
Memory Efficient Training
using Lookup-Table-based Quantization

for Neural Network

Kazuki Onishi∗, Jaehoon Yu†, and Masanori Hashimoto∗
∗ Osaka University, Osaka, Japan

Email: {k-onishi, hasimoto}@ist.osaka-u.ac.jp
† Tokyo Institute of Technology, Tokyo, Japan

Email: yu.jaehoon@artic.iir.titech.ac.jp

Abstract—Modern neural networks require a tremendous
number of parameters, which causes unaffordable requirements
of memory and computation resources for embedded systems.
To tackle this issue, we propose a LUT-based training method
in this paper. The proposed method consists of two components:
cluster swap and factorization. Cluster swap is an extension to
the quantization process in Deep Compression that overcomes
its drawback of unstable training by reassigning each parameter
to the proximate cluster. Factorization is a computation trick
to reduce the computational cost of neural networks. The
experimental results show that the proposed method can decrease
memory usage for forward and backward processes to 22.2% and
60.0% ,respectively, and reduce the number of multiplications to
11.7%, with 1.41% accuracy loss.

Index Terms—neural network, lookup table training, cluster
swap, Deep Compression, hardware acceleration

I. INTRODUCTION

The demand for mobile applications using neural networks

is increasing. These neural networks must be trained in ad-

vance to a sufficient level of accuracy. Neural networks are

usually trained on powerful computers, since they require

a large amount of hardware resources corresponding to the

size of the network. On the other hand, embedded systems

capturing and processing data in real time need to perform

training with limited computational resources. In that case,

training becomes a challenging issue due to increasing hard-

ware resources which is brought by a tendency to grow the

size of the network. In 1998, LeNet-5 [1] used only 40K

parameters, but Inception-v4 [2] presented in 2016 has 100M

parameters.

A larger number of parameters increase not only computa-

tion cost, but also memory requirement, both of which highly

affect the amount of energy consumption. TABLE I shows

that a DRAM fabricated in 45nm process requires 640pJ per

operation, which is up to 711× more energy consumption than

other operations. Due to the limitation of memory resources

in embedded systems, it is difficult to store all parameters of a

state-of-the-art neural network in on-chip memory. Therefore,

embedded systems load parameters from off-chip DRAMs,

increasing energy consumption as a result. Additionally, the

growth in computational cost resulting from the increase

TABLE I
ENERGY CONSUMPTION FOR 45NM CMOS PROCESS [4].

Operation Energy[pJ] Relative Cost

32 bit DRAM Access 640 711
32 bit SRAM Access 5 5.6
32 bit float MULT 3.7 4.1
32 bit float ADD 0.9 1

in parameters is an obstacle to the practical use of neural

networks in embedded systems.

These problems are more conspicuous in the training phase,

as shown in Fig. 1. Comparing memory requirements between

conventional training and inference phases, ((a) and (c) in

Fig. 1, respectively), the training phase requires additional

memory for computation history and gradient calculation,

which are used for differentiating output activations and up-

dating weights.

A well-known solution to memory requirements is quan-

tization. Quantization is a method for representing a broad

set of values by a small set of values. For reducing neural

network memory and computation resources, Deep Compres-

sion [3] uses quantization adopting lookup tables (LUTs),

which substitutes words of LUTs for network parameters. In

[3], Song et al. show that this LUT-based quantization can

successfully reduce the size of state-of-the-art neural networks

for the inference phase as shown in (a) and (b) of Fig. 1.

The key to the success of Deep Compression is the repetitive

retraining process after quantization, which recovers from the

accuracy drop caused by quantization. Instead, if we can apply

this retraining in the training phase with randomly initialized

parameters, we can also reduce the memory requirements for

the training phase, as shown in (d) of Fig. 1. As a result, it

would be possible to realize the whole LUT-based training

process and implement an embedded system that unifies both

LUT-based training and inference.

In this paper, we analyze Deep Compression, describe chal-

lenging problems for using it in initial training, and propose a

LUT-based training method. The proposed method is evaluated

with LeNet-5 and the MNIST dataset [5]. To the best of our

knowledge, this paper is the first attempt to train LUT-based

2020 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)

978-1-7281-4922-620$31.00 c©2020 IEEE 251

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 18,2020 at 01:14:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Memory requirement for training and inference in CONV2 of LeNet-5.

1|C|3 1 21.7 -1.1 0.3 -1.32.2
quantize

-1.2 0.0 1.5 2.00.0 -1.22.01.5 -1.2
decode

32-bit N parameters

w1 w2 w3 w4 wN m1 m2 m3 m4 mN

�

wi: 32-bit i-th weight

ci: 32-bit i-th centroid

mi: log |C|-bit i-th index

32-bit |C| centroids

C =

log |C|-bit N indices

∵ N � |C|
Size rate � log |C|/32

Decoded N parameters

c3 c3c2 c2c|C| c|C|c1c1 c1

before Deep Compression after Deep Compression

Fig. 2. Underlying idea of Deep Compression.

quantized network from scratch without full-precision weights.

II. CONVENTIONAL QUANTIZATION

In this section, we briefly explain Deep Compression, in

which the proposed method is based on, and describe the

problem in the training phase to be addressed. The remarkable

inference performance of recent neural networks comes at the

cost of billions of parameters, which entail high requirements

of memory and computation resources. pproach to this issue is

quantization. The numeric precision of parameters represents

the resolution of non-linearly transformed spaces of neural net-

works. Generally, quantization approaches alleviate memory

and computation requirements by representing the space with

a small set of numbers. So far, existing quantization methods

have achieved a great success in the inference phase of state-

of-the-art neural networks.

The most effective quantization methods are using bi-

nary [6], [7], ternary [8], [9], or a bigger set of non-linearly

spaced values. Compared with networks using 32-bit floating

point, binary and ternary quantization can achieve 32× and

16× memory savings, respectively. This feature brings a huge

advantage in reducing memory and computation requirements.

However, excessive quantization always degrades inference

performance, and this limitation in binary and ternary is

becoming increasingly severe in newer models. On the other

hand, non-linear quantization provides us with a satisfying

solution to this problem.

Deep Compression [3] is a well-known non-linear quan-

tization method that uses LUTs and addresses instead of

parameters, as shown in Fig. 2. Even only with such simple

replacement, this method can reduce the required memory size

to less than one fifth. Deep Compression consists of three

processes: pruning, quantization, and encoding, but we focus

only on quantization in this paper. The main components of

quantization in Deep Compression are clustering and retrain-

ing. In the clustering process, Deep Compression applies K-

means clustering to network parameters, obtaining a centroid

from each cluster. Since the approximation error of each

centroid can cause an accuracy drop, Deep Compression finely

tunes the centroids by retraining and updating each centroid

with the aggregate sum of back-propagation gradients of the

parameters in the corresponding cluster. This update process

can be described by the following equation:

c
(i+1)
j = c

(i)
j − ρ

∑

k∈Ij

∂L

∂w
(i)
k

, (1)

where c
(i)
j and w

(i)
k are, respectively, the j-th centroid and the

k-th weight after i retraining iteration, ρ is the learning rate,

L is the loss function, and Ij is the set of weight indices

assigned to the j-th cluster. Fig. 3a illustrates how Deep

Compression clusters parameters and how it updates centroids

after clustering, where circles and squares represent param-

eters and centroids, respectively, and each color represents

each cluster. The crucial point is that the cluster assignment

hardly changes during the centroid update, since parameters

are already close to the local minimum after training, and

therefore, the gradients are not large enough to force them

to another cluster.

This retraining process provides us both inspiration and a

challenging problem. If we could use LUT-based quantization

from the beginning of the training phase, we could save

memory and computation resources since we would not need

to store all intermediate data to calculate gradients for back-

propagation. As shown in Fig. 3b, in contrast to the update of

retraining for fine-tuning in Fig. 3a, the initial training uses

randomized parameters, which have large gradients toward

local minima. As a result, each cluster shows a significant

deviation, and the training becomes unstable.

III. PROPOSED LUT-BASED TRAINING METHOD

This section proposes a method for memory saving and

computation reduction. The proposed method consists of two

components: cluster swap and factorization. Cluster swap

solves the instability problem mentioned above and enables

LUT-based training from randomly initialized parameters. As

a result, it saves a large amount of memory resources. Factor-

ization, on the other hand, exploits a computational advantage

inherent in LUT-based quantization methods and reduces the

number of multiplications used in both training and inference

phases. The following subsections explain their details.

A. LUT-based training with cluster swap

As mentioned in Sect. II, the problem of LUT-based training

is the initial cluster assignment is far apart from the optimal

one. To solve this problem, the proposed method uses cluster

swap to reassign each parameter to the cluster with the nearest

centroid after the gradient calculation, as shown in Fig. 3c. By

252

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 18,2020 at 01:14:13 UTC from IEEE Xplore. Restrictions apply.

Freq.

Parameters

Clustering

Calc
Gradient

Update
Centroids

Trained Parameters

Small Variation
of Gradients

w
(0)
1 w

(0)
2

c
(0)
1 c

(0)
2

(a) Retraining of Deep Compression

Random Parameters

Large Variation
of Gradients

w
(0)
1 w

(0)
2

c
(0)
1 c

(0)
2

(b) Initial training using Deep Compression

weight

centroid

Swap Clusters
Swap

Random Parameters

w
(0)
1 w

(0)
2

c
(0)
1 c

(0)
2

(c) Initial training using the proposed method

Fig. 3. Comparison of LUT-based training processes.

adjusting each parameter assignment, this method alleviates

the instability in training.

Cluster swap requires additional computation for reassign-

ing parameters and then recalculating gradients. To suppress

this increase in computational cost, we use a mathematically

identical but more efficient calculation process. Without LUTs,

parameters are updated as follows:

w
(i+1)
j = w

(i)
j − ρ

∂L

∂w
(i)
j

. (2)

Then, cluster swap selects the nearest cluster based on

m∗ = arg min
m

‖w(i+1)
j − c(i)m ‖, (3)

where m∗ is the nearest cluster index of the j-th parameter

after i-th cluster swap. Centroid update recalculates the gra-

dient of each parameter reassigned to another cluster in the

swap process because the previous gradient is calculated from

the previous cluster, not from the current cluster. To avoid the

recalculation from scratch, we assume that the value of the

updated parameter does not change even if it belonged to the

reassigned cluster from the previous update:

w
(i+1)
j = w

(i)
j − ρ

∂L

∂w
(i)
j

= w
′(i)
j − ρ

∂L

∂w
′(i)
j

, (4)

where w
′(i)
j is the reassigned weight, which is equal to

the nearest cluster centroid cm∗ . Based on this assumption,

gradient after reassignment can be calculated by

∂L

∂w
′(i)
j

=
∂L

∂w
(i)
j

− w
(i)
j − w

′(i)
j

ρ
. (5)

With this gradient for the reassigned cluster, we can update

centroids as follows:

c
(i+1)
j = c

(i)
j − ρ

1

|Ij |
∑

k∈Ij

∂L

∂w
′(i)
k

. (6)

This calculation is almost the same as in Deep Compres-

sion [3], but we use a value much smaller than the total of

gradients, since we take the average to avoid unstable fluctua-

tion of update in the initial training phase. Also, the proposed

method only adds the calculation described of (3) and (5),

which is negligible compared with the entire computation.

Fig. 4. Comparison of accuracy changes with increasing clusters.

B. Reducing multiplications with factorization

LUT-based quantization uses a small number of centroids

instead of billions of parameters. This means a few multipliers

are repeatedly multiplied to various multiplicands. Therefore,

it is possible to factorize multiplications using an identical

multiplier. We integrate this factorization into the calculation

of each layer’s output, which results in a reduction in the

number of multiplications in both the training and inference

phases. Generally, the output y of MAC operations can be

described as

y =
∑

i

wixi, (7)

where wi and xi are the i-th parameter and input, respectively.

In quantized networks, however, we can factorize multiplica-

tions and operate the same calculation as follows:

y =
∑

j

cj
∑

k∈Ij

xk. (8)

As a result, factorization can reduce the number of multipli-

cations to |C| / |K| compared with the original calculation,

where |C| and |K| are the number of clusters and the dimen-

sionality of kernels, respectively.

IV. EVALUATION

We implemented the proposed method with PyTorch and

evaluated it with LeNet-5 [1] on the MNIST dataset. Since

253

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 18,2020 at 01:14:13 UTC from IEEE Xplore. Restrictions apply.

(a) Forward (b) Backward (c) Memory usage changes
with increasing clusters

Fig. 5. Analyses of memory usage.

(a) Comparison of
#MULT operations
with and without LUT

(b) Computational cost
changes
with increasing clusters

Fig. 6. Computaion reduction of the proposed method.

TABLE II
COMPARISON OF MEMORAY USAGE AND CALCULATION COST AT 16

CLUSTERS FOR CONV AND 64 CLUSTERS FOR FC.

Model
Accuracy (diff.) Memory usage [bit] # MULT

[%] Forward Backward operations

w/o LUT 99.28 (0.00) 14.4M 28.1M 2.29M

w/ Swap 97.87 (-1.41) 3.21M 16.9M 268K

w/o Swap 89.10 (-10.18) 3.21M 16.9M 268K

LeNet-5 has two types of trainable layers, convolution

(CONV) layers and fully connected (FC) layers, we separately

adjusted the number of clusters for each type. Also, in our im-

plementation, each layer has an independent LUT for storing

and updating its centroids. This section provides analyses of

the proposed LUT-based training method in terms of inference

accuracy, memory saving, and computation reduction.

Fig. 4 shows the comparison of inference accuracy between

LUT-based training processes with and without the cluster

swap, where solid colored lines and dashed lines represent

the accuracy changes with and without the cluster swap,

respectively. The black line is the upper bound obtained

from the original LeNet-5. As Fig. 4 shows, more clusters

enable better accuracy for both layer types regardless of

training processes, which is intuitively reasonable. However,

Fig. 4 also shows that the proposed method using cluster

swap largely outperformed competitors especially when using

a small number of clusters. Note that the solid green line

achieved about 98% accuracy at 16 clusters for CONV and

64 clusters for FC, which is approximately 9% better accuracy

compared with its counterpart and only 1.41% accuracy drop

from the original.

TABLE II provides the result of memory usage and com-

putation cost at 16 clusters for CONV layers and 64 clusters

for FC layers, where the models, ”w/o LUT”, ”w/ Swap”,

and ”w/o Swap”, represent the conventional training with 32-

bit floating points, the proposed LUT-based training, and the

LUT-based training without swap, respectively. As shown in

TABLE II, the proposed method with swap outperformed its

competitor although both LUT-based training methods reduced

memory usage to 22.2% in the forward process and 60.0% in

the backward process while they reduced computation cost to

11.7%, where the forward memory usage includes the size of

inputs, outputs, and parameters, and the backward memory

usage additionally includes the gradients of parameters.

For more details, Figs. 5a and 5b show the breakdown of

forward and backward memory usage. Also, Fig. 5c plots the

memory usage changes for CONV and FC layers with in-

creasing clusters. layer FC1 occupies the majority of memory

usage in LeNet-5 for forward and backwards processes, and

the proposed method works successfully for both cases. Also,

Fig. 5c indicates that both normalized memory usages show

logarithmic growth against the number of clusters, which is a

desirable feature since we can thus apply the proposed method

to larger neural networks with small costs.

Also, for the analysis of computation reduction, Fig. 6a

provides the breakdown of the number of MULT operations,

and Fig. 6b shows the normalized computational cost changes

with increasing clusters. As shown in Fig. 6a, the proposed

method can reduce a large amount of calculation. Although

the computation cost is linearly proportional to the number of

clusters in Fig. 6b, it hardly becomes a problem because we

already know that a small number of clusters is enough for

training.

V. CONCLUSION

In this paper, we proposed the LUT-based training method

based on Deep Compression using cluster swap and factor-

ization. The underlying idea is simple: cluster swap reassigns

parameters with large gradients to the nearest cluster in the

quantization of Deep Compression, and factorization reduces

multiplication by summing up multiplicands in advance. For

evaluation, we implemented the proposed method with Py-

Torch and tested it with LeNet-5 on the MNIST dataset. Ex-

perimental results showed that this simple approach can reduce

forward and backward memory usage, respectively, to 22.2%

and 60.0% with a 1.41% accuracy drop. Also, it can reduce

the number of multiplications to 11.7%. Although the model

used for this evaluation is simple, the proposed method worked

successfully without any prior model-specific optimization,

suggesting that it will also succeed when applied to other

networks. In future work, we will verify its performance with

more sophisticated neural networks such as Inception-v4 [2].

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

ber JP19H04079

REFERENCES

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

254

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 18,2020 at 01:14:13 UTC from IEEE Xplore. Restrictions apply.

[2] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proceedings of Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
in Proceedings of International Conference on Learning Representations,
2016.

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proceedings of Advances
in Neural Information Processing Systems, 2015, pp. 1135–1143.

[5] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proceedings of Advances in Neural
Information Processing Systems, 2016, pp. 4107–4115.

[7] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
Imagenet classification using binary convolutional neural networks,” in
Proceedings of European Conference on Computer Vision. Springer,
2016, pp. 525–542.

[8] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[9] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
in Proceedings of International Conference on Learning Representations,
2016.

255

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 18,2020 at 01:14:13 UTC from IEEE Xplore. Restrictions apply.

