
Low-Cost Reservoir Computing Using
Cellular Automata and Random Forests

Ángel López Garcı́a-Arias∗, Jaehoon Yu†, and Masanori Hashimoto∗
∗ Osaka University, Osaka, Japan

Email: {a-lopez, hasimoto}@ist.osaka-u.ac.jp
† Tokyo Institute of Technology, Tokyo, Japan

Email: yu.jaehoon@artic.iir.titech.ac.jp

Abstract—High-performance image classification models in-
volve massive computation and an energy cost that are unaf-
fordable for resource-limited platforms. As a solution, reservoir
computing based on cellular automata has been proposed, but
there is still room for improvement in terms of classification
cost. This research builds on the previous work introducing
enhancements at both the algorithmic and architectural level.
Using a random forest classifier with binary features completely
eliminates multiplication operations and 97% of addition oper-
ations. Also, memory usage can be decreased by pruning 82%
of the least relevant augmented features. An architecture with
an increased level of parallelism which processes images in a
single pass reduces memory accesses, and reduces 60% of logic
by optimizing FPGA mapping. These speed, power, and memory
optimizations come at an accuracy tradeoff of a mere 0.6%

I. INTRODUCTION

Image classification models have followed the trend of
increasing their computational complexity to achieve better
accuracy. Despite the rising demand for computer vision
applications for embedded and mobile systems, this trend
is difficult to follow for these resource-limited platforms.
Therefore, models that prioritize processing efficiency rather
than accuracy are demanded. Thanks to the simplicity of its
computation, reservoir computing has attracted attention as a
framework for efficient pattern recognition. In this research
we focus on a reservoir based on cellular automata (ReCA)
for fast and energy-efficient image classification [1].

Although cellular automata provide a low computation
cost reservoir, the inflated amount of features considerably
increases computation in the classifier. This research proposes
methods for optimizing computation cost and memory usage
of the ReCA image classifier by using random forest with
binary features as the output pattern analyzer. Also, it presents
an architecture targeted at FPGA that improves the reservoir’s
data usage and hardware mapping.

The rest of this paper is structured as follows. Section II
introduces related works and how to reproduce the existing
method. Section III proposes algorithmic optimizations to
the previous model, and Section IV proposes a hardware
accelerator architecture that enhances FPGA implementation
efficiency. Finally, Section V concludes this paper and dis-
cusses future work.

Fig. 1. Reservoir Computing model.

II. RELATED WORK

This section briefly describes reservoir computing, cellular
automata, and the previous work on ReCA applied to image
classification, in order.

A. Reservoir Computing

Reservoir computing (RC) is a way of circumventing the
difficulty of learning the parameters of recurrent layers in
recurrent neural networks. As shown in Fig. 1, RC uses fixed
weights in the input and hidden layers, only updating in the
learning process the weights of the output layer. The fixed
hidden layers are referred to as the reservoir, which has to be
able to retain the information effectively. The output layer is
referred to as the readout, and it consists of a simple classifier.

RC models are not limited to neural networks. There exist
algorithmically and physically different types of dynamical
systems that serve as reservoirs. Theoretically, any dynamical
system can serve as a reservoir, as long as it maps inputs non-
linearly into a higher-dimensionality feature space, and has
fading memory. Most importantly, it is generally recommended
to use a system with behavior on the edge between stability
and chaos [2]. In RC models, the simplicity of the readout
classifier can be leveraged to implement efficient hardware by
coupling it with a computationally cheap reservoir. ReCA has
been proposed for this purpose in [3] and [4].

B. Cellular Automata and Elementary Cellular Automata

Cellular automata (CA) are simple dynamical systems with
a discrete state that evolves in discrete time steps. The evolu-
tion is determined by a simple rule based on the state of the

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on November 05,2020 at 05:47:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Rule 90, its Wolfram Code, and the fractal pattern it generates.

neighboring cells and its own. Depending on the rule used, CA
can exhibit a wide variety of behaviors, some being capable
of computation. These rules, which are close to the edge of
chaos [5], can be used effectively as reservoirs .

Elementary cellular automata (ECA) are one-dimensional
binary CA. Their evolution is determined by the state of the
two neighboring cells and their own, and thus all the 22

3

=
256 possible rules can be named Rule 0 to Rule 255 by a
convention (known as Wolfram code [6]), illustrated in Fig. 2.

C. ReCA Applied to Image Classification

Although RC is mainly used for processing sequential data,
ReCA has been used for implementing static image classifiers.
The reason for this is the low computational complexity of
the model compared to other image classifiers, which can be
too high for mobile or embedded systems, as is the case of
convolutional neural networks.

Applying CA to images is not trivial. This paper follows
the same approach as [1], explained hereafter and illustrated
on Fig. 3, to process the 28×28 8-bit grayscale images of the
MNIST handwritten digit dataset [7].

First, the input image is split into eight channels: one for
each of the 8 bits of the pixels. Each channel is processed
independently. The data of each layer serves as the initial state
of the ECA, which is applied to rows and columns separately
with a fixed boundary condition. The two resulting images are
combined with a bitwise XOR. This process is repeated for
M iterations, which in addition to the original input, form a
set of M + 1 images. Lastly, a pooling layer with a 2 × 2
window, stride 2, and no padding is applied to this set to get
the feature vector for the readout.

After testing with all ECA rules, [1] found Rule 90 to
be the most effective reservoir, which is consistent with our
reproduction experiment. Experiments in [3], [4], [8], and
[9] also found Rule 90 standing out in different tasks. One
explanation for the better performance of Rule 90 might be its
self-replicating nature. From a single non-zero cell, this rule
generates the fractal known as the Sierpiński triangle shown
in Fig. 2. When applied to multiple pixels, replicated data

Fig. 3. ReCA image classification scheme.

expands while also interacting with other replicated bits, which
may explain the efficiency at feature expansion of Rule 90.

The original implementation uses a linear classifier as read-
out, trained using a softmax regressor implemented with the
limited memory BFGS optimizer provided by the Scikit-Learn
[10] library for Python. The MNIST dataset is split between
training and test data at a 6 : 1 ratio, and the training dataset
is augmented twice using elastic distortion. The reproduction
of this implementation was able to obtain a test accuracy of
97.3% using the reported hyperparameters (a regularization of
C = 0.04 and a maximum number of iterations of 1000).

This readout uses all the pixels of the M + 1 images
to feed a linear classifier, thus having a feature vector of
f = (M+1)·h·w

4 elements, where h and w are image height
and width, respectively. This vector is linearly combined with
a f × c weight matrix to get a score for each of the c = 10
classes, being the highest scoring one the classification result.
Although this classifier is simple compared to multi-layer
neural network classifiers, it has a high computational cost
compared to the reservoir. The numbers of multiplications and
additions are given by

multiplications = f ·c and # additions = (f−1) ·c. (1)

The number of operations needed for linear combination scale
linearly as the number of features increases, making it ill-
suited for a feature expansion model such as ReCA.

III. PROPOSED MODEL OPTIMIZATION

For solving the computational cost and scalability issues
mentioned above, the proposed ReCA classifier uses random
forests with binary features extracted from a set of features
augmented by ECA. This section explains the details of the
proposed method and its evaluation results.

A. Random Forest Classifier

Aiming to reduce the computational cost of the ReCA
readout, this paper proposes to use instead a random forest
(RF) classifier instead of a linear model. RF consists of
an ensemble of decision trees, which use comparators as
their fundamental operation. Since comparison is performed
similarly to addition in standard processors, we consider them
equivalent operations. Then, the number of operations in the
worst case for RF is given by

multiplications = 0 and # additions = t · d, (2)

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on November 05,2020 at 05:47:52 UTC from IEEE Xplore. Restrictions apply.

where t is the number of decision trees, and d is their maxi-
mum depth. RF entirely eliminates multiplication operations,
which are the most computationally expensive. Furthermore,
its complexity is solely determined by the number and size of
the trees, independently of the number of features.

Using M = 16 ReCA iterations, an RF classifier with
t = 400, d = 20, and entropy as criterion for splitting nodes,
achieved a test accuracy of 97.0%, showing only a slight
change in accuracy despite the large computation reduction.

B. Single-bit Features

Since RF uses no multiplication operations, it is unnecessary
to merge back the bits coming out of the ECA layers to
interpret them as 8-bit unsigned integers. Treating each output
pixel as a feature reduces the number of operations required for
classification. The number of comparisons needed in the worst
case is still determined by t · d, but with single-bit features,
these comparators are single-bit. Since an 8-bit comparator
is built with eight single-bit comparators (full adders), in
specialized hardware the number of operations can be reduced
by a factor of 8 if using single-bit features. Making the
computation at a bit level is straightforward in the hardware
implementation, and also simplifies the maxpool layer by
avoiding the 8-bit unsigned reinterpretation.

The RF classifier described in Section III-A, trained with
single-bit features, achieved a test accuracy of 96.0%.

C. Iteration Pruning

Unlike data augmentation, which only adds computation
to the training phase, feature augmentation may increase the
complexity of the model both in training and inference. Al-
though this is not a concern with an RF readout, extra features
also require more memory and data transfers. Therefore, it
is important to have a mechanism that discerns the relevant
augmented features and prunes the rest. Since RF does this
by design, being able to rank the features by importance, a
straightforward approach is to prune the features regarded by
the RF as less relevant. Nonetheless, this research suggests a
more aggressive approach based on experimental observation.

Not all ECA iterations contribute equally to the readout.
Training independent linear classifiers for each iteration of
Rule 90 and comparing their classification error suggests that
iterations 0 (the original data), 8, and 16 make a significantly
bigger contribution than the rest (Fig. 4).

Training the RF classifier with only on iterations 0, 8 and
16, thus pruning 82% of features, achieves a test accuracy
of 96.7%, only slightly altering classification accuracy. This
suggests that the RF was not selecting these features in the
first place, considering them less important. Pruning features
can vastly reduce the memory usage in hardware, improving
speed and power efficiency.

It is interesting to notice how the classification error per
iteration loosely follows the tendency of self-similar Gould’s
sequence, which counts the number of active cells at each
layer of Sierpiński’s triangle. The intuition behind this is that
valleys of this sequence (found at powers of two) correspond

Fig. 4. Classification error for each of the single-iteration trained classifiers,
and Gould’s sequence scaled for comparison.

TABLE I
NUMBER OF OPERATIONS FOR DIFFERENT CLASSIFIERS

Classifier Accuracy # Mult. # 1b Add. Features
(Bytes)

Linear Combination 97.3% 33,320 266,480 3,332

Random Forest 97.0% 0 64,000 3,332

RF, binary features 96.0% 0 8,000 3,332

RF, pruned bin. features 96.7% 0 8,000 588

to the iterations when the reservoir is less chaotic. This
observation could be used to predict the iterations with a
higher contribution to accuracy, pruning the rest to keep the
feature vector size from exploding when increasing the number
of ECA iterations in the reservoir.

D. Evaluation Results

Table I compares the accuracy, number of operations, and
size of the feature vector for all the classifiers described in this
section. The shown number of additions corresponds to the
number of single-bit add operations. After the algorithmic im-
provements introduced, the ReCA classifier uses 100% fewer
multiplications, i.e. no multiplications, 97% fewer additions,
and 82% fewer features, with a slight accuracy drop of 0.6%.
These reductions directly translate into cuts in computation
and memory usage, guaranteeing a faster and more energy-
efficient hardware implementation.

IV. ARCHITECTURE FOR RECA FEATURE GENERATION

This section describes the hardware architecture for ReCA
feature generation, which targets at FPGA implementation.

A. Architectural Principles

In order to achieve a fast and efficient implementation,
this architecture has been designed with the following three
considerations:

1) Level of Parallelism: The ReCA model can be highly
parallelized, since all the ECA are independent of each other,
and channels are processed independently. Ideally, a matrix of
28 × 28 ECA processing units could be employed for each
layer, performing an iteration in a single cycle. However, that
circuit would have a large area. The proposed architecture
parallelizes at layer and line levels by using an array of 8
processing elements (Figs. 5 and 6), which process the 8
channels of one line in parallel.

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on November 05,2020 at 05:47:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. ECA processing unit. Since the horizontal border is fixed, this circuit
is synthesized as a 6-input LUT.

Fig. 6. The Processing Element is formed by a 3-line buffer FIFO and a line
of 28 ECA processing units. U, C, D, L and R stand for up, center, down,
left and right.

2) FPGA Mapping Optimization: For reducing FPGA re-
source utilization, the ECA processing unit has been designed
to make maximal use of the fundamental building block of
FPGAs: the logic block (LB). Specifically, it targets FPGAs
whose LB has a 6-input look-up table (6-LUT). Since the
design parallelizes at the line level, the horizontal boundary
is statically determined by the horizontal position of the ECA
processing unit. By setting the horizontal boundary condition
as a fixed input, each ECA processing unit is synthesized as
a 6-input, 1-output circuit, and thus is efficiently mapped to a
6-LUT (Fig. 5). It shall be noted that this is independent of
the chosen ECA rule.

3) Memory Transfer Optimization: Memory read and write
operations constitute the main bottleneck for hardware accel-
eration, in addition to being the most energy expensive. This
issue is worse in the case of off-chip memory reads. For this
reason, it is crucial to reduce to a minimum the number of
times that the accelerator loads data. The proposed architecture
does so by processing each iteration in a single pass, loading
each pixel only once.

To achieve this, an FIFO buffers three lines of the input
(Fig. 6), which is all the data needed to output one line. This
data is fed to an array of 28 ECA processing units, which
calculate the next state for each pixel of the central line in a
single cycle, after what the next line is loaded. At the time
a pixel leaves the line buffer, all its neighboring ECAs have
been updated, and thus is never loaded again.

Fig. 7. Diagram of the ReCA accelerator architecture.

TABLE II
FPGA RESOURCE UTILIZATION COMPARISON

CLB LUTs # CLB Registers # BRAM

This work 392 822 8

Reproduction of [1] 971 822 8

B. ReCA Architecture Design

As illustrated in Fig. 7, the proposed hardware processes
each of the eight layers parallelly. The pipeline starts at a
double-port BRAM, which contains the input image. Every
clock cycle, the PE fetches and processes one image line.
The processed line is written back to the BRAM for the
next iteration and also fed to the maxpooling unit. Since
the maxpool window has a height of 2 and no overlap, the
maxpool unit outputs feature data every two cycles.

This design takes 28 cycles to process each iteration,
totaling to 17 · 28 = 476 cycles per input. The first line of the
original input is fed in parallelly to the PE and maxpooling
unit to avoid an extra latency cycle.

Table II compares resource utilization for the synthesis of
the proposed design and a reproduction of the architecture
proposed in [1]. By combining vertical and horizontal ECA
processing in a single unit, and optimizing it for 6-LUT, this
design reduces almost 60% of LUT usage.

V. CONCLUSION

This paper proposes algorithmic optimizations that elimi-
nate multiplications and largely reduce the rest computation
and memory requirements of the ReCA classifier in exchange
for a minimal accuracy tradeoff. Additionally, it describes an
architecture that optimizes dataflow and FPGA mapping.

Future work will implement in FPGA the proposed architec-
ture in addition to an RF classifier, in pursuance of measures
of power consumption and speed.

Further experiments to improve the model may include
using different mappings from the input to the reservoir, as the
ones employed in [4] and [8], using a multilayer architecture,
such as the one proposed in [9], or applying a combination of
different CA rules, as explored in [8] and [11]. Additionally,
tests with more complex datasets must be performed.

ACKNOWLEDGEMENT

This work was supported by JST CREST Grant Number
JPMJCR18K2, Japan.

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on November 05,2020 at 05:47:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Morán Costoya, C. F. Frasser, M. Roca, and J. L. Rossello,
“Energy-efficient pattern recognition hardware with elementary cellular
automata,” IEEE Transactions on Computers, pp. 1–1, 2019.

[2] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, “Recent
advances in physical reservoir computing: A review,” Neural
Networks, vol. 115, p. 100–123, Jul 2019. [Online]. Available:
http://dx.doi.org/10.1016/j.neunet.2019.03.005

[3] Ö. Yilmaz, “Reservoir computing using cellular automata,” CoRR, vol.
abs/1410.0162, 2014. [Online]. Available: http://arxiv.org/abs/1410.0162

[4] Mrwan Margem and Özgür Yilmaz, “An experimental study on cellular
automata reservoir in pathological sequence learning tasks,” 2016.

[5] C. G. Langton, “Computation at the edge of chaos: Phase transitions
and emergent computation,” Physica D: Nonlinear Phenomena, vol. 42,
no. 1, pp. 12 – 37, 1990.

[6] S. Wolfram, A New Kind of Science. Wolfram Media, 2002.
[7] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[Online]. Available: http://yann.lecun.com/exdb/mnist/
[8] S. Nichele and M. S. Gundersen, “Reservoir computing using non-

uniform binary cellular automata,” CoRR, vol. abs/1702.03812, 2017.
[Online]. Available: http://arxiv.org/abs/1702.03812

[9] S. Nichele and A. Molund, “Deep reservoir computing using cellular
automata,” CoRR, vol. abs/1703.02806, 2017. [Online]. Available:
http://arxiv.org/abs/1703.02806

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[11] N. R. McDonald, “Reservoir computing and extreme learning machines
using pairs of cellular automata rules,” CoRR, vol. abs/1703.05807,
2017. [Online]. Available: http://arxiv.org/abs/1703.05807

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on November 05,2020 at 05:47:52 UTC from IEEE Xplore. Restrictions apply.

