNTS IN MATRIX MULTIPLICATION

UNDER FAULT INJECTION (E2 OPTION)

the two execution options below. In both options, the PTX
code of the matrix multiplication is obtained by nvcc with
optimization.
E1: The PTX code of the matrix multiplication and fault

injection is called from cuModuleLoad function.
E2: The PTX code of the matrix multiplication and fault

injection is compiled without optimization, that is,
−O0 option. This binary code is called by cuModule-
Load function.

Each option has its advantage. In E1, the program behavior
of the matrix multiplication is more consistent with that in
the irradiation experiment since the PTX code of the matrix
multiplication is called and executed similarly in the irradiation
experiment. On the other hand, in E2, the fault injection is
more consistent with our expectation since the perturbation in
the fault injection execution due to SASS optimization and
simplification is supposed to be minimized.

We use the same input matrices for multiplication in the
experiment. For SDC detection, we prepare the golden output,
that is, the product of the two matrices is calculated before-
hand. During the experiment, the calculated result and the
golden output are compared for every matrix multiplication
to detect SDC.

C. DUE Results

Tables IV and V list the number of DUEs recorded in
syslog when we inject faults into the matrix multiplication
program with E1 and E2 options, respectively. The rows
of 13, 31 means the errors of Xid 13 and 31 are recorded
simultaneously for single fault injection. The row of 13, 43 is
similar. The bottom row represents the total number of injected
faults. For each executed PTX instruction, same number of
faults are injected in the experiment. We can see only small
differences between Tables IV and V, and the error count
differences are lesser than 1%. We, therefore, think both
execution options are applicable.

TABLE VI

DUE ERROR OCCURRENCE PER INJECTED FAULT FOR EACH
XID IN MATRIX MULTIPLICATION (E1 OPTION)

TABLE VII

SDC COUNTS IN MATRIX MULTIPLICATION

UNDER FAULT INJECTION (E1 OPTION)

Table VI lists the probabilities of DUE error occurrence
per injected fault for each Xid with E1 option. We can
see that the parts of the external loop and outside loop are
sensitive to fault injection to the PC, and in this case, DUE is
observed with more than 50% probability once the PC value
changes unexpectedly. On the other hand, the inner loop is
not so sensitive, even though the number of injected faults
is significant since the execution count is high. Most of the
inner loop faults do not cause DUE, and the DUE probability
is a few percent at most. This sensitivity difference could be
associated with the time-varying resilience reported in [11].

In total, the DUEs of Xid 13 and 43 are observed in 10.7%
cases, and Xid 31 is found in less than 1% cases. Overall, even
though faults are injected into the PC, the DUE occurrence
proportion is less than 25% in our experimental setup. This
low proportion might originate from the constraint of our fault
injection method that the PC value is varied within the range
of the matrix multiplication program. Further study with other
fault injection methods, such as NVBit [23], is necessary.

D. SDC Results

We also evaluated SDC errors caused by the fault injection
in addition to the DUE errors. Tables VII and VIII list
the number of SDC errors in the matrix multiplication with
E1 and E2 execution options, respectively. We can see the
result in Table VII and that in Table VIII are highly correlated,
where the error categorization is explained in the following.
CUDA error occurrence is different between the tables, but
the error count is small.

Fig. 1 illustrates the error categorization. All fault injections
are split into three categories: SDC, mask, and CUDA error.
SDC includes any inconsistency with the golden output, and
mask means that the output is identical with the golden output.

Authorized licensed use limited to: Kyoto University. Downloaded on August 18,2021 at 01:43:59 UTC from IEEE Xplore. Restrictions apply.

1672 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

TABLE VIII

SDC COUNTS IN MATRIX MULTIPLICATION
UNDER FAULT INJECTION (E2 OPTION)

Fig. 1. SDC error categorization.

CUDA error means the program is terminated with a message
of CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES. The
sum of these three categories is equal to the number of injected
faults.

The SDC errors are further split into three categories:
within-warp SDC, inter-warp SDC all0, and inter-warp SDC
non-all0. Within-warp SDC means that the SDC is found
only in the warp to which an error is injected. Some of
within-warp SDC errors are SDC with all0, which are listed
in Tables VII and VIII. Here, let us explain SDC all0. When
a DUE or abnormal kernel exit occurs due to the PTX error
injection, the GPU kernel stops and returns all0. Meanwhile,
the host code continues to run, checks the computed result
with the golden output, and reports SDC occurrence. We call
such SDC with all0 as SDC all0. The category of “inter-warp
SDC all0” means that all0 errors are found in multiple warps,
whereas “within-warp SDC all0” means that SDC with all0 is
found within a warp. Some of “inter-warp SDC all0” errors
are accompanied by the DUE errors and are categorized as
“inter-warp SDC all0 (DUE).” The other remaining errors are
called “inter-warp SDC non-all0.”

Error injection is performed only in one warp, but SDC
often spreads over the entire block (inter-warp SDC). It is
due mainly to DUE in the case of the external loop and
outside loop. On the other hand, in the inner loop, all the
error injection results are observed as SDC, which indicates
that the inner loop has extremely high SDC sensitivity. The
sensitive parts of the program to DUE and SDC are different,

Fig. 2. Neutron energy spectrum at CYRIC.

Fig. 3. GPU card alignment on the beam track.

which could be an interesting observation. Besides, inter-warp
SDC is caused by the values in the shared memory, which are
shared by the warps. In this case, the entire block may use
a faulty value affected by fault injection and written into the
shared memory and propagates the contamination.

IV. NEUTRON IRRADIATION EXPERIMENT

A. Setup

We performed a quasi-monoenergetic neutron irradiation
experiment at the Cyclotron and Radioisotope Center (CYRIC)
at Tohoku University [18]. Fig. 2 shows the energy spectrum
of the neutron beam. A 70-MeV proton source produces the
neutron beam, and the neutron beam has a flux peak at the
energy near 70 MeV.

Fig. 3 depicts the setup of the irradiation experiment. Five
P2000 cards and two GTX960 cards are placed on the beam
track. The GPU cards are connected to their corresponding
host PCs through PCI-express extension cables. The host
PCs, on which Linux is running, in the irradiation room are
remotely controlled through Ethernet cables. Also, we put

Authorized licensed use limited to: Kyoto University. Downloaded on August 18,2021 at 01:43:59 UTC from IEEE Xplore. Restrictions apply.

ITO et al.: ANALYZING DUE ERRORS ON GPUs WITH NEUTRON IRRADIATION TEST 1673

Fig. 4. Measured DUE rates in matrix multiplication program on Q2000.
Error bars correspond to 95% confidence interval.

remote-control rebooters in the irradiation room to forcibly
and selectively host the PCs through Ethernet cables. With
this setup, the programs of object detection and matrix
multiplications are executed on P2000 cards. On GTX960,
only the object detection program is executed, as explained
with Table II.

The average flux over the location and time was
3.25 × 105 [n/s/cm2]. The concrete fluence values for each
experiment are 1.18 × 1010 [n/cm2] for matrix multiplica-
tion, 5.46 × 109 [n/cm2] for object detection (GTX960),
and 2.11 × 1010 [n/cm2] for object detection (P2000), where
the irradiation times are 23.81 h for matrix multiplication,
4.67 h for object detection (GTX960), and 18.02 h for object
detection (P2000). We check the syslog message to see Xid
error information. During the irradiation experiment, when
the response of nvidia-sim command, which returns the GPU
usage status, is prolonged, the PC is rebooted.

B. Results

Fig. 4 shows the DUE rates of the matrix multiplication
program measured in the experiment, where the error bar
corresponds to the 95% confidence interval. The total number
of DUE errors is 24. We can see that DUEs of Xid 13, 31,
and 43, which are observed in the fault injection experiment,
are also found in the irradiation experiment. On the other hand,
the error rates of Xid 13 and 43 are lower than that of Xid 31,
which is different from the fault injection result. The higher
rate of Xid 31 might come from the errors in register files
since some errors in the register files affect the jump address.
However, the error bars are large, and hence a solid conclusion
is difficult to draw from the result.

Meanwhile, the DUE of Xid 62 is observed frequently while
it was not observed in the fault injection experiment. This
observation is consistent with [7], which reports that not all
the errors can be replicated by fault injection. Meanwhile, this
work suggests the category of such nonreproducible errors.
Our result demonstrates that the microcontroller, which is
not visible to programmers, contributes to the DUE rate
considerably. A further study on the contribution and error
mode of such invisible components is necessary.

Fig. 5 shows the DUE rates of the object detection
program. The DUE errors observed are 15 for object
detection (GTX960) and 19 for object detection (P2000). The
DUE rates of GTX960 tend to be higher while some error

Fig. 5. Measured DUE rates in object detection program on Q2000 and
GTX960. Error bars correspond to 95% confidence interval.

bars are overlapped. A reason is that Q2000 is manufactured
in FinFET technology, and then the error rate is low. Focusing
on Q2000, the relative error occurrences of each Xid look
similar to those of the matrix multiplication case. The object
detection program performs many MAC operations and hence
the error pattern could be similar to the matrix multiplication
case.

C. Discussion

Errors of Xid 62 were observed only in the radiation exper-
iments. The cause of Xid 62 is either hardware issue, driver
issue, or thermal issue, as explained with Table III. On the
other hand, we experimentally confirmed that the thermal
issue-related error did not occur even when we intentionally
stopped the fan. Therefore, it is implausible that a thermal
problem will occur. Other Xid errors that originate from
hardware issues in our experimental setup are 79 and 80 in
Table III. Both are related to the miscommunication between
GPU and others. Such Xid errors are not observed in the
radiation experiment, and hence the communication between
the GPU and others is not disturbed. We, therefore, suspect
that most of the Xid 62 errors of internal microcontroller halt
are caused by the hardware invisible to programmers inside
the GPU chip.

V. CONCLUSION

This work analyzed the DUEs reported by the GPU driver
under fault injection and neutron radiation. The fault injec-
tion experiment that reproduced PC error with PTX code
manipulation shows that the sensitivity to DUE is different
depending on the fault location. The codes for loading argu-
ments, configuring threads and blocks, and writing back to
the main memory are highly sensitive. The neutron irradiation
test shows that the DUEs found in the fault injection experi-
ment are also observed. The comparison between Q2000 and
GTX960 shows that Q2000 has a lower DUE rate, probably
thanks to FinFET technology. An important observation is
that the DUE categorized as internal microcontroller halt
by the GPU driver occurred frequently, which suggests that
components invisible to programmers considerably contribute
to DUEs. Our future work includes fault injection experiments
to object detection using NVBit [23], which can inject faults
even into proprietary accelerated libraries.

Authorized licensed use limited to: Kyoto University. Downloaded on August 18,2021 at 01:43:59 UTC from IEEE Xplore. Restrictions apply.

1674 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

ACKNOWLEDGMENT

The authors thank Prof. Masatoshi Itoh of Tohoku Univer-
sity for their support in the neutron irradiation experiments at
the Cyclotron and Radioisotope Center (CYRIC).

REFERENCES

[1] D. A. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Eval-
uation and mitigation of radiation-induced soft errors in graphics
processing units,” IEEE Trans. Comput., vol. 65, no. 3, pp. 791–804,
Apr. 2016.

[2] F. F. dos Santos et al., “Analyzing and increasing the reliability of
convolutional neural networks on GPUs,” IEEE Trans. Rel., vol. 68,
no. 2, pp. 663–677, Jun. 2019.

[3] A. Lotfi et al., “Resiliency of automotive object detection networks on
GPU architectures,” in Proc. IEEE Int. Test Conf. (ITC), Nov. 2019,
pp. 191–199.

[4] C. Lunardi, F. Previlon, D. Kaeli, and P. Rech, “On the efficacy of ECC
and the benefits of FinFET transistor layout for GPU reliability,” IEEE
Trans. Nucl. Sci., vol. 65, no. 8, pp. 1843–1850, Aug. 2018.

[5] P. M. Basso, F. F. D. Santos, and P. Rech, “Impact of tensor
cores and mixed precision on the reliability of matrix multiplication
in GPUs,” IEEE Trans. Nucl. Sci., vol. 67, no. 7, pp. 1560–1565,
Jul. 2020.

[6] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“SASSIFI: An architecture-level fault injection tool for GPU application
resilience evaluation,” in Proc. Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), 2017, pp. 249–258.

[7] C. Lunardi, H. Quinn, L. Monroe, D. Oliveira, P. Navaux, and P. Rech,
“Experimental and analytical analysis of sorting algorithms error criti-
cality for HPC and large servers applications,” IEEE Trans. Nucl. Sci.,
vol. 64, no. 8, pp. 2169–2178, Aug. 2017.

[8] F. G. Previlon, C. Kalra, D. R. Kaeli, and P. Rech, “Evaluating the impact
of execution parameters on program vulnerability in GPU applications,”
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 809–814.

[9] R. L. Davidson and C. P. Bridges, “Error resilient GPU accelerated
image processing for space applications,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 9, pp. 1990–2003, Sep. 2018.

[10] Y. Ibrahim et al., “Soft error resilience of deep residual networks for
object recognition,” IEEE Access, vol. 8, pp. 19490–19503, 2020.

[11] F. G. Previlon, C. Kalra, D. Tiwari, and D. R. Kaeli, “Characterizing and
exploiting soft error vulnerability phase behavior in GPU applications,”
IEEE Trans. Dependable Secure Comput., early access, Apr. 28, 2020,
doi: 10.1109/TDSC.2020.2991136.

[12] K. Ito et al., “Characterizing neutron-induced SDC rate of matrix
multiplication in Tesla P4 GPU,” in Proc. Eur. Conf. Radiat. Effects
Compon. Syst. (RADECS), 2019.

[13] NVIDIA. (2019). Parallel Thread Execution ISA Version 6.5. [Online].
Available: https://docs.nvidia.com/cuda/parallel-thread-execution/
index.html

[14] J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-
ment,” 2018, arXiv:1804.02767. [Online]. Available: http://arxiv.org/abs/
1804.02767

[15] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” 2014,
arXiv:1405.0312. [Online]. Available: http://arxiv.org/abs/1405.0312

[16] NVIDIA. (2020). Xid Errors. [Online]. Available: https://docs.nvidia.
com/deploy/xid-errors/index.html

[17] D. Tiwari et al., “Understanding GPU errors on large-scale HPC systems
and the implications for system design and operation,” in Proc. Int.
Symp. High Perform. Comput. Archit. (HPCA), 2015, pp. 331–342.

[18] Y. Sakemi, M. Itoh, and T. Wakui, “High intensity fast neutron
beam facility at CYRIC,” Int. Atomic Energy Agency, vol. 46, no. 9,
pp. 229–233, 2014.

[19] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerability
on GPGPU microarchitecture,” in Proc. Int. Symp. Workload Charac-
terization, 2011, pp. 226–235.

[20] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding error
propagation in GPGPU applications,” in Proc. Int. Conf. for High
Perform. Comput., Netw., Storage Anal. (SC), Nov. 2016, pp. 240–251.

[21] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-
Qin: A methodology for evaluating the error resilience of GPGPU
applications,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), Mar. 2014, pp. 221–230.

[22] S. Tselonis and D. Gizopoulos, “GUFI: A framework for GPUs relia-
bility assessment,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), Apr. 2016, pp. 90–100.

[23] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A
dynamic binary instrumentation framework for NVIDIA GPUs,” in Proc.
Int. Symp. Microarchitecture, 2019, pp. 372–383.

Authorized licensed use limited to: Kyoto University. Downloaded on August 18,2021 at 01:43:59 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2020.2991136

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

