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Abstract—Power supply noise induces extra timing delay or
even malfunctions in modern power-demanding VLSI chips.
Traditional reactive noise mitigation is often too late to suppress
emergent supply noise due to the long latency of voltage boosting.
This paper proposes a proactive method for mitigating emergent
supply noises and avoiding unexpected failures in power-hungry
VLSI designs with two contributions. First, a major-minor volt-
age regulator (MMVR) structure, which enables quick and wide-
range voltage scaling with small ripples, is proposed. Second, a
lightweight current predictor consisting of a six-layer decision
tree regressor achieves over 0.98 correlation for 50-cycle-ahead
prediction in 25 RISC-V benchmark programs. Experimental
results with a multi-core RISC-V design show that the proposed
method mitigates the supply noise within 30 mV while the noise
exceeds 70 mV with the conventional reactive mitigation. Also,
the average supply voltage is compensated during the power-
demanding operation.

I. INTRODUCTION

With the scaling down of the technology node, both power
consumption and supply noise are continuously increasing,
which causes timing degradation or even malfunctions in
modern power-hungry VLSI chips. Traditional reactive noise
mitigation often fails to compensate for emergent supply
noise due to the long latency of voltage boosting through the
power delivery network (PDN). For concealing such latency,
power or current future prediction is studied toward proac-
tive noise mitigation [1]–[4]. However, existing long-term
prediction requires high computation cost and, consequently,
longer computation latency, which makes further longer-term
prediction requirements. This negative loop makes proactive
noise mitigation less effective.

In this paper, we manage to break this negative loop from
two aspects. The first is to relieve the prediction length require-
ment by introducing scalable major-minor voltage regulator
(MMVR) structure. The second is to lighten the prediction cost
by developing a compact short-term average current predictor.
The background and contribution to these two aspects are
described in the following.

A. Related work and contribution to voltage regulator

Proactive noise mitigation requires quick and continuous
voltage scaling with a wide scaling range and small voltage

ripple. Switched capacitor voltage regulator (SCVR) is a
popular off-chip power supply solution, but off-chip SCVR
has limited voltage scaling flexibility and long response time.
For addressing this problem, C. Zhan [5] and Y. Lu [6] use
cascade low-dropout (LDO) voltage regulator as a secondary
linear regulator for fast voltage regulation purposes. However,
LDO energy efficiency drops during power-hungry operation
and emergent large voltage droop. Hence, LDO is commonly
applied for small-range voltage scaling or light load current
scenarios. To extend the voltage scaling range, T. Andersen et
al. [7] and J. Jiang et al. [8] try to scale the voltage using
multiple-conversion-ratio SCVRs or reconfigurable SCVR.
However, these solutions provide low ripple voltages only at a
few discrete voltage levels. When dynamically switching the
conversion ratio, the output ripple can be beyond 70 mV, which
is 8.2% of the load voltage [7]. Meanwhile, J.-H. Lin et al. [9]
use a switching regulator to scale the load voltage. However,
the inductor component in this solution introduces over 10µs
voltage scaling latency, which is too long to mitigate emergent
voltage droop.

To address this challenge, we propose a major-minor voltage
regulator (MMVR) structure, which consists of two SCVRs
whose flying capacitance is much different. MMVR can pro-
vide continuous wide-range voltage scaling capability by mod-
ulating the switching frequency of the minor voltage regulator.
In our experiment, even during power-hungry operation, the
MMVR has achieved over 3X voltage scaling range compared
with traditional SCVR while the ripple is within 16 mV, which
is 1.6% of the load voltage.

B. Related work and contribution to short-term prediction

Proactive noise mitigation relies on accurate predictions
with low hardware and computational cost. Meanwhile, the
prediction length, namely how far future is predicted, should
be sufficiently long so that noise mitigation can take effect in
time for noise occurrence. In [1]–[4], power, voltage drop, and
timing delay prediction are studied. These studies commonly
use internal hardware signals as input features, and use the
neural network (NN), or linear regressor such as support
vector machine (SVM), as a prediction engine. However,
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even though hardware signal features are carefully selected,
the computational cost of NN prediction is overwhelmingly
high, and the prediction can cost computation time at mil-
liseconds level [4], which is unacceptable for run-time noise
mitigation purpose. As for the SVM prediction engine, the
prediction length reaches only 16 cycles [3]. Meanwhile,
accurate SVM prediction is often achieved with non-linear
kernel functions and a large number of support vectors. This
expensive computation requires large hardware overhead and
longer computation time of over 40 cycles [1], which requires
even longer prediction length. Thus, a negative design loop
arises and prevents proactive noise mitigation.

To address this negative loop challenge, we propose
a lightweight short-term average current predictor which
achieves 50-cycle prediction length and over 0.98 correlation
with a six-layer decision tree (DT) regressor.

C. Overall contribution and paper organization

We combine the above voltage regulator and predictor
solutions to proactively mitigate the supply noise in a multi-
core RISC-V PDN system. Experimental results show that the
proposed method can mitigate the supply noise within 30 mV
while the noise exceeds 70 mV with the traditional reactive
mitigation. The average supply voltage is also compensated
throughout the power-hungry operation period.

The rest of this paper is organized as follows. Section II
presents the overall structure of the proposed proactive supply
noise mitigation system. Section II-A introduces the MMVR
structure. Section II-B presents the structure and training
flow of short-term current predictor followed by the noise
mitigation control module in Section II-C. Section III shows
experimental results, and Section IV draws the conclusion.

II. PROPOSED PROACTIVE NOISE MITIGATION METHOD

Fig. 1 shows the overall PDN structure with the proactive
supply noise mitigation, where off-chip PDN and a multi-core
processor are included in the original design. In this work,
RISC-V Rocket core [10] is used in the processor module
as an example. It is noteworthy that the proposed method is
basically independent of the processor core, while minor ISA-
dependent adaptation is necessary.

The first key component is the major-minor voltage regu-
lator (MMVR), which is shown as orange boxes in Fig. 1.
The major VR is placed outside the chip and serves as
the main power supplier. The minor VR is placed close to
the cores, possibly on the chip, and serves as a voltage
regulator to mitigate noise. The second key component is
the prediction and control units, which are shown as blue
boxes in Fig. 1. For each RISC-V core, the dedicated current
predictor obtains instruction information from IO ports and
then predicts future average current. The controller sums up
the prediction results and decides noise mitigation action using
a lookup table (LUT). A digital voltage sensor is equipped to
override the mitigation action if the voltage is too high or too
low for fail-safe purposes. Finally, the action signal is sent to
minor VR for noise mitigation. The remaining of this section

Fig. 1: Proposed structure for proactive supply noise mitiga-
tion. Red lines are power wires, black lines are ground wires,
and blue lines are control signal wires.

Fig. 2: MMVR connec-
tion.

Fig. 3: Major VR with 2:1
conversion ratio.

presents the details of MMVR, current predictor, and controller
components, accordingly.

A. Scalable major-minor voltage regulator

We propose a scalable switched capacitor voltage regulator
called a major-minor voltage regulator (MMVR). MMVR
consists of major VR and minor VR, and its simplified
connection is depicted in Fig. 2. Major VR serves as a major
power supplier with a fixed conversion ratio and large flying
capacitance. A typical 2:1 major VR structure is shown in
Fig. 3, where the switches toggle with two-phase pulses φ1
and φ2. Cmajor denotes the flying capacitance of major VR.

The minor VR with smaller flying capacitance is designed
for voltage scaling, and it has conversion-ratio reconfigurabil-
ity. By changing the switches status, the minor VR can operate
in 2:1 normal mode (Fig. 4), and 3:2 scaling mode (Fig. 5).
When an emergent power requirement arises, the minor VR
is switched to the scaling mode. Also, the output voltage is
scaled by modulating the switching frequency of minor VR.
In this way, the output voltage of MMVR, Vout, can be scaled
between 1/2 and 2/3 of input voltage Vin.

SCVR causes voltage ripple every time the switches are
turned on and off due to its operation principle. In MMVR, the
ripple depends on the operation mode. When both the major
and minor VRs work in normal mode with the same switching
frequency, the dynamic current flows like the blue dot line in
Fig. 2, and MMVR is equivalent to a traditional SCVR. As is
well studied in [11], the output ripple in normal mode can be
approximated as:

Vr norm =
αI

fsw(Cmajor + Cminor)
, (1)
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Fig. 4: Minor VR in nor-
mal mode with 2:1 con-
version ratio.

Fig. 5: Minor VR in scal-
ing mode with 3:2 conver-
sion ratio.

where α is a structural coefficient for both major VR and
minor VR, I is dynamic load current that includes only AC
component, fsw is MMVR switching frequency, and Cmajor
and Cminor are VR flying capacitance of major VR and minor
VR, respectively.

On the other hand, when the minor VR works in voltage
scaling mode with 3:2 conversion ratio, the output voltage of
the minor VR is higher than that of the major VR. Then, the
dynamic current goes from the minor VR to the major VR in
addition to the load, which is illustrated as the red dot line in
Fig. 2. Considering that the minor VR has a different conver-
sion ratio, structural coefficient, and switching frequency, the
ripple discussion in [11] is extended accordingly. The dynamic
load current I of MMVR can be approximated as:

I = Iminor − Imajor

=
Vr scalefminorCminor

αminor
− Vr scalefmajorCmajor

αmajor
,

(2)

where Imajor and Iminor are the dynamic currents that go
through major VR and minor VR, and Vr scale is the dynamic
load voltage, which is the output voltage ripple. Then, the
MMVR output ripple can be derived as:

Vr scale =
I

fmajorCmajor

αmajor
− fminorCminor

αminor

, (3)

where fmajor and fminor are switching frequencies of major
VR and minor VR. Cmajor/Cminor and αmajor/αminor are
VR flying capacitances and VR structural coefficients of major
VR and minor VR, respectively. Eq. (3) suggests increasing
the capacitance difference between major VR and minor
VR to reduce the ripple. Therefore, we intentionally use a
small flying capacitance for minor VR. In our experiment in
Section III, the capacitance ratio reaches ten. Such a small
capacitor can be integrated into the chip package or even on
the chip, and hence minor VR can be placed close to cores,
and fast voltage response becomes feasible.

B. Lightweight short-term current predictor

Next, this section details the short-term current predictor.
Fig. 6 shows the training and prediction flows of the predictor,
where the left side illustrates the off-line training stage, and

Fig. 6: Training and prediction flows with current predictor.

the right side shows the on-line current prediction flow. The
key training and prediction procedures are represented in blue
blocks.

In the off-line training stage, firstly, the training data is
prepared from benchmark programs. Simulation is performed
to generate current profiles and obtain the instruction at IO
ports for every cycle with logic/circuit simulator or power
estimation tools. Then, we construct a set of features and
labels from the instructions and raw current profiles. After
that, a decision tree-based predictor is trained. The predictor
hardware is implemented accordingly using the training result.
In the on-line current prediction stage, firstly, the instructions
are obtained from IO ports. Next, the features are constructed
and given to the predictor. The prediction results are collected
to the controller for MMVR noise mitigation.

The label and feature construction, and hardware implemen-
tation are discussed in the following.

1) Prediction label construction: We use a load current
value averaged over a certain duration as the training label
because of the following two reasons. Firstly, the load current
is independent of PDN, and therefore we can decouple the on-
chip current prediction from the design of the noise controller
and voltage regulator. Secondly, the averaged current value
can be used as the load current at the PDN port since high-
frequency cell switching current is naturally smoothed out by
the parasitic impedance, especially by on-chip capacitance.

To generate the training label, we use a simple moving
average (SMA) algorithm as a low pass filter to generate the
average current value. The averaged current at k-th clock cycle
is defined by:

ISMA(k) =

∑k
j=(k−P+1) I(j)

P
, (4)

where I(j) is the average current within j-th clock cycle and P
is the average period represented by clock cycle count. Here, P
is determined by maximizing the summation of the correlation
coefficients between voltage droop profile V i and averaged
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(a) Voltage profile at PDN load port.

(b) Average current profile with different P values.

Fig. 7: Determination of averaging period P using voltage-
current correlation.

current profile IiSMA multiplied by −1 across N voltage drop
events:

maximize
P

N∑
i=1

correlation(V i,−1 · IiSMA). (5)

Fig. 7 exemplifies the P selection process. First, we run a
transient simulation and get the voltage profile at the PDN
load port with an actual current profile and PDN model.
Next, we collect the profiles of voltage droop events like
Fig. 7(a) using, for example, a voltage drop threshold. For
those events, we derive average current ISMA(k) by varying
P , and calculate the correlation with Eq. (5). Then, we choose
P that maximizes the average of the correlations. In the
RISC-V design that will be explained in Section III-A, the
correlation reaches the maximum of 0.924 with P=90. In this
case, the correspondence between the voltage in Fig. 7(a) and
the current in blue in Fig. 7(b) is well preserved while the high-
frequency components are eliminated. If P is not appropriately
selected, for example, 500 cycles, the correlation drops to
0.644, and the current pulse becomes much wider than the
voltage droop, as shown by the red line in Fig. 7(b). Such a
label misleads the noise mitigation action.

Next, ISMA(k) is shifted by L(> 0) clock cycles, where
L corresponds to future prediction length. Then, the training
label, i.e., the future averaged current at k-th clock cycle is:

I ′SMA(k) = ISMA(k + L). (6)

We will determine the prediction length L according to pre-
diction accuracy, correlation, and implementation cost with
experimental evaluations in Section III-C.

2) Prediction feature construction: Next, we discuss fea-
tures suitable for future prediction supposing RISC-V instruc-
tion set as a representative one. Inspired by previous work
that the processor power consumption is closely related with
executed instructions [12], [13], the fundamental idea of this
work is to exploit the temporal locality of processor operation

TABLE I: Instruction categorization for RISC-V.

Type No. Categorization Example instruction

1 Memory load instructions lw, ld, lh, lb

2 Memory write instructions sw, sd, sh, sb

3 Branch instructions bne, blt, bge, blt

4 ALU instructions add, sub, or, and

5 Integer multiply division mul, div, rem

6 CSR access instructions csrrw, csrrc, csrrwi

7 PC jump instructions j, auipc, c.j

8 Floating point instructions fsub, fadd, fmul

9 Routine switch instructions ret, addi sp a0 1

and then suppose the average current in the near future has a
strong correlation with the present and previous instructions.
For example, when the recently fetched instructions include
a lot of floating-point calculation, floating-point unit (FPU)
is more likely to dominate the power consumption in several
cycles. Furthermore, the instructions which will be fetched
immediately after now tend to include floating-point instruc-
tions. Compared with conventional approaches that use only
the current hardware signals, the longer-term prediction is
expected to be feasible. On the other hand, the number of
available instructions is huge. Then, for facilitating the feature
construction, we categorize instructions into a small number
of groups, each of which has similar hardware usage, such
as FPU, cache, register files, etc., resulting in similar power
dissipation.

To put the above idea into use, we firstly decode the
instructions from the RISC-V IO port and then categorize the
instructions into nine types, according to Table I. We define
instruction type Ti(k) of k-th clock cycle as:

Ti(k) =

{
1 if k-th instruction belongs to type i,
0 otherwise.

(7)

We use an exponential moving average (EMA) algorithm
to derive features Fi(k) in k-th cycle that represents how
frequently i-th instruction type is fetched recently, which does
not require the on-chip memory for saving the history of
instruction type.

Fi(k) = αTi(k) + (1− α)Fi(k − 1), (0 < α < 1). (8)

When Fi(k) is close to 1, most of the recently fetched
instructions belong to i-th instruction type. α is a coefficient
that adjusts the weight on the current and historical instruction
type. When α is close to 1, Fi(k) is more sensitive to
current instruction type. Conversely, when α is close to 0,
longer instruction type history is included. α is determined by
maximizing the summation of correlation between feature Fi
and averaged current profile ISMA:

maximize
α

M∑
i=1

|correlation(Fi, ISMA)|, (9)
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where M is the feature dimension. The result of (1/α) can
be round to the nearest power-of-two integer to further reduce
hardware implementation cost.

3) Predictor implementation cost: We use DT as the pre-
diction engine since the algorithmic complexity, and memory
requirements for DT are much lower compared with SVM
and NN. This advantage is critical for quick prediction with
low hardware cost. Secondly, DT has non-linear regression
capability even with simple computation. On the other hand,
the SVM regressor, which is used in conventional works [1],
[2], uses a linear kernel, which has the limited capability to
regress training data. When SVM uses non-linear kernel func-
tions, the regression to non-linear functions becomes possible.
However, the computational cost for such kernel functions is
usually very high. Therefore, non-linear kernel SVM is not
considered in this work. Neither NN prediction is selected in
this work because the computational cost of multi-layer NN
inference is even higher than the SVM solution.

The hardware cost of DT predictor, denoted by H , consists
of two factors:

H = Hfeature(M) +Hnode(2
D − 1), (10)

where Hfeature is the hardware cost for instruction decoding,
categorizing, and feature construction. This cost is roughly
proportional to the feature dimension M , which is nine in
this work with RISC-V core, and the features are listed in
Table I. Hnode is the cost for decision nodes, and it increases
exponentially with decision tree depth D. Therefore, small
tree depth is highly desirable. The advantage and the necessary
depth of DT will be experimentally discussed in Section III-C.

C. Noise mitigation controller

The noise mitigation controller sums up the predicted values
from the predictors and then uses a lookup table (LUT) to
decide noise mitigation action, that is, to set the conversion
ratio and the switching frequency of the minor VR. As an
example, if a current jump is predicted, the controller will
set the minor VR to voltage scaling mode and increase the
switching frequency according to LUT. Note that the load
voltage is affected by both PDN impedance and VR operation.
To reduce the mitigation response time, we do not separately
construct LUT for PDN and VR. Instead, we use one LUT that
incorporates the relationship between the current prediction
and the noise mitigation action, which is derived from the
simulation that includes PDN and VR models.

For preventing wrong mitigation action at a very high or
very low voltage level, an on-chip digital voltage sensor is
introduced to override the wrong LUT based prediction action.
A simple digital voltage sensor structure is exemplified in
Fig. 8, which is found in [14]. Here, the four-bit output varies
from 0000 to 1111, depending on the supply voltage level. For
example, if the voltage is too low, the sensor output is 1000,
voltage scaling down action is prohibited, and only scaling
up action is allowed. The entire overriding rule is shown in
Table II. Now, all the critical components of the proactive
noise mitigation system in Fig. 1 have been prepared.

Fig. 8: Digital voltage sensor.

TABLE II: Overriding rule table with sensor output.

Output Voltage range Overriding rule

0000 Ultra low voltage Perform voltage scaling up
1000 Low voltage range Voltage scaling down prohibited
1100 Normal voltage Accept all LUT based action
1110 High voltage range Voltage scaling up prohibited
1111 Ultra high voltage Perform voltage scaling down

Fig. 9: PDN setup for experiments. Red lines are power wires,
black lines are ground wires, and blue lines are control signal
wires.

III. EXPERIMENTAL RESULTS

This section first introduces the experimental setup and then,
presents the performance of MMVR and current predictor.
Finally, we perform the system-level experiment by applying
the proactive noise mitigation method to a multi-core RISC-V
system to demonstrate the effectiveness of the proactive noise
mitigation method.

A. Experimental setup

We use 64-bit RISC-V Rocket core [10] as chip load, and
OpenRAM [15] for cache implementation. The core logic
and cache are synthesized with NanGate 45 nm Open Cell
Library. Nominal voltage is 1.1 V. The clock frequency is set
to 0.5 GHz for both the core and cache model. Totally 25
test benchmark programs are prepared to cover most of the
available functionality and usage scenarios. These benchmark
programs are bare-metal C programs, which are derived from
RISC-V regression test benchmarks [16], and MiBench bench-
marks [17] (i.e. qsort, CRC32, Dijkstra, sha, Stringsearch,
Bitcnts, basicmath, FFT, and IFFT). The description of bench-
marks, indexed from 1 to 25, are summarized in Table III.

Then, the IO values regarding instructions and current
profiles are generated via transistor-level simulation. Next,
we perform the feature and label construction, and the total
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Fig. 10: Comparison in voltage scaling
range.

Fig. 11: Comparison in ripple voltage. Fig. 12: MMVR efficiency versus load
voltage.

TABLE III: Benchmark programs used in the experiment.

Benchmark index Source Operation scenario

2,4,6,8,12,13 RISC-V Basic ALU related operation

1,3,5,11 RISC-V Floating-point operation

7,9,10 RISC-V Integer multiply and division

1,2,10,11,14-16 RISC-V Branch, function call

17, 21-23 MiBench Automotive, industrial, office

18-20 MiBench Network

18,24,25 MiBench Telecomm

number of data samples is 4.59 million, where 50% of the
data for training and the rest for testing. P in Eq. (4) is set
to 90 according to Eq. (5), and α in Eq. (8) is set to 1/32
according to Eq. (9). DT predictor is trained off-line with
Sklearn package [18]. The total flying capacitance of major
VR is 50 nF, and that of minor VR is 5 nF.

In the system-level experiment, Fig. 9 is used as an example
of simple PDN. The off-chip PDN and on-chip PDN are
simplified by lumped RLC components, where Roff chip

is 300 mΩ, Coff chip is 0.2µF, Loff chip is 100 pH, and
Con chip is 10 nF.

B. MMVR performance

We compare the performance between the proposed MMVR
and traditional SCVR in terms of the voltage scaling range.
An 800 mA current source is attached as a load to mimic the
power-hungry processor operations.

Fig. 10 shows the output voltage when the VR switching
frequency is swept. The traditional SCVR output voltage is
bounded at near 970 mV even with a high switching frequency,
and the voltage scaling range is limited within 40 mV. On the
other hand, MMVR can boost the output voltage to 1048 mV.
The scaling range is 3X larger compared with the traditional
SCVR.

Fig. 11 shows the output voltage ripple at different output
voltage levels. The maximum ripple of MMVR is 15.9 mV.
We can find MMVR and SCVR have a comparable ripple
magnitude even while the major and minor voltage regulators
are operating with different voltage conversion ratios and
different switching frequencies.

Fig. 12 shows the MMVR conversion efficiency versus load
voltage scaling range. When MMVR works in normal mode,

Fig. 13: RMSE versus prediction length.

the efficiency is identical to that of the traditional SCVR.
When MMVR works in voltage scaling mode, the efficiency
slightly drops, yet it is still above 63.5%. Note the scaling
mode is only triggered in a short emergent period, and hence
this small efficiency drop has the least impact on the overall
efficiency.

Finally, we compare the voltage scaling response time.
Conventional SCVR takes 226.9 ns to boost 10 mV load
voltage, while MMVR takes 15.6 ns. Such a short response
time relieves the prediction length requirements and makes
the proactive noise mitigation possible with 50-cycle current
prediction, which will be shown in Section III-D.

C. Performance and hardware cost of current predictor

We evaluate the performance of short-term current predictor
using root-mean-square-error (RMSE) and correlation coeffi-
cient. The RMSE is defined as:

RMSE =

√∑N
j=1(I ′SMA(j)− Î ′SMA(j))2

N
, (11)

where N is the data set size, I ′SMA(j) is the training label,
which is future averaged current at j-th clock cycle, and
Î ′SMA(j) is the prediction result. The correlation coefficient is
measured between I ′SMA(j) and Î ′SMA(j). SVM prediction
engine is chosen as a comparison, where the tolerance margin
ε is selected as 1 mA and 0.5 mA.
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Fig. 14: Correlation versus prediction length.

TABLE IV: Prediction performance and hardware cost.

DT depth #Nodes Overhead(%) RMSE(mA) Cor.

5 31 1.48 0.327 0.980

6 63 2.51 0.304 0.984

7 127 4.57 0.247 0.989

8 255 8.68 0.227 0.991

9 511 16.91 0.205 0.992

10 1023 33.37 0.184 0.994

SVM ε(mA) #SVs Overhead(%) RMSE(mA) Cor.

1 701 115.41 0.752 0.910

0.5 1442 236.88 0.668 0.923

We first evaluated RSME and correlation varying the pre-
diction length. Figs. 13 and 14 show their results, where
the blue and red lines are the results of the six-layer and
ten-layer DTs, green and purple lines are the results of
SVM predictions, respectively. The deeper DT provides longer
prediction length with the same accuracy, but the correlation
still drops below 0.98 beyond 100 clock cycles. On the other
hand, the SVM predictor shows worse accuracy and correlation
at every prediction length. We select 50 clock cycles as the
prediction length because both the DTs achieve the correlation
higher than 0.98, and the RMSE is almost constant, and the
noise can be proactively mitigated, which will be shown in
Section III-D.

Next, we compare hardware cost and prediction quality
between DT and SVM predictors, where SVM uses a linear
kernel. Both the predictors are designed with 8-bit floating-
point representation having four fraction bits to save hardware
cost and improve the prediction robustness. For minimizing
the prediction latency, the predictors are designed for one-
cycle completion. The hardware overhead is defined as the
predictor area over the RISC-V core area. The comparison
results in Table IV show that the deep DT predictor can
achieve 0.994 correlation at the cost of 1023 decision nodes
and 33.37% hardware overhead. When pursuing a practical
lightweight predictor, the six-layer DT with 63 decision nodes

TABLE V: Prediction quality for validation set.

Validation case # RMSE (mA) Correlation

17, 18 0.311 0.967

18, 19 0.331 0.966

19, 20 0.341 0.981

21, 22 0.322 0.963

23, 24 0.327 0.966

Average 0.326 0.969

is sufficient to achieve over 0.984 correlation with 2.51%
overhead. Even though the SVM predictor provides worse
accuracy, the number of support vectors (SVs) reaches 701,
which requires 115.41% overhead for one-cycle computation.
Though hardware cost can be relieved by allowing multi-cycle
prediction or adopting pipeline structure, the substantial pre-
diction length that can be used for proactive voltage boosting
becomes shorter due to the latency increase and prediction
throughput decrease. Thus, the SVM prediction engine cannot
be adopted.

Thirdly, to verify the generality of the predictor, we per-
formed five rounds of validation. Each round picks two
Mibench cases as the validation set, the remaining 23 bench-
marks as the training set. The prediction quality of the val-
idation set is shown in Table V. While the average RMSE
is slightly degraded to 0.326 mA, the average correlation of
0.969 is maintained. The prediction quality of the validation
set is comparable with the full-set training result.

Fourthly, Fig. 15 demonstrates the prediction accuracy of the
DT and SVM predictors in the time domain. Here, a recursive
floating-point calculation benchmark is used as an example.
We can see that the six-layer DT shows a better correlation
with the average current profile, and the emergent current jump
and drop are closely tracked. However, the SVM prediction
induces a large variation from the actual future average current.
Especially during the entry and return operations of the main
function, as is circled in Fig. 15(b), the error of SVM miss-
prediction reaches over 7.3%. Such an error can trigger wrong
mitigation actions and delay the necessary mitigation action.

D. Proactive versus reactive noise mitigation

Finally, we demonstrate the effectiveness of proactive noise
mitigation. For this experiment, we build up a four-core RISC-
V PDN system with the proposed proactive noise mitigation
method. The system-level structure with proactive mitigation
is shown in Fig. 1. As a comparison, we also set up a reactive
noise mitigation method that modulates minor VR to boost the
voltage if the load voltage drops below the low bound. For
both the mitigation methods, we set the low voltage bound
as 1010 mV. To compare the worst-case voltage drop, we run
the same benchmark in each core, resulting in a large voltage
drop.

The voltage waveforms at the load are shown in Fig. 16,
where the blue waveform corresponds to the proactive noise
mitigation method, and the red waveform is the reactive
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(a) Six-layer DT average current prediction.

(b) SVM average curent prediction with ε=0.5 mA.

Fig. 15: Current prediction results with DT and SVM.

Fig. 16: Noise mitigation result for multi-core RISC-V PDN.

mitigation method. In the proactive noise mitigation case, the
voltage is above 1030 mV, and the voltage recovers in 40 ns.
Furthermore, the proactive noise mitigation method can stabi-
lize the average load voltage around 1060 mV, with a ripple
of less than 30 mV. As for the reactive mitigation, the voltage
drop exceeds 70 mV, and the voltage goes below the 1010 mV
bound because of the PDN latency. Also, the average voltage
drop exceeds 20 mV during the power-hungry operation period
after 115µs. The proposed proactive noise mitigation can
contribute to avoiding unexpected failures originating from
emergent voltage drop.

IV. CONCLUSION

In this paper, we have proposed a proactive noise mitigation
method that introduces MMVR and lightweight short-term
current predictor for enabling quick and continuous voltage
scaling. MMVR provides over 3X scaling range compared
with traditional SCVR even while the ripple is suppressed
within 16 mV. The current predictor, which is implemented
with a simple six-layer decision tree and achieves over 0.98
correlation for 50-cycle prediction length with the hardware

overhead of 2.51%. Finally, the system-level simulation val-
idates the effectiveness of the proposed method. The voltage
drop is mitigated within 30 mV by the proposed proactive
mitigation, while it is 70 mV for traditional reactive mitigation.
The emergent voltage droop and its risk of unexpected failure
are mitigated.
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