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Abstract—Field programmable gate array (FPGA) that utilizes
via-switches, which are a kind of nonvolatile resistive RAMs, for
crossbar implementation is attracting attention due to higher
integration density and performance. However, programming
via-switches arbitrarily in a crossbar is not trivial since a
programming current must be provided through signal wires
shared by multiple via-switches. Consequently, depending on the
previous programming status in sequential programming, unin-
tentional switch programming may occur due to signal detour,
which is called the sneak path problem. This article identifies
the circuit status that causes the sneak path problem and pro-
poses a sneak path avoidance method that gives sneak path free
programming order of via-switches in a crossbar. We prove that
sneak path free programming order necessarily exists for arbi-
trary ON-OFF patterns in a crossbar as long as no loops exist.
This article also proposes a partial reconfiguration method that
achieves the minimum number of switch programming steps
while avoiding the sneak path problem. This method contributes
to the extension of via-switch lifetime and fast reconfiguration
of the via-switch FPGA. Experimental results show that the
proposed partial reconfiguration method reduces the number
of programmed switches by 77.4% compared to the conven-
tional approach. This 77.4% reduction improves the number of
reconfigurations of the via-switch FPGA by 4.4× and reduces
reconfiguration time by 77.4%.

Index Terms—Crossbar programming, nonvolatile via-switch
field programmable gate array (FPGA), partial reconfiguration,
sneak path, switch programming order.

I. INTRODUCTION

Field programmable gate arrays (FPGAs) are gaining their
popularity since the development cost of application-specific
integrated circuits (ASICs) is elevating due to the device
miniaturization and larger scale integration. However, conven-
tional FPGAs are still inferior to ASICs regarding operating
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speed, power consumption, and implementation area [1].
These drawbacks originate from a large number of pro-
grammable switches that are included in FPGAs to acquire
reconfigurability. In static random access memory (SRAM)-
based FPGAs, which are the most widely used FPGAs, a
programmable switch is composed of a switch gate, such as
transmission gate and multiplexer, and an SRAM cell to hold
the switch state. These components consist of transistors, and
hence the switch gate has high resistance and large capaci-
tance and the SRAM cell having six transistors consumes the
large area. Therefore, SRAM-based programmable switches
lead to the degradation of interconnect performance and area
efficiency [2].

To overcome the drawbacks of conventional FPGAs, FPGAs
that exploit resistive random access memories (RRAMs) as
programmable switches instead of SRAM-based ones are
widely studied [3]–[9]. In these RRAM-based FPGAs, how-
ever, one or two access transistors per a programmable switch
are required for switch programming. The access transistor
is relatively large despite the small footprint of an RRAM-
based switch, and hence it prevents further area reduction. To
eliminate access transistors, nonvolatile via-switch is actively
developed [10]–[12]. The via-switch consists of atom switches,
which are a kind of nonvolatile RRAMs developed for appli-
cation to FPGAs, and varistors in place of access transistors.

In the via-switch FPGA, the crossbar, which has a via-
switch at each intersection of horizontal signal wire and verti-
cal signal wire, is responsible for the signal routing. However,
programming those via-switches arbitrarily in a crossbar is not
trivial since a programming voltage must be given through
signal wires that are shared by multiple via-switches. In this
case, unintentional switch programming may occur depend-
ing on the previous programming status due to signal detour,
which is called the sneak path problem (SPP). This problem
interferes the reconfiguration of FPGA, and hence the verifica-
tion of occurrence conditions and countermeasures is crucially
important.

This article is an extension of our preliminary work reported
in [13]. Reference [13] identifies the crossbar programming
status that causes the sneak path problem and proposes a
method that provides a programming sequence of via-switches
for the sneak path free programming. We prove that such an
order for sneak path free programming must exist for arbi-
trary ON-OFF patterns in a crossbar as long as no loops exist,
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and devise an algorithm to find the programming order by
representing the connection status of signal wires in a cross-
bar as a tree structure. This journal paper newly proposes
a partial reconfiguration method that minimizes the number
of switch programming steps while avoiding the sneak path
problem. This method contributes to extending the lifetime of
via-switches and speeding up the reconfiguration of the via-
switch FPGA for both user programming and manufacturing
test. Thanks to the proposed methods, any practical configu-
rations of via-switch FPGA can be successfully programmed
as we intend without the sneak path problem.

The remainder of this article is organized as follows.
Section II explains the structure of via-switch FPGA and sneak
path problem. In Section III, we investigate occurrence condi-
tions of the sneak path problem and identify the circuit status
that causes the sneak path. Section IV proposes a sneak path
avoidance method that determines the sneak path free pro-
gramming order of the via-switches in a crossbar. In Section V,
we propose a partial reconfiguration method that reduces the
number of switches to be programmed in the crossbar with-
out causing the sneak path problems. Section VI quantitatively
evaluates the advantage of the proposed methods. Concluding
remarks are given in Section VII.

II. VIA-SWITCH FPGA

A. Via-Switch

The via-switch is a nonvolatile, rewritable, and compact
switch that is developed to implement a crossbar switch by
Banno et al. [10], and it is composed of atom switches and
varistors. Here, we explain the device structure, functionality,
and characteristics in the following. The programming of the
via-switch crossbar will be explained later in Section II-B.

The atom switch consists of a solid electrolyte sandwiched
between copper (Cu) and ruthenium (Ru) electrodes as shown
in Fig. 1(a). By applying a positive voltage to the Cu elec-
trode, a Cu bridge is formed in the solid electrolyte, and the
switch turns on. On the other hand, when a negative volt-
age is applied, Cu atoms in the bridge are reverted to the
Cu electrode, and then the switch turns off. The switching
between on-state and off-state is repeatable, and each state is
nonvolatile. For improving the device reliability, the comple-
mentary atom switch (CAS) is devised, where it consists of
two-atom switches connected in series with opposite direction
as shown in Fig. 1(b). In the programming of CAS, a pair of
the signal line and control line supply a programming voltage
to each atom switch, and two-atom switches are programmed
sequentially. During normal operation, on the other hand, only
signal lines are used for routing [9].

To accurately provide the programming voltage only to the
target atom switch in a switch array, the varistor is introduced
into the via-switch. Fig. 2 shows the structure of via-switch,
where the varistor is connected to the control terminal of CAS.
When a voltage higher than the threshold value (programming
voltage) is applied between the signal and control lines, the
varistor supplies programming current to an atom switch. On
the other hand, the varistor isolates the control lines from the
signal lines during normal operation [10].

(a)

(b)

Fig. 1. Structure and operation of (a) atom switch and (b) CAS.

Fig. 2. Via-switch structure.

Fig. 3. Structure of via-switch FPGA.

Here, we summarize the main features of via-switches. The
footprint, on-resistance, and capacitance are 18 F2, 400 �, and
0.14 fF, respectively, [10], [14]. The via-switch can be repro-
grammed about 1000 times [9]. Thanks to these characteristics,
the area efficiency and performance of via-switch FPGA
are dramatically improved compared to SRAM-based one.
Ochi et al. [14] reported that the crossbar density is improved
by 26×, and the delay and energy in the interconnection are
reduced by 90% or more at 0.5 V operation.

B. Sneak Path Problem in Via-Switch FPGA

The structure of via-switch FPGA is an array of config-
urable logic blocks (CLBs), and each CLB is composed of
a logic block and a crossbar where a via-switch is placed at
each intersection of signal lines as shown in Fig. 3 [14]. The
via-switch in the crossbar is responsible for the connection
and disconnection between the horizontal and vertical signal
lines. Besides, the top half of the crossbar serves as input
and output multiplexers to the logic block and corresponds
to the connection block in conventional FPGAs. On the other
hand, the bottom half of the crossbar, which corresponds to the
switch block, routes global interconnections. The logic block
organizes combinational and sequential circuits.
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(a)

(b)

Fig. 4. (a) Via-switch-based crossbar structure and switch programming
steps. (b) Sneak path problem in crossbar programming.

The following explains the programming of a via-switch
crossbar and sneak path problem. Fig. 4 illustrates the via-
switch-based crossbar structure. Both signal and control lines
are aligned horizontally and vertically. Fig. 4(a) exemplifies
programming steps in 2×2 crossbar where an atom switch is
turned on at each step. A pair of the perpendicular signal and
control lines crossing at the via-switch of interest are used for
switch programming. Two programming drivers are activated
at each step, and a positive voltage is given to one of the sig-
nal lines, and a ground voltage is given to one of the control
lines. Other lines are floated. We can see that the via-switch at
the bottom left is successfully turned on at STEPs (1) and (2).
However, this crossbar programming structure may cause the
sneak path problem depending on via-switches’ ON-OFF pat-
terns in a crossbar. For example, the programming of the
bottom right via-switch in Fig. 4(b) cannot be performed cor-
rectly. The atom switch that composes the top right via-switch
is under programming unintentionally since the positive volt-
age is provided through the on-state via-switches at the bottom
left and top left. Such an unintentional switch programming
due to signal detouring through on-state via-switches is the
sneak path problem. The sneak path problem interferes the
reconfiguration of FPGA, and hence it is essential to identify
the occurrence conditions and find countermeasures of this
problem.

C. Conventional Countermeasure for Sneak Path Problem
and Advantages of Proposed Method

In the last decade, countermeasures for the sneak
path problem in RRAM-based crossbars are widely
studied [15]–[22]. These countermeasures can be

categorized into three groups, namely, device-level
structure modifications [16]–[18], voltage bias schemes
[19], [20], and multistage reading schemes [21], [22].
Zangeneh and Joshi [16] and Lee et al. [17] proposed one
transistor-one resistor (1T1R) and one diode-one resistor
(1D1R) structures for each crossbar intersection, respec-
tively. These structures mitigate the sneak path current
since the transistor or diode act as a gating device, but the
integration density of crossbars decreases due to the added
gating devices. Jung et al. [18] adopted a complementary
resistive switch (CRS), which is composed of two anti-serial
memristors, as an intersection switch. This structure ensures
that either memristor in a CRS is always off-state (high
resistance) whenever the CRS retains logical 0 or 1, and
hence it alleviates the sneak path problem. However, write
and read operations for the CRS become complicated. In
bias schemes, we have to apply VDD/3 or VDD/2 to unused
wires for minimizing the sneak path current [19], [20]. These
schemes need to drive all the wires, and therefore large
switching power is consumed. Also, they require complicated
controls and additional hardware overheads for write/read
operations. Vontobel et al. [21] and Zidan et al. [22] proposed
a reading scheme that reads the target switch multiple
times while changing conditions to eliminate the sneak path
effect.

In the above, we summarize the sneak path countermea-
sures reported in literature, but all the countermeasures focus
on the sneak path problem in the crossbar used as a memory.
On the other hand, we utilize the crossbar as programmable
interconnections for FPGA implementation and solve the
sneak path problem in the write operation. To reduce the signal
propagation delay in crossbars for FPGA, we set on-resistance
of a via-switch to 400 � [14] whereas the on-resistance
for memory purpose is in a range of a few kilo-ohms to
hundreds kilo-ohms [23]–[26]. This smaller on-resistance in
FPGA purpose makes the sneak path problem more severe
since the countermeasures that insert high-resistance gating
devices to signal lines increase the delay and diminish the
integration density. Besides, voltage bias countermeasures are
undesirable due to the large power consumption and hard-
ware overheads. Therefore, the sneak path countermeasure that
does not degrade the FPGA performance and does not need
hardware modifications is required.

As a sneak path countermeasure for FPGA purpose,
Ochi et al. [14] have revealed that the sneak path problem
can be avoided by imposing a programming constraint. This
constraint allows multiple on-state via-switches on the same
signal line only in one direction. In other words, this constraint
prohibits the configurations in which multiple on-state via-
switches exist in both the same horizontal line and the same
vertical line such as Fig. 4(b). The authors also prove that there
is no sneak path problem in the programming of any-sized
crossbar under the programming constraint with mathemati-
cal induction. However, their countermeasure involves a clear
disadvantage. The programming constraint prohibits some
configurations of via-switch FPGA, and hence imposing the
constraint leads to a decrease in the number of available
configurations. Consequently, routing flexibility is limited. For
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Fig. 5. Routing patterns that are prohibited in conventional countermea-
sure [14]. These patterns are often used in practical applications.

example, practical applications often use routing patterns illus-
trated in Fig. 5. The left pattern changes vertical routing tracks,
and the right one realizes multiple fan-outs in the vertical
direction. However, these patterns cannot be programmed in
a crossbar when we prohibit multiple on-state switches in the
same horizontal line [14]. To achieve the same function, we
consume more interconnect resources due to detour routing.

This article, on the other hand, proposes a programming
constraint free countermeasure for the sneak path problem in
Sections IV and V. The proposed method can program arbi-
trary practical configuration patterns including the patterns
depicted in Fig. 5. The advantages of the proposed method
are as follows. The proposed method completely eliminates
the programming status that causes the sneak path problem
by arranging the programming order and accepts all the prac-
tical configuration patterns. The computational complexity of
the proposed algorithm is low, and there is no additional
hardware overhead. Furthermore, by eliminating programming
constraints, we can simplify the algorithm and data structure
in the routing CAD software.

III. OCCURRENCE CONDITIONS OF SNEAK

PATH PROBLEM

This section clarifies the programming status of a crossbar
that leads to the sneak path problem for developing a more
efficient countermeasure. As explained in Section II-B, the
atom switch at the intersection is turned on when a positive
voltage is provided to the signal line and a ground voltage
is provided to the control line. When the number of such
intersections is two or more, the sneak path problem occurs.
Focusing on the number of bends of the programming signal
given to the signal line, we can classify the circuit status that
causes the sneak path problem into two situations, namely,
conditions (a) and (b) as shown in Fig. 6. In condition (a), the
programming signal provided to the signal line bends twice or
more, whereas the number of signal bends is one or zero in
condition (b). The followings discuss each condition in detail.
It should be noted that we only consider the programming
operations to turn on the atom switch in the following because
programming operations to turn on and off an atom switch are
symmetrical operations and the same discussion can be done
by swapping the voltage given to the signal line and control
line.

In condition (a) of Fig. 6, two vertical signal lines SV1
and SV2 are connected by multiple on-state via-switches VS3
and VS4 in the same line SH2. When a programming signal
is given to one of the signal lines SV1 and SV2, the same
signal is provided to the other signal line, which means we
cannot distinguish SV1 and SV2 anymore in the programming.

(a) (b)

Fig. 6. Two occurrence conditions of sneak path problem. Condition (a)
#bends of prog. signal given to signal line is two or more. Condition (b)
#bends of prog. signal given to signal lines is zero or one.

Therefore, when we try to turn on the lower atom switch of
via-switch VS1 in the line SV1, the atom switch in the same
position of signal line SV2, i.e., lower atom switch of via-
switch VS2 is programmed simultaneously. In summary, the
sneak path problem arises when programming an atom switch
in already indistinguishable vertical lines or indistinguishable
horizontal signal lines.

From the opposite point of view, we could avoid the sneak
path problem if we would program such an atom switch before
multiple vertical/horizontal signal lines become indistinguish-
able. For example, in condition (a) in Fig. 6, we need to turn
on the lower atom switch of via-switch VS1 before program-
ming VS3 and VS4. It should be noted that, for programming
a via-switch, we must turn on two atom switches, which are
the lower atom switch connected to the vertical signal line and
the upper atom switch connected to the horizontal signal line.
The vertical signal line is used when programming the lower
atom switch [e.g., STEP (2) in Fig. 4], and hence we need to
pay attention to multiple on-state via-switches in the same hor-
izontal signal line that connect multiple vertical signal lines.
On the other hand, we should care about multiple on-state via-
switches in the same vertical signal line when programming
the upper atom switch.

Let us move to condition (b) in Fig. 6, where the number of
bends of programming signal given to the signal line is one or
zero. In this case, the programming signal that is provided to a
control line is detoured and the sneak path problem arises. On
the other hand, such a condition is satisfied only when a loop
is intentionally programmed in a crossbar. For example, in
Fig. 6(b), all the four via-switches are intended to be turned on,
otherwise, the top two-atom switches of VS1 and VS3 never be
on. This condition arises only when programming the last two-
atom switches that compose a loop, and the ground voltage
applied to the control line is propagated to the nontarget switch
because of a loop structure.

From the above discussion, the sneak path problem can-
not be avoided in the configurations that include a loop.
Fortunately, such configurations with a loop are not used in
practical applications since the looped signal routing increases
the wire capacitance and degrades delay and power compared
to nonloop routing. Therefore, we do not need to take care
of condition (b). Consequently, what we have to consider for
sneak path avoidance is only condition (a).

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on September 23,2020 at 00:11:10 UTC from IEEE Xplore.  Restrictions apply. 



2576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

IV. PROPOSED SNEAK PATH FREE INITIAL PROGRAMMING

In this section, we propose a sneak path free initial program-
ming method based on the discussion in Section III, where the
initial programming means the programming that is performed
for the crossbars whose via-switches are all off-state. Partial
reconfiguration for the crossbars where some via-switches
are on-state will be discussed in Section V. The proposed
initial programming method gives a sneak path free program-
ming order of via-switches, where the target configurations are
nonlooped configurations for signal routing.

Section IV-A explains the overview of the proposed sneak
path avoidance method followed by its details with examples
in Section IV-B. Some key properties necessary for proving
that a sneak path free programming order necessarily exists
are in italic. With those properties, Section IV-C generalizes
the proposed method and gives a proof that a sneak path
free programming order necessarily exists for arbitrary non-
looped configurations. Section IV-D gives a pseudo code and
execution examples of the proposed method.

A. Overview of Proposed Method

Table I shows the proposed method consisting of two steps:
STEP 1 turning on all the upper atom switches of interest and
STEP 2 turning on all the lower atom switches of interest.
Each step is explained in the following.

In STEP 1, all the upper atom switches of the via-switches
to be turned on in a given target configuration are programmed.
The via-switch connects the vertical and horizontal signal lines
only when both the upper and lower atom switches composing
a via-switch are on-state. Therefore, in STEP 1, any signal
lines are not connected to each other and the programming
signal never detours. Hence, no sneak path problem arises in
this step. Then, arbitrary programming order works fine in
STEP 1.

STEP 2 turns on all the lower atom switches to be pro-
grammed. In STEP 2, a vertical line and a horizontal line are
connected by a via-switch each time a lower atom switch is
turned on since the corresponding upper atom switch is already
turned on in STEP 1. Therefore, we have to determine the
programming order of the lower switches paying attention to
the occurrence condition of the sneak path problem, which is
discussed in Section III. Please remind that we provide a pro-
gramming signal to a vertical signal line when programming
a lower atom switch, and hence we consider only multiple
on-state via-switches in the same horizontal signal line since
they make multiple vertical lines indistinguishable. Multiple
on-state via-switches in the same vertical signal line do not
matter. STEP 2 categorizes those multiple on-state switches
in the same horizontal line as connector switches (CSs) and
other switches as nonconnector switches (NCSs). STEPs 2a
and 2b turn on NCSs and CSs, respectively.

Table I demonstrates that all the target switches are pro-
grammed by the proposed STEPs. The fifth column of Table I
shows lemma numbers that correspond to each STEP. Proving
those lemmas, we ensure that no sneak path problems arise in
the proposed method.

TABLE I
SUMMARY OF PROPOSED INITIAL PROGRAMMING METHOD

Fig. 7. Example of nonlooped configuration and definition of connec-
tor/NCSs.

It should be noted that the swapped sequence of STEP 2
followed by STEP 1, i.e., programming all the upper atom
switches after turning on all the lower atom switches can
also avoid the sneak path problem since the crossbar has a
symmetrical structure. In this case, we need to determine the
programming order of the upper switches.

B. Programming Order Determination With Connection Tree

This section details the proposed method explaining how to
derive a sneak path free programming order of via-switches in
a crossbar. In the following, we use a configuration of a 5×5
crossbar shown in Fig. 7 as an example.

As mentioned in the previous section, what we have to do
is only determining the programming order in STEP 2 since
STEP 1 does not cause sneak path problems with an arbitrary
programming order. In STEP 2, we have to pay attention to
multiple on-state via-switches in the same horizontal signal
line that connect multiple vertical signal lines and make them
indistinguishable. Therefore, we introduce two categories of
the via-switch, namely, CSs and NCSs, which are defined in
the previous section. For example, via-switches B, C, D, E,
F, G, and H are CSs and via-switches A and I are NCSs in
Fig. 7. A pair of CSs connects two vertical signal lines, e.g.,
via-switches E and F connect vertical signal lines SV1 and
SV2 in Fig. 7. The nonconnector switch, on the other hand,
does not connect any vertical signal lines.

Please remind that the sneak path problem occurs when
turning on the lower atom switch included in the already
connected vertical signal lines as explained in Section III.
Therefore in STEP 2a, all the NCSs should be programmed
before the CSs so that we can avoid the sneak path problem
in programming the NCSs since the CSs which may connect
vertical lines are still off-state. In this case, the programming
order of the NCSs is arbitrary.
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Fig. 8. Example of connection tree for CSs in Fig. 7.

Next, in STEP 2b, we determine the programming order of
CSs. In this step, the programming order is not arbitrary since
the sneak path problem may arise depending on the program-
ming order. For example in Fig. 7, when we are turning on the
CSs B or G after programming the CSs of E and F, the sneak
path problem occurs since switches E and F have connected
vertical lines SV1 and SV2.

To determine the programming order, we construct a con-
nection tree that represents the connection status of vertical
signal lines in a crossbar. Fig. 8 exemplifies a connection tree
for the CSs in Fig. 7, where each node corresponds to a vertical
signal line. The root node can be arbitrarily selected. Vertical
line SV3 is selected as the root node in Fig. 8. When two
vertical signal lines are supposed to be connected in the con-
figuration of interest, we give an edge between the two nodes
corresponding to these two vertical signal lines. Two black
dots located at both ends of an edge represent CSs, and when
both the two CSs are turned on, we suppose the edge is acti-
vated and two vertical lines are connected. From the definition,
any nonlooped configurations can be necessarily expressed by
a tree structure, which means loops are not included in the
graph.

The connection tree tells us which connector switch can
be programmed such that the connector switch that can be
turned on at the end of programming is indicated as the leaf
node of the connection tree. Let us explain what happens when
we program the connector switch in the leaf node and non-
leaf node of the connection tree at the last programming step,
where the last programming step means that only one switch
remains off and the others are already turned on in the target
configuration.

In Fig. 9(a), the connector switch in the leaf node of SV1 is
under programming, and the other CSs are already on-state. In
this case, node SV1 and node SV2 are not connected yet, and
hence the programming signal never propagates to any other
vertical signal lines. Consequently, the target connector switch
can be turned on without the sneak path problem. We can also
confirm that there is no sneak path problem when program-
ming the connector switch in the leaf node from Fig. 9(b),
which is the circuit diagram corresponding to Fig. 9(a). Next,
let us turn on the connector switch in nonleaf node SV2 in
Fig. 9(c) at the last programming step. In this case, the pro-
gramming signal reaches the other vertical signal lines through
the CSs that are already on-state, and consequently the sneak
path problem arises. The circuit diagram of Fig. 9(d) also indi-
cates that atom switches placed at the same vertical position

(a) (b)

(c) (d)

Fig. 9. Programming of connector switch in leaf/nonleaf node at the last pro-
gramming step. (a) Programming of connector switch in leaf node. (b) Circuit
diagram corresponding to (a). (c) Programming of connector switch in nonleaf
node. (d) Circuit diagram corresponding to (c).

Fig. 10. Recursively searching switch which can be programmed lastly for
each shrinking graph.

as the target on the connected indistinguishable vertical signal
lines are unintentionally programmed.

Then, we propose to recursively search a connector switch
that can be turned on at the final programming step for obtain-
ing a sneak path free programming order of CSs. Fig. 10
illustrates the recursive process. Here, there are two types of
CSs in each node, namely, the connector switch connecting
with the parent node (e.g., switch B in node SV2) and the con-
nector switch connecting with the child node (e.g., switches F
and G in node SV2). In each node, all the switches connect-
ing with the child node must be turned on before the switch
connecting with the parent node. Otherwise, the sneak path
problem arises when programming the switch connecting with
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the child node since the programming signal is propagated to
the parent node through the on-state switch to the parent node
as pointed out in Fig. 9(c).

Let us roll back the recursive programming step one by
one with Fig. 10. As we discussed, we can program only the
connector switch in the leaf node at the final programming
step. Then, switch H in SV5 is selected as the last switch to
be programmed and node SV5 and the edge between SV2 and
SV5 are deleted. This modified graph is again analyzed to find
the next last switch to be programmed. In this case, switch E
is selected. After SV5 and SV1 are removed from the graph,
SV2 has no child nodes, and hence switch B in leaf node SV2
connecting with parent node SV3 can be programmed. In this
way, one recursive process chooses one leaf node, identifies the
switch in the leaf node connecting with the parent node as the
last switch to be programmed in the current graph, and remove
the leaf node and its edge to the parent node. Eventually, all the
edges are removed from the connection tree, and the recursive
process finishes. At this time, all the vertical lines are not
connected to any other vertical lines anymore, and hence we
can distinguish all the vertical lines. It should be noted that
there remain some on-state CSs, for example switches C, F,
and G in Fig. 10. These switches can be programmed in an
arbitrary order as long as they are programmed before the
switches selected in the recursive processes. One of the finally
obtained programming orders is C, F, G, B, D, E, and H.

Depending on the target configuration, multiple connection
trees may be constructed for a nonlooped configuration. Each
tree has no connection to other trees, and hence the program-
ming signal never propagates to other trees when programming
the switch in the tree of interest. Consequently, we can handle
each connection tree independently with the proposed method.

C. Proof of Existence of Sneak Path Free Programming
Order

As indicated in Table I, the proof consists of five lem-
mas, and we prove them in the following, where Lemmas 1–5
demonstrate that there is no sneak path problem in the
programming of upper atom switches, NCSs, and CSs,
respectively.

Lemma 1: All the upper atom switches can be programmed
in an arbitrary order without the sneak path problem.

Proof: Only when both the upper and lower atom switches
composing a via-switch are on-state, the via-switch connects
the vertical and horizontal signal lines. Hence, any signal
lines are not connected to each other in this programming
step because all the lower atom switches are still off-state.
Therefore, the programming signal never detours and no sneak
path problem occurs. From the same reason, the programming
order of this step is arbitrary.

Lemma 2: There is no sneak path problem in the program-
ming of all the NCSs, and arbitrary programming order works
fine in this step.

Proof: In programming lower atom switches, the sneak
path problem occurs when we turn on an atom switch in
already indistinguishable vertical signal lines as mentioned in
Section III. The indistinguishable signal lines originate from

on-state CSs that connect multiple vertical lines. By program-
ming all the NCSs before CSs, we can distinguish all the
vertical lines in programming NCSs since all the CSs are
still off-state in this step. Therefore, no sneak path problem
arises and arbitrary programming order is acceptable in this
programming step.

Lemma 3: Given a nonlooped configuration, it can be
expressed by a connection tree or multiple connection trees.

Proof: When we treat each vertical signal line as a node
and draw an edge between corresponding nodes if CSs exist,
these nodes and edges compose a graph or multiple graphs that
represent the connection status of vertical lines. Each graph
does not contain closed loops unless the target configuration
has loops. When a node is selected as the root node, the graph
is expressed by a tree structure, which is called the connection
tree defined in the previous section.

Lemma 4: At the last programming step for a connection
tree, only a switch in a leaf node connecting to its parent node
can be programmed without the sneak path problem.

Proof: When programming a switch in a leaf node at the
final programming step, the target switch is still off-state
and the connection between the leaf node and its parent
node is not established yet. Hence, the programming signal
given to the leaf node never propagates to any other nodes,
and consequently there is no sneak path problem in this
programming. On the other hand, a nonleaf node has at least
two connections, i.e., connections to its parent node and child
node. Therefore, the target nonleaf node has at least one
connection to the other node at the last programming step
since all the switches except the target switch are already
on-state. Consequently, programming a switch in a nonleaf
node at the end always causes the sneak path problem by
propagating the programming signal to other nodes through
the connection to the parent or child node.

Lemma 5: Recursively searching a switch which can be
programmed at the last programming step always finds the
sneak path free programming order.

Proof: By recursively searching a switch that can be turned
on at the final programming step in the current graph and
removing the leaf node and its edge to the parent node from
the graph, all the nodes except the root node must be even-
tually eliminated and the recursive search necessarily finishes
since the tree must have at least one leaf node when the num-
ber of nodes is two or larger. The remaining switches can be
programmed in an arbitrary order before the switches chosen
in the recursive search since each node has no connection to
other nodes at this moment, i.e., all the vertical signal lines
are distinguishable.

D. Pseudo Code and Execution Example

Algorithm 1 summarizes the overall determination proce-
dure of a programming order. This algorithm determines a
sneak path free programming order of nonconnector and CSs,
and stores it to queue Oprog. Line 1 defines a set S of switches
to be turned on. Lines 2–4 search NCSs by checking the
number of on-state switches in each horizontal signal line.
Specifically, line 2 creates a set Hj of on-state switches in jth
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Algorithm 1 Programming Order Determination of
Nonconnector and Connector Switches

1: S = {Si,j | Si,j is on-state, 0 ≤ i < W, 0 ≤ j < H}
2: Hj = {Si,j | Si,j ∈ S}
3: Snon-con = {Si,j | |Hj| = 1, Si,j ∈ S}
4: ENQUEUE(Snon-con) to Oprog
5: S = S − Snon-con
6: for i ∈ {i | ∃Si,j ∈ S} do
7: SEARCH(i, S, Oprog, Otmp)

8: ENQUEUE(Otmp) to Oprog

9: function SEARCH(i, S, Oprog, Otmp)
10: Schild = {Si,j | Si,j ∈ S}
11: if Schild = ∅ then
12: return
13: Sparent = {Sk,j | k �= i, ∃Si,j ∈ Schild}
14: ENQUEUE(Schild) to Oprog
15: ENQUEUE(Sparent) to Otmp
16: S = S − (Schild ∪ Sparent)

17: for k ∈ {k | ∃Sk,j ∈ Sparent} do
18: SEARCH(k, S, Oprog, Otmp)

W: crossbar width, H: crossbar height

horizontal signal line, line 3 enumerates NCSs in jth horizon-
tal line where the number of elements of Hj is one, and line 4
enqueues all the NCSs to Oprog. Then, line 5 removes all the
NCSs from the set S, and subsequent lines 6–8 determine the
programming order of connector switches. Line 6 selects ith
vertical signal line, in which the connector switch to be turned
on exists, as the root node of a connection tree, and the pro-
gramming order of connector switches in this connection tree
is determined by the function SEARCH in line 7.

SEARCH is a recursive function and traverses a connection
tree from the root node to leaf nodes. Please remind that all
the switches connected to child nodes need to be programmed
before programming any switch connected to its parent node.
SEARCH classifies the switches connected to child nodes of
the parent node i (line 10) and the switches connected to the
parent node i (line 13). The former is enqueued to Oprog in
line 14 since switches connected to the child have to turn on
before the switches connected to the parent. On the other hand,
the latter is enqueued in Otmp in line 15 until all the switches
connected to the child node are enqueued to Oprog by the recur-
sive function SEARCH. This function is recursively executed
for all the child nodes of the node of interest (lines 17–18),
and returns when the node of interest is a leaf node of the
connection tree, i.e., no child nodes exist (lines 11 and 12).
In the case that there exist multiple connection trees, S is not
empty after line 7 completion. In this case, “for statement” in
line 6 re-executes SEARCH with the updated S until S becomes
empty. Finally, all the switches connected to the parent node
in all nodes are enqueued to Oprog in line 8.

Let us explain an example when the proposed algorithm is
applied to the configurations as shown in Fig. 7. Lines 2–4 find
NCSs A and I, and enqueue them to Oprog. Line 7 determines

Fig. 11. Concept of partial reprogramming.

a programming order of the remaining connector switches B-
H. Assuming the vertical line SV3 is selected as a root node i,
at the first execution of the function SEARCH, the set Schild
contains the switch C connected to the child node as shown in
Fig. 8, and the set Sparent contains switches B and D connected
to the parent node (root node). Line 14 enqueues the switch C
to Oprog and line 15 stores switches B and D to Otmp. After
that, function SEARCH is executed again for vertical lines SV2
and SV4 where switches B and D exist. When SEARCH is
executed for line SV2, set Schild contains switches F and G,
and set Sparent contains switches E and H. On the other hand,
when SEARCH is executed for line SV4, set Schild is empty and
SEARCH returns. Eventually, we successfully obtain a sneak
path free programming order and it is A, I, C, F, G, B, D, E,
and H.

Thus far, we discussed the programming order for turning-
on operations. Programming operations to turn on and off an
atom switch are symmetric except that applied voltages to the
signal line and control line are reversed. Therefore, we can
turn off all the switches without the sneak path problem in
the reverse order.

V. PROPOSED PARTIAL REPROGRAMMING METHOD

This section discusses partial reprogramming for chang-
ing crossbar configurations. Needless to say, we can change
the crossbar configuration by turning off all the on-state
switches in the previous configuration and then writing the
next configuration to the crossbar with the proposed method
explained in the previous section. However, this approach
involves unnecessary reprogramming when both the previous
and next configurations partially share the same on-state via-
switches. The unnecessary reprogramming of via-switches
directly leads to an increase in the reconfiguration time, and
also shortens the lifetime of via-switches since the maximum
number of reprogramming is limited [14]. For solving this
problem, we propose a partial reconfiguration method that
minimizes the number of programmed switches while avoiding
the sneak path problem. This method contributes to extend-
ing the lifetime of via-switch FPGA and speeding up the
reconfiguration.

Table II summarizes the proposed partial programming steps
and indicates switches to be turned on/off in each step and their
abbreviations in parentheses. Fig. 11 illustrates the basic strat-
egy that programs noncommon switches and minimizes the
number of common switches to be programmed for avoiding
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TABLE II
SUMMARY OF PROPOSED PARTIAL RECONFIGURATION METHOD

the sneak path problem, where the proposed method erases
only either upper or lower atom switch in such common
switches depicted with red semicircle symbols in Fig. 11.
Section V-A and V-B discuss how to partially turn off and on
via-switches, respectively. The last column of Table II shows
relevant lemmas to each programming step. By proving those
lemmas, Section V-C gives a proof that the proposed par-
tial reprogramming method can avoid the sneak path problem.
Section V-D and V-E propose a minimization method of the
number of programmed switches in the partial reprogram-
ming. Section V-F gives a pseudo code of the proposed partial
reprogramming method.

A. Partial Erasing

STEP 1 of partial erasing turns off both upper and lower
atom switches of noncommon parts, which are SPU and SPL,
respectively, in Table II. Similar to the case of turning on
an atom switch, the sneak path problem arises if we turn
off an atom switch in the already indistinguishable lines.
Fig. 12 illustrates such a case. We can see that the harmful
sneak path problem is not occurring since the detoured rout-
ing provides the turning-off voltage to the off-state switch.
Fortunately, in nonlooped configurations, we can ensure that
switches under unintentional programming by the sneak path
problem are always off-state. If the switch under uninten-
tional programming is on-state, a loop is composed by these
switches beforehand. We use only nonlooped configurations,
and therefore we can turn off any switch regardless of the pro-
gramming order. Note that the programming order obtained in
the previous section can erase all the switches without harmful
or nonharmful sneak path problems.

B. Partial Writing

The partial writing process consists of two steps, where
STEPs 2 and 3 turn on all the upper (SNU) and lower (SNC
and SNN) atom switches, respectively, of the via-switches to
be newly turned on in the target configuration as shown in
Table II. For avoiding the sneak path problem at each STEP,
we turn off a part of common and already on-state switches
SCH and SCV before programming SNU, SNC, and SNN so
that the programming signal does not detour to any nontarget
switch. The following explains the details of each step.

Fig. 12. Sneak path problem in erasing process.

STEP 2 is to turn on SNU while avoiding the sneak path
problem. As discussed in Section III, in programming upper
atom switches, the sneak path problem arises when we turn on
an atom switch in already indistinguishable horizontal lines.
Therefore, we should care about SCV, which represents the
connector switches in the same vertical signal line. When SCV
exists in the same horizontal line of the target switch SNU, we
erase the lower atom switches SCV in the same line of SNU at
STEP 2a. Such erasing is always possible as explained in the
previous section. The erased SCV will be reprogrammed later
at STEP 3. After STEP 2a, STEP 2b can turn on SNU without
the sneak path problem since the programming signal is never
propagated to any other horizontal lines. Thus, STEP 2 ensures
that all the upper atom switches of via-switches to be turned
on are on-state at the beginning of STEP 3.

STEP 3 turns on SNC and SNN, which are lower atom
switches to be newly turned on in the target configurations.
In addition, SCV erased at STEP 2a is also turned on. The
basic idea to avoid the sneak path problem in STEP 3 is as
follows. First, we turn off a part of the connector switches
and disconnect the node containing a target switch from the
connection tree so that the programming signal is never prop-
agated to other nodes. Then, we turn on the target switch in
the isolated node, followed by turning on the erased connector
switches to restore the connection between the isolated node
and the connection tree.

STEP 3 is decomposed into the following four steps, which
are listed in Table II. Let us explain each step with an example
shown in Fig. 13. As explained in Section IV, the root node can
be arbitrarily selected. Using this property, STEP 3a changes
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Fig. 13. Proposed partial writing method.

the root node of the connection tree for minimizing the num-
ber of switches to be programmed in STEPs 3b–3d, where the
detail will be discussed in Section V-D. In Fig. 13, node A is
selected as the root node. Next, STEP 3b is to turn off SCH,
which represents horizontal connector switches connecting to
the parent node in the target and its descendant nodes. All the
connections below the target node are disconnected from the
connection tree by this step. The sneak path problem does not
arise in STEP 3b since only erasing is performed. In Fig. 13,
STEP 3b turns off the connector switches in node B, C, and
E connecting to their parent nodes. In STEP 3c, we turn on
switches SNC and SCV. There is no connection between the
target node and the others thanks to STEP 3b, and therefore
no sneak path problem arises in this step. Finally, STEP 3d
reconnects the target and its descendant nodes to the connec-
tion tree. By turning on connector switches SCH and SNC in
order from the shallow level to the deep level of the connec-
tion tree, we always turn on a connector switch in a leaf node
in each phase, and hence there is no sneak path problem. As
proved in Section IV, a connector switch in a leaf node of
the connection tree can be turned on without the sneak path
problem. In Fig. 13, STEP 3d turns on connector switches in
order of node B, C, and E.

It should be noted that the swapped sequence of STEP 3
followed by STEP 2, i.e., programming upper atom switches
after turning on lower atom switches is also acceptable since
the crossbar has a symmetrical structure. In this case, we need
to determine the programming order of the upper switches.
Depending on the target configuration, the number of switches
to be programmed is different for upper switch programming
first or lower switch programming first. Therefore, we eval-
uate both the cases for reducing the number of programmed
switches.

C. Proof of Sneak Path Avoidance in Partial Reconfiguration

This section summarizes a proof of sneak path problem
avoidance with three lemmas that correspond to STEPs 1–3
in Table II.

Lemma 6 [Lemma for the Partial Erasing Process (STEP
1)]: The sneak path problem in erasing process always apply
a voltage to turn off to off-state switches that are placed in
the same position as the target switch in the indistinguishable
lines.

Proof: When we turn off an atom switch in the indistin-
guishable lines, the sneak path problem arises in switches at
the same position as the target switch in the indistinguishable
lines. Assuming that these switches are on-state, these on-
state switches and the target on-state switch connect already
indistinguishable lines, i.e., the configuration has loops. This
causes a contradiction since we program only nonlooped con-
figurations. Therefore, these switches that are affected by the
sneak path problem in the erasing process are always off-state.
Applying a voltage to turn off an already off-state switch does
not matter, and hence we can accept the sneak path problem
in the erasing process.

Lemma 7 [Lemma for STEP 2 of the Partial Writing
Process]: The sneak path problem in the turning-on process
of upper atom switches can be avoided by pre-erasing lower
atom switches of on-state vertical connector switch in the same
horizontal line of the target switch.

Proof: As discussed in Section III, indistinguishable hori-
zontal lines lead to the sneak path problem in the turning-on
process of upper atom switches. The cause of indistinguish-
able horizontal lines is vertical connector switches that are
multiple on-state via-switches in the same vertical line. If
these on-state via-switches exist in the same horizontal line
of the target switch, we turn off the lower atom switches
of these via-switches before the target switch programming.
In this case, we can distinguish the target horizontal line
and the programming signal never detours to other horizontal
lines.

Lemma 8 [Lemma for STEP 3 of the Partial Writing
Process]: The sneak path problem does not arise in each
STEPs 3a–3d.

Proof: STEPs 3a and 3b do not include turning on oper-
ations, and therefore the sneak path problem never occurs
thanks to Lemma 6. In STEP 3c, we turn on atom switches in
nodes that are isolated from the connection tree, and hence the
programming signal is never propagated to other vertical lines
and there is no sneak path problem. STEP 3d turns on con-
nector switches to restore the connections of isolated nodes.
When turning on connector switches in order from the shallow
to the deep of the connection tree, each turning on operation
becomes a leaf node programming. As proved in Lemma 4,
the leaf node switch programming does not cause the sneak
path problem, and hence there is no sneak path problem in
STEP 3d.

D. Minimizing Number of Switches Programed in Partial
Reconfiguration

This section proposes a minimization method of the number
of switches programmed in partial reconfiguration. The total
number of programmed switches can be calculated by sum-
ming the number of switches programmed in partial erasing
(STEP 1) and writing (STEPs 2 and 3) process, which are
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expressed in

(Total #SWprog
[∗] in partial reprogramming)

= (#SWprog in STEPs 1, 2, and 3),
[∗]#SWprog: # of programmed switches. (1)

(#SWprog in STEP 1) = (# of SPU and SPL). (2)

(#SWprog in STEP 2) = (# of SNU)

+ (# of SCV in same horizontal line of SNU). (3)

(#SWprog in STEP 3) = (# of SCH to be pre-erased) × 2

+ (# of SCV in same horizontal line of SNU)

+ (# of SNC and SNN). (4)

STEP 1 programs twice as many switches as the number of
noncommon via-switches in the previous configuration since
the via-switch is composed of two-atom switches and we have
to turn off both switches SPU and SPL. STEP 2 turns on all the
upper atom switches SNU of the noncommon via-switches in
the next configuration at STEP 2b. In addition, STEP 2a turns
off the lower atom switch of on-state via-switches in the same
horizontal line of SNU if this on-state via-switch is a vertical
connector switch SCV. Therefore, the number of switches pro-
grammed in STEP 2 is given by (3). In STEP 3, the number of
programmed switches can be calculated by (4). The pre-erased
connector switches SCH are programmed twice, i.e., turning off
(pre-erasing) before the target programming at STEP 3b and
turning on after the target programming at STEP 3d. The tar-
get switches SNC, SNN, and SCV, where SCV, which is turned
off at STEP 2a, is programmed back at STEP 3c.

The number of SCH to be pre-erased in (4) varies depending
on the chosen root node of the connection tree since it changes
the tree structure and the number of descendant nodes of the
target node. On the other hand, (2), (3), and remaining terms
of (4) are fixed for a given configuration. Hence, we minimize
the number of pre-erased connector switches SCH.

When we suppose that there is only one target switch, the
number of connector switches SCH to be turned off before the
target programming can be given by

(# of SCH to be pre-erased for one target switch)

= (# of SCH to parent in target and its descendant nodes)

− (# of SCH already turned off among first term). (5)

In the pre-erasing phase at STEP 3b, we turn off the connec-
tor switches connecting to the parent node in the target and
its descendant nodes for disconnecting these nodes from the
connection tree. There are already off-state connector switches
since these switches are turned off in STEP 2a, and therefore
the number of pre-erased SCH is obtained by (5).

On the other hand, when there are multiple target switches
in a connection tree, the total number of pre-erased connec-
tor switches is not necessarily the sum of (5) for each target
switch. This is because some target switches could be pro-
grammed during the programming process of another target
switch, where we regard the former switches are dominated by
the latter switch. For example in the connection tree of Fig. 14,
target switches a and f can be programmed in the program-
ming process of target switch b when the root node is node E.

Fig. 14. Minimization method of the number of switch programming.

Here, switches a and f are dominated by switch b. In this
case, STEP 3b disconnects target node B and its descendant
nodes A, C, D, and F from the connection tree. Then, STEP 3c
can turn on not only target switches b but also switches a and
f since nodes A, B, and F are isolated, and the programming
signal is never propagated to any other nodes.

Thanks to this dominance property, we can reduce the num-
ber of programmed switches compared to the case that we
separately apply STEP 3 to each target switch. In the example
of Fig. 14, the minimum number of programmed switches is
achieved when we select node E or H as the root node and
divide target switches into three groups, i.e., “switches a, b,
and f,” “switch g,” and “switch i,” where switches a and f
are dominated by switch b. We separately apply STEP 3 to
each switch group, and all the switches in the same group are
programmed in the same process of STEP 3. The following
paragraphs explain how to derive the optimal root node and
the target switch groups.

We model this optimization problem as a set cover problem
with cost minimization. For each target switch, we calculate
the number of pre-erased connector switches and enumer-
ate other target switches that are dominated by the target
switch of interest while changing the root node. The num-
ber of pre-erased connector switches, which is the cost of
this problem, can be given by (5). We can enumerate dom-
inated target switches that can be programmed in the same
process by checking whether other target switches are included
in the target node of interest and its descendant nodes. Here,
the dominance relation is determined once the parent node of
the target switch is fixed. Therefore, the above enumeration for
a target switch is repeated for the number of edges of the target
node, not for the number of nodes in the connector tree. In the
other case, the target node is the root node, and the dominance
relation is also fixed. The above procedure gives some pairs of
the number of pre-erased connector switches and the group of
target switches that can be turned on in the same process of
STEP 3. From the combination of these pair information, we
find a set that covers all the target switches and minimizes the
total number of pre-erased connector switches.

Fig. 14 exemplifies the set cover problem defined above. For
target switch a, we count the number of pre-erased connector
switches and the covered target switches in three cases; i.e.,
when node B is parent, when node C is parent, and when
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node A is root. In case when node B is parent, we disconnect
nodes A, C, and F in STEP 3b, and hence the number of
pre-erased switches is 3 and the dominated switches are a
and f. In the same way, we count the number of pre-erased
switches and dominated switches for each target switch. Then,
we construct the table in the right side of Fig. 14, where each
row represents a group of a dominant node and dominated
nodes and the corresponding cost of the number of pre-erased
switches. From this table, we find a set of three red rows that
covers all the target switches and minimizes the cost to 8. In
this example, we can minimize the number of programmed
switches so that node E or H is selected as the root node and
the target switches are divided into three groups “switches a,
b, and f,” “switch g,” and “switch i.”

E. Root Node Selection With Lower Computational
Complexity

The previous section demonstrates that we can minimize the
number of programmed switches in partial reconfiguration by
solving the set cover problem. However, the set cover problem
is well known to be NP-hard. Thus, we propose an efficient
root selection method to minimize the number of programmed
switches without solving the set cover problem.

We exploit a property of the connection tree that at least
one solution set of rows in the set cover problem can share the
same root node. With this property, we only need to count the
number of programmed switches sequentially supposing each
node of the connection tree is the root node, and we choose the
one with the minimum number of programmed switches. This
approach reduces the computational complexity compared to
solving the set cover problem since the number of nodes of the
connection tree is the number of vertical signal lines at most.
The proposed root selection method can be implemented as
a polynomial-time algorithm and details will be explained in
Section V-F.

The following paragraphs prove that the above property is
always satisfied. For this proof, we introduce representative
switches, which are defined as the target switches that are
not dominated by other target switches in a solution of the
set cover problem. One representative switch is included as
one row in the table like Fig. 14, and this entry is obtained
by assuming the parent node or the root node. Therefore, the
direction to the root node is specified. For example in Fig. 14,
the solution selects three representative switches b, g, and i,
and three red arrows indicate the direction to the root node. In
this case, node E or H is selected as the root node that satisfies
all the red arrows at the same time. If such a root node exists
in any case, there is no need to solve the set cover problem. In
the following, we call the node that contains a representative
switch as the representative node.

To derive the property that optimal representative switches
can share the same root node, we prove that representative
switches that have common dominated switch never com-
pose an optimal solution first. We suppose that there are
two cases of representative switches that cover all the target
switches, and the one is with one or more common dominated
switches and the other has no common dominated switch.

For example, a pair of second and sixth rows of the table in
Fig. 14 belongs to the former case, which has common dom-
inated switch a. On the other hand, a pair of three red (6th,
10th, and 12th) rows corresponds to the latter case without
common dominated switches. When we compare the number
of pre-erased switches in both cases, the former is always
costlier than the latter. This is because the node, including
the dominated switch is disconnected and reconnected in each
programming of a representative switch. The former discon-
nects/reconnects such a node multiple times, but the latter
disconnects/reconnects it only once. Therefore, the optimal
solution selects representative switches that have no common
dominated switches.

Consequently, we can conclude that optimal representative
switches are not dominated by other target switches. Hence,
the original property can be proved by

SWopt-rep
[∗∗] are not dominated by other target switches.

⇒ Multiple SWopt-rep are not dominated by each other.

⇔ Multiple SWopt-rep are not descendants of each other.

⇒ Multiple SWopt-rep share a root node.
[∗∗]SWopt-rep: optimal representative switches. (6)

Another proof in an exhaustive manner for (6) is given in the
Appendix.

F. Pseudo Code of Partial Reprogramming

This section gives a pseudo code of the proposed partial
reprogramming method. Algorithm 2 includes only STEP 3 of
the partial writing process since STEPs 1 and 2 are straightfor-
ward. Lines 3–8, line 9, lines 10–12, and line 13 correspond
to STEP 3a, 3b, 3c, and 3d, respectively.

As explained in Section V-E, lines 3–8 calculate the number
of programmed switches by function CALCCOST repeatedly
changing the root node, and choose the one with the minimum
number of programmed switches. Function CALCCOST recur-
sively traverses the connection tree with depth-first search, and
count the number of programmed switches. Inside this func-
tion, lines 15 and 16 search representative nodes from the
closer nodes to the root node for each edge. After that, lines 17
and 18 enumerate on-state connector switches connecting to
the parent in a representative node and its descendant for all
representative nodes. We put these connector switches in Serase
and increment the cost, which is the number of programmed
switches, by one each time we put. STEP 3a performs a
depth-first search as many times as the number of nodes in
the connection tree, and hence the worst time complexity
is O(|V|(|V| + |E|)) where |V| and |E| are the number of
nodes and edges of the connection tree, respectively. Here,
|E| = |V| − 1 < |V| holds in a tree structure, and |V| is
Nvertical at most, which is the number of vertical signal lines
in a crossbar. Therefore, the worst time complexity can be
written as O(Nvertical

2).
After the completion of lines 3–8, the switches to be pre-

erased are in Serase, and we turn off them in line 9 as STEP 3b.
Then, STEP 3c turns on target switches SCV and SNN in
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Algorithm 2 Minimizing Programmed Switches
1: Starget = {SCV, SNC, SNN to be turned on}
2: Sch = {On-state SCH}
3: Serase = ∅, cost = ∞
4: for each node Ni do
5: Stmp = ∅, costtmp = 0
6: CALCCOST(Ni, ∅, Stmp, costtmp, False)
7: if costtmp < cost then
8: Serase = Stmp, cost = costtmp

9: Turn off all Serase
10: for Si ∈ Starget do
11: if Si is not connector switch to parent then
12: Turn on Si, Starget = Starget − {Si}
13: Turn on all Serase ∪ Starget in order from shallow to deep

14: function CALCCOST(Ni, Nrep, Serase, cost, flag)
15: if flag = False, Ni has Sj ∈ Starget then
16: Nrep = Nrep ∪ {Ni}, flag = True

17: if flag = True, Ni has Sj ∈ Sch, Sj is connecting to
parent then

18: Serase = Serase ∪ {Sj}, cost = cost + 1

19: for Nchild ∈ {Nj | Nj is child node of Ni} do
20: CALCCOST(Nchild, Nrep, Serase, cost, flag)

21: if Ni ∈ Nrep then
22: flag = False

lines 10–12. Finally, line 13 turns on connector switches SCH
and SNC in order from shallow to deep at STEP 3d.

VI. EVALUATION RESULTS

This section discusses how many configurations are
increased by the proposed sneak path problem aware pro-
gramming method and demonstrates how much the number
of programmed switches is reduced by the proposed partial
reprogramming method.

A. Improvement on Number of Available Configurations

This section discusses an increase in the number of available
configurations thanks to the proposed method. The conven-
tional countermeasure for the sneak path problem, which is
explained in Section II-C, imposes a programming constraint
that prohibits a class of configurations of the via-switch FPGA.
Therefore, the conventional countermeasure reduces the num-
ber of usable configurations and consequently diminishes the
routing flexibility. On the other hand, the proposed method can
give a sneak path free programming order for any nonlooped
configurations. As discussed in Section III, the sneak path
problem is unavoidable in looped configurations, but those
configurations are practically meaningless for signal routing.

Fig. 15 compares the number of programmable configura-
tions with the conventional countermeasure and the proposed
method in 2×2, 3×3, 4×4, and 5×5 crossbars, where such
small crossbars are used to enumerate all the nonlooped
configurations. In this evaluation, the conventional counter-
measure prohibits configurations in which multiple on-state

Fig. 15. Number of available configurations with conventional countermea-
sure and proposed method in small crossbars.

TABLE III
NUMBER OF USABLE CONFIGURATIONS AMONG 10 000 RANDOM

CONFIGURATIONS IN A PRACTICALLY SIZED 100×100 CROSSBAR

via-switches exist in the same horizontal line [14]. We can
see that the proposed method increases the number of usable
configurations compared to the conventional countermeasure.
Even in the small 5×5 crossbar, the number of available
configurations increases by over two orders of magnitude.
We also confirm that the number of usable configurations in
the proposed method is equal to the number of all the non-
looped configurations. As proved in Section IV, the proposed
method can find a sneak path free programming order for arbi-
trary nonlooped configurations in an arbitrarily sized crossbar.
Another observation is that the increasing ratio of the num-
ber of usable configurations becomes larger as the crossbar
size increments, which suggests a significant increase in the
number of configurations in practically sized crossbars.

Motivated by this, we assess the number of available config-
urations in a practically sized crossbar. Here, the total number
of configurations exponentially increases as the crossbar size
n becomes larger, like 2n, and the comprehensive simulation
of larger crossbars is infeasible. Instead, we generated random
configurations for a large crossbar in Monte Carlo manner and
compared the number of programmable configurations with
conventional and proposed methods. The locations of on-state
via-switches were determined by uniformly distributed ran-
dom numbers. In this evaluation, the crossbar size was set to
100×100 and the number of trials was 10 000. We also varied
the percentage of on-state via-switches from 0.1% to 0.5%.
Table III shows the evaluation results. We can see that the
proposed method achieves a significant increase in the num-
ber of usable configurations. When 0.5% of via-switches are
on-state, the number of programmable configurations increases
by over four orders of magnitude.
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Fig. 16. Number of programmed switches in reconfiguration with con-
ventional and proposed methods when 0.5% of via-switches are on-state in
100×100 crossbar.

Fig. 17. Number of programmed switches in reconfiguration with con-
ventional and proposed methods when 1.5% of via-switches are on-state in
100×100 crossbar.

B. Minimizing Number of Programmed Switches
by Partial Reconfiguration

This section experimentally demonstrates that the proposed
partial reconfiguration method can achieve a reduction in
the number of programmed switches. Figs. 16 and 17 com-
pare the number of programmed switches in the conventional
method and that in the proposed method. Here, the conven-
tional method turns off all the on-state via-switches in the
previous configuration and then writes the next configuration
to the crossbar. This evaluation randomly generates nonlooped
previous and next configurations and derives a sneak path free
programming order minimizing the programmed switches by
the proposed method in Section V. We chose the locations
of on-state switches using uniformly distributed random num-
bers. The crossbar size was set to 100×100, and the percentage
of on-state via-switches in a crossbar was 0.5% in Fig. 16
and 1.5% in Fig. 17. We varied the percentage of common
on-state via-switches in the previous and next configurations
from 20% to 80%, and performed 10 000 trials for each case.
Programmed common and noncommon switches are depicted
with different colors.

From Fig. 16, we can see that the number of pro-
grammed switches in the conventional method is fixed to 200,
which is 100 × 100 via-switches × 0.5% × 2 atom switches ×
2 configurations (previous and next), for each case. In the
proposed method, the number of programmed noncommon
switches is the same as that of the conventional method since it
is essential to erase and write noncommon switches for recon-
figuration. On the other hand, the number of programmed
common switches is dramatically reduced by the proposed
method. As a result, the proposed method reduces the total
number of programmed switches by 19.5% to 77.4%. The

Fig. 18. Histogram of reduction ratio in number of programmed switches
from worst root selection to optimal root selection.

(a)

(b)

Fig. 19. All combinations of two representative switches.

reduction of 77.4% increases the number of possible recon-
figuration executions of the via-switch FPGA by 4.4×. The
reduction on the number of programmed switches also reduces
reconfiguration time. If we share the programming drivers
between the entire CLBs array for reducing the area of periph-
eral circuits, we need to program via-switches sequentially.
In this case, the reconfiguration time is the programming
time of each switch multiplied by the number of programmed
via-switches. Therefore, 77.4% reduction on the number of
programmed switches reduces reconfiguration time by 77.4%.
On the other hand, we can also adopt a parallel program-
ming scheme by increasing the number of drivers. Even in
this case, the reconfiguration time decreases while the reduc-
tion ratio may vary depending on the maximum number of
programmed switches in independent programming regions.

Comparing Figs. 16 and 17, the reduction ratio on the
number of programmed switches decreases slightly as the per-
centage of on-state via-switches increases from 0.5% to 1.5%.
This is because the density of on-state via-switches is rela-
tively high and we have to erase more common switches for
avoiding the sneak path problem. However, we can still see
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that the proposed method considerably reduces the number of
programmed switches.

Next, we discuss the impact of optimal root node selec-
tion in STEP 3a of partial writing. We compare the number
of programmed switches in both cases that STEP 3a selects
an optimal root node and a worst root node. Fig. 18 shows
a histogram of reduction ratio in the number of programmed
switches from the worst case to the optimal case. In this evalu-
ation, the crossbar size is 100×100, the percentage of on-state
via-switches in a crossbar of the previous and next config-
urations are 1% and 1.1%, all the on-state via-switches in
the previous configuration are included in the next configu-
ration, and consequently 0.1% via-switches are newly turned
on in the next configuration. The number of trials is 10 000.
The number of programmed switches can be reduced by 70%
at maximum and 29% on average thanks to the optimal root
selection. This result indicates that the optimal root selection
plays an important role in the proposed method.

VII. CONCLUSION

This article has identified the programming status of the
via-switch FPGA that cause the sneak path problem, and
has proved that a via-switch programming order which can
avoid the sneak path problem always exists for all the non-
looped configurations. We proposed a sneak path avoidance
method that gave sneak path free programming order of via-
switches in a crossbar, and a minimization method of the
number of programmed switches in the partial reconfigura-
tion. In a test case, the proposed method reduced the number
of programmed switches by 77.4% compared to the conven-
tional approach, which enables 4.4× more reconfigurations
of the via-switch FPGA and reduces reconfiguration time by
77.4%. The proposed methods successfully solve the sneak
path problem in any practical configurations and contribute
to longer via-switch lifetime and faster configuration of the
via-switch FPGA. Future works include the generalization of
the proposed method for other crossbar structures with various
type of switches beyond the via-switch FPGA.

APPENDIX

Another proof for (6) is presented. We separately give the
proof for the two cases; when only one representative switch
is given by the solution of the set cover problem, and when
multiple representative switches are given.

When there is only one representative switch, the proof
is self-evident. The direction to the parent node is specified
only by one representative switch, and hence no contradic-
tion occurs. Otherwise, the solution says that the representative
node is the root node, and again no contradiction occurs.

Next, we discuss the proof for the case of multiple repre-
sentative switches. We prove the case of two representative
switches since this proof is easily extended to the cases that
there are three or more representative switches. Fig. 19(a)
illustrates the generalized tree structure with two represen-
tative switches, and Fig. 19(b) shows all the combinations
of two representative switches. No matter how many edges
a representative node has, we can categorize them into two

groups: 1) an edge directed to another representative node and
2) other edges. All the nodes except representative nodes can
be divided into node groups A, B, and C in Fig. 19(a). Node
group B contains the nodes between the 1) edges of the two
representative nodes. Nodes beyond the edges 2) of represen-
tative node S and T are categorized into node group A and C,
respectively. In Fig. 19(b), each red arrow indicates the direc-
tion to the root node from each representative switch, and the
red arrow pointing to the representative node itself indicates
that the representative node is the root node. There are three
directions for each red arrow [edge (1), edge (2), and the rep-
resentative node itself], and hence there are 3×3 = 9 patterns
of two red arrows. We divide these nine patterns into three
cases. Case 1 contains patterns that include at least one red
arrow pointing to the representative node itself. Patterns that
have the red arrow indicating the direction of edge (2) are
categorized into case 2. Case 3 contains patterns where both
the red arrows indicate the direction of edge (1).

From now, we prove that the possible pattern is only case 3
in Fig. 19(b). In case 1, there is at least one red arrow pointing
to the representative node itself, which indicates that choos-
ing this representative node as the root node is optimal. To
program the representative switch in the root node, we need
to disconnect the descendant nodes of the root node, i.e., all
the nodes of the connection tree. Therefore, another repre-
sentative node is also disconnected and can be programmed
in this programming step, which means there is a dominance
relationship. From the definition, representative switches do
not dominate each other, and hence the patterns in case 1
never exist as a solution of the set cover problem. In general,
from the above reason, the red arrow pointing to the repre-
sentative node itself never exists in cases where there are two
or more representative nodes. Next, the same discussion is
applied to case 2 where at least one red arrow indicates the
direction of edge (2). In this case, another representative node
is included in the descendant nodes of this representative node.
For example in pattern f of Fig. 19(b), representative switch s
argues that the root node is included in node group A. At that
time, another representative switch t is one of the descendant
nodes of node S, and then there is a dominance relationship.
Hence, patterns in case 2 do not exist as a solution of the
set cover problem. The same discussion is applicable to cases
of three or more representative nodes. From the above discus-
sion, the possible pattern of red arrows is only case 3 where all
the red arrows indicate the direction to intermediate nodes of
all representative nodes. We can satisfy all the red arrows by
choosing the root node from intermediate nodes of represen-
tative switches, and can minimize the number of programmed
switches without solving the set cover problem.
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