
Integration, the VLSI Journal 74 (2020) 19–31
Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi
Logarithm-approximate floating-point multiplier is applicable to
power-efficient neural network training☆

TaiYu Cheng a,*, Yukata Masuda b, Jun Chen a, Jaehoon Yu c, Masanori Hashimoto a

a Department of Information Systems Engineering, Osaka University, Japan
b Center for Embedded Computing Systems, Graduate School of Informatics, Nagoya University, Japan
c Institute of Innovative Research, Tokyo Institute of Technology, Japan
A R T I C L E I N F O

Keywords:
Approximate computing
Neural network
Training engine
Floating-point unit
Logarithm multiplier
GPU design
☆ This work is supported by Grant-in-Aid for S
* Corresponding author.
E-mail addresses: t-cheng@ist.osaka-u.ac.jp (T. C

hasimoto@ist.osaka-u.ac.jp (M. Hashimoto).

https://doi.org/10.1016/j.vlsi.2020.05.002
Received 18 November 2019; Received in revised f
Available online 14 May 2020
0167-9260/© 2020 Elsevier B.V. All rights reserved
A B S T R A C T

Recently, emerging “edge computing” moves data and services from the cloud to nearby edge servers to achieve
short latency and wide bandwidth, and solve privacy concerns. However, edge servers, often embedded with GPU
processors, highly demand a solution for power-efficient neural network (NN) training due to the limitation of
power and size. Besides, according to the nature of the broad dynamic range of gradient values computed in NN
training, floating-point representation is more suitable. This paper proposes to adopt a logarithm-approximate
multiplier (LAM) for multiply-accumulate (MAC) computation in neural network (NN) training engines, where
LAM approximates a floating-point multiplication as a fixed-point addition, resulting in smaller delay, fewer gates,
and lower power consumption. We demonstrate the efficiency of LAM in two platforms, which are dedicated NN
training hardware, and open-source GPU design. Compared to the NN training applying the exact multiplier, our
implementation of the NN training engine for a 2-D classification dataset achieves 10% speed-up and 2.3X effi-
ciency improvement in power and area, respectively. LAM is also highly compatible with conventional bit-width
scaling (BWS). When BWS is applied with LAM in five test datasets, the implemented training engines achieve
more than 4.9X power efficiency improvement, with at most 1% accuracy degradation, where 2.2X improvement
originates from LAM. Also, the advantage of LAM can be exploited in processors. A GPU design embedded with
LAM executing an NN-training workload, which is implemented in an FPGA, presents 1.32X power efficiency
improvement, and the improvement reaches 1.54X with LAM þ BWS. Finally, LAM-based training in deeper NN is
evaluated. Up to 4-hidden layer NN, LAM-based training achieves highly comparable accuracy as that of the
accurate multiplier, even with aggressive BWS.
1. Introduction

For enhancing our daily life with artificial intelligence (AI), machine
learning (ML) is currently adopted and executed everywhere, even on
end devices such as smartphones, Internet-of-Things (IoT) sensors, and
cameras. The generated data from devices need to be collected and
aggregated as the samples for learning processing and analysis.
Conventionally, the data is transferred to the cloud since the learning and
analysis processes require high computational capability and large
memory capacity. However, the data moving to the cloud involves
challenges in terms of latency, bandwidth, and privacy concerns. Some
applications like computer vision and natural language processing highly
cientific Research (B) from JSPS

heng), masuda@ertl.jp (Y. Masud

orm 2 May 2020; Accepted 5 Ma

.

demand local and real-time services, and then edge computing emerges
as a solution. In edge computing, the edge servers, typically embedded
with GPU processors, are placed near the end devices, and they process
and analyze the data independently from the cloud or before sending the
data to the cloud [1,2]. Compared with ML training in the cloud, training
in the edge servers may provide tailored ML models without security risk
[1]. On the other hand, due to the size and power limitations,
power-efficient training is demanded and explored [3,4].

Neural network (NN) is one of the most widely-used techniques in
machine learning [5]. A feedforward NN model is composed of a few to
hundreds of layers, each of which includes a number of neurons. The
neurons are connected layer by layer through synaptic weights. The
under Grant 19H04079.

a), j-chen@ist.osaka-u.ac.jp (J. Chen), yu.jaehoon@artic.iir.titech.ac.jp (J. Yu),

y 2020

mailto:t-cheng@ist.osaka-u.ac.jp
mailto:masuda@ertl.jp
mailto:j-chen@ist.osaka-u.ac.jp
mailto:yu.jaehoon@artic.iir.titech.ac.jp
mailto:hasimoto@ist.osaka-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2020.05.002&domain=pdf
www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
https://doi.org/10.1016/j.vlsi.2020.05.002
https://doi.org/10.1016/j.vlsi.2020.05.002
https://doi.org/10.1016/j.vlsi.2020.05.002

Fig. 2. Hardware benchmarking for 32-bit floating-point multiplier and adder
synthesized for the same clock frequency. Both power and area values are
normalized by those of the adder, respectively.

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
synaptic weights are optimized to provide sufficiently high accuracy
through the computationally expensive training phase. Hardware NN
system is mainly categorized into two types. The first one is the inference
engine that processes a network with given pre-trained weights, and the
latter is the training engine that has the additional capability of weight
optimization in the training phase. Regardless of the inference or training
engine, multiply-accumulate (MAC) arithmetic computation is the pri-
mary operation. The rapidly increasing trend of NN size to deal with
more intricate and sophisticated problems explodes the amount of MAC
computation, resulting in a strong demand for dedicated hardware
engines.

Inference engines in several studies exploit inherent error-tolerant
property in machine learning and introduce approximate computing
(AC) techniques for gaining performance and reducing cost [6–9].
Among various AC techniques proposed for inference engines, bit-width
scaling (BWS), which reduces the bit width of data representation, is the
most popular and powerful way that trades computation reduction with
accuracy degradation [6,10–12]. Even binarized neural networks are
studied [13].

In contrast to inference, training engines need to perform more
arithmetic computation with a wider dynamic range since the gradient,
which is numerically computed and used to guide the weight update,
spreads in a broad dynamic range [10]. A simple example can help us
understand this property. Fig. 1 plots the distribution density of the
gradient values found when training a NN for MNIST dataset [24]. The
gradient values spread from 2�47 to 26. If adopting fixed-point expres-
sion, more than 50 bits are required to cover this range, while
floating-point expression spends only a few bits for exponents and some
extra bits for fraction parts to cover this wide range. Thus, adopting
floating-point units (FPUs) is beneficial for training engines to accom-
modate such gradient computation.

Nevertheless, FPUs are known as power-hungry and area-expensive
units [14]. Specifically, in the neural network algorithm that mainly
consists of MAC computations, floating-point multiplication is the most
power-hungry and space-demanding arithmetic operators. Fig. 2 exem-
plifies the power and area benchmarking between a 32-bit floating-point
multiplier and an adder synthesized for the same clock frequency. The
figure shows that the floating-point multiplier consumes 3.01X power
and 1.75X area. The MAC operation requires the same number of
multiplication and addition, indicating that the power for MAC operation
is mostly consumed by the multiplier. Consequently, massive MAC
computations in NN training deteriorate the area and power efficiency.
Therefore, power-efficient floating-point multiplication is highly
demanded in training engine development.

In this paper, we perform that the logarithm-approximate multiplier
(LAM), which approximates floating-point multiplication to fixed-point
addition, benefits to NN training and improves the power efficiency of
Fig. 1. Distribution density of gradients observed when a NN is trained for
MNIST dataset [24]. x-axis represents the gradients in log scale with base 2, and
y-axis is the normalized distribution density.

20
massive MAC computation involved in NN training under floating-point
format. We also show that LAM is useful even when the BWS is already
implemented in training, and hence power efficiency is further enhanced.
These advantages are quantitatively evaluated through the experiments
with dedicated training hardware. Experimental results show 2.5X power
reduction by LAM and 4.9X reduction by LAM þ BWS while sustaining
the accuracy, where 2.2X reduction originates from LAM. These results
are reported in our preliminary work [15].

In this work, we newly evaluate whether solo or hybrid usages of
exact and approximate multipliers in training and testing phases affect
the classification accuracy. Experimental results reveal that adopting
approximate multipliers (LAMs) in both training and testing phases in-
duces no significant accuracy degradation, and then there is no need to
rely on accurate multipliers. Next, we conduct additional experiments for
evaluating the applicability of LAM and LAMþ BWS to open-source GPU
design, on which NN training programs are executed. The power re-
ductions thanks to LAM and LAM þ BWS are measured with an FPGA
implementation of the GPU design, and they are 1.32X and 1.54X
compared to the original design. Finally, we extend the NN depth, up to
4-hidden layers, and show that solo-LAM training achieves highly com-
parable results with solo-EFM training. This trend sustains even when
BWS is aggressively adopted as long as the acceptable training accuracy is
obtained.

The rest of the paper is organized as follows. Section 2 reviews the NN
with its training and related works. Section 3 introduces LAM and dis-
cusses its approximation error. Experimental results of adopting LAM in
dedicated training engines are presented in Section 4. Section 5 provides
the environmental setup and measurement results of LAM-based NN
training with FPGA implementation of an open-source GPU design.
Section 6 applies LAM-based training to deeper NNs and provides eval-
uation results. Finally, Section 7 concludes this paper.

2. Preliminaries, related work and research motivation

2.1. Basics of neural network

Fig. 3a illustrates a multilayer perceptron (MLP) structure, which is
known as a basic feedforward NN [18]. For the sake of clarity, the
structure contains only 1 hidden layer, while the number of hidden layers
can be extended to form deeper NNs. The state of each neuron in the
network is computed from all the states of neurons in the previous layer
and then propagates its state to the next layer. Taking the example in
Fig. 3a, since all the states are pre-determined in the input layer I, the
state computation starts at each neuron in the hidden layer (neurons are
denoted as H1, H2,…, Hh). Each neuron in the hidden layer computes the
sum of all the states of neurons in the input layer (I1, I2,…, Ii) multiplied
with corresponding synaptic weights (WH), passes the sum with a bias
term (BH) through a non-linear activation function to determine its state,
and then propagates the state to the output layer. This operation is
repeated at the neurons in the output layer (O1, O2, …, Oo) again, but
here the sum of all the states of neurons in the hidden layer is computed
with weights (WO) and bias (BO) to determine the states. The procedure
finishes once all the states of neurons in the output layer are determined.

Fig. 3. Feed-forward neural network. (a) is a schematic of a feed-forward neural network with 1 hidden layer. (b) and (c) are the schematics for illustrating forward-
and back-propagation at the a-th neuron in i-th layer.

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
A basic unit for expressing the above operation is shown in Fig. 3b.
Suppose there is the a-th neuron in the i-th layer, its state Yi

a can be
computed by the following formula:

Yi
a ¼ Actð

XN
k¼1

Wi
kaY

i�1
k þBi

aÞ; (1)

where Yi�1
k denotes the state of the k-th neuron in the (i � 1)-th layer.

Wi�1
ka represents the synaptic weight connecting from the k-th neuron in

the (i � 1)-th layer, and Bi
a denotes the bias term for the a-th neuron in

the i-th layer. Act(.) means the activation function, which usually allows
passing� 0 values or limits the values between�1 and 1. This procedure,
so-called forward propagation, keeps going until the states of all the
neurons in the output layer are determined, which is the core and
dominant operation that an inference engine with pre-trained weights
executes.

On the other hand, training NN aims at finding a set of synaptic
weights and bias values to minimize the loss function (Loss), which is
usually defined as the error squared between the state from the forward
propagation results in output layer O and target label T (T1, T2, …, To)
[18]. For illustration purposes, we describe the standard
back-propagation. At the beginning of the training phase, all the weights
are randomly initialized, the biases may be initially set to 0, and then
forward propagation is launched. The next step is to reduce the Loss
function according to the contribution of each synaptic weight (W) and
bias (B), which can be obtained through computing their gradient, i.e.
21
∂Loss/∂W and ∂Loss/∂B. Based on the computed gradients, each synaptic
weight and bias can be numerically updated during each iteration. Let us
take Fig. 3c as an example. Suppose a synaptic weight Wi

za connects the
z-th neuron in the (i � 1)-th layer (state ¼ Yi�1

z) with the a-th neuron in
the i-th layer (state ¼ Yi

a) and a bias Bi
a is for the a-th neuron in the i-th

layer. Then, Wi
za and Bi

a are updated by:

Wi
zaþ ¼ �η

∂Loss
∂Wi

za

where
∂Loss
∂Wi

za

¼ δiaY
i�1
z ; (2)

Bi
aþ ¼ �η

∂Loss
∂Bi

a

where
∂Loss
∂Bi

a

¼ δia: (3)

The gradient terms ∂Loss=∂Wi
za and ∂Loss=∂Bi

a in (2) and (3) share the
same term δia while ∂Loss=∂Wi

za further includes the term Yi�1
z . Basically,

the gradient terms would decay during the weight and bias update, and
thus these are also called gradient decent method. η is the learning rate,
and δia is conditionally formulated as follows. If the i-th layer is the output
layer, then δia is:

δia ¼ Act
0 ðOaÞðOa � TaÞ; (4)

where Oa represents the state computed through forward propagation, Ta
means its target state, and Act' means the derivative of activation func-
tion. If the i-th layer is not the output layer, then referring to Fig. 3c, δia is
expressed as:

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
δia ¼ Act
0 ðYi

aÞ
�Xb

Wiþ1
an δiþ1

n

�
; (5)
Fig. 4. Operation of exact floating-point multiplier. (S�, Eþ, F�) are individually
calculated by XOR, addition, and multiplication based on the sign, exponent,
and fraction part of multiplicand and multiplier, respectively. Then, EC and FC
are the conditional formula according to F�.
n¼1

whereWiþ1
an denotes the synaptic weight to the n-th neuron in the (iþ 1)-

th layer. δiþ1
n can be recursively computed through (4) and (5). Note that,

with (4) and (5), the output loss is propagating backward from the output
layer, and thus this procedure is named as back propagation [18]. In
addition, (5) indicates that the δia in the non-output layer needs to
compute all the weighted sum of δiþ1

n , meaning that MAC computation is
also primary in back propagation. Therefore, the training phase executes
huge amount of MAC computations during the iteration loops of forward
and back propagation. In addition, the gradient terms have a large dy-
namic range, and thus adopt floating-point arithmetic is beneficial in
training.

2.2. Related work and research motivation

Several papers propose to introduce bit-width scaling [7,8] and
approximate multipliers [19,20] into NN. The former uses fewer bits in
computation while the latter aims at reducing the resource for the
multiplication operation.

Logarithm based multiplier is a typical type of approximate multiplier
since logarithm converts multiplication to addition. State-of-the-art log-
arithm multipliers, such as [33,34] adopt this property to approximate
fixed-point multiplication in cooperation with a dedicated and efficient
error-fixing solution to mitigate the calculation error compared to exact
multiplication. Some researchers exploit the logarithm-based multiplier
in NN. Reference [20] applies iterative logarithmic multipliers (ILM),
which is a preliminary version of [33,34], to error-tolerant training al-
gorithm while [19,31,32] convert the multiplicand and multiplier into
log domain to do multiplication as an addition. References [31,32]
perform even addition and activation function in log domain to execute
the complete training in log domain. The above studies are all based on
fixed-point representations of the original value and its log value. Recent
works [21,23] propose to adopt logarithm-based floating-point multi-
pliers in NN, but [23] only adopts it in an inference engine. As for
floating-point training engines [6,10,11,35], study BWS only. Although
[21] uses the logarithm-based multiplier in training, their focus is to
provide a run-time configurable solution that can switch exact and
logarithm-based multipliers. Once an error that is larger than a
pre-determined criterion is detected in the logarithm-based multipliers
[21], automatically switches back to the exact multiplier. The same first
author of [21] has an earlier publication that introduced two-stage
training, in which the approximate training is allowed in the early
stage while in the late stage, the accurate training is demanded [22].
Consequently [21,22], still rely on the exact multiplier in training and
solo logarithm-based training is beyond their interest. Besides, the
compatibility with BWS and the efficacy in deeper NNs are not addressed.

In summary, previous studies for floating-point NN training inten-
sively focus on BWS, and it has left the space for evaluating the efficacy of
the logarithm-based multiplier in training. Also, BWS is still the primary
choice in the training engine design, and hence the compatibility be-
tween the logarithm-based multiplier and BWS must be investigated.
Taking into account the tremendous number of MAC operations in
training engines and the limited power budget for edge computing,
exploring a useful approximate technique for pursuing higher power
efficiency and examining its compatibility with BWS could give a useful
implication for training-engine designers, which is the objective of this
work. Besides, in addition to realizing a training engine through appli-
cation specific integrated circuit (ASIC), GPU-level applicability for LAM
is also one of our interests.

3. Logarithm approximate multiplier

Logarithm-approximate multiplier, LAM in short, is developed by
22
Ref. [16]. With an approximation, a floating-point value in linear domain
can be regarded as its value taken by the logarithm of base 2 in
fixed-point format. Thanks to the log-domain property, floating-point
multiplication can be approximated to fixed-point addition. This sec-
tion introduces LAM and analyzes its approximation error.

3.1. Floating-point multiplication

The floating-point format consists of three parts to represent a value
in scientific notation: one bit for sign, several bits for exponent, and the
remaining bits for fraction. When a value i is represented in the floating-
point format containing N bits for exponent andM bits for fraction, then i
is expressed as:

i ¼ ð�1ÞSi � 2ðEi�biasÞ �ð1þFi

�
2MÞ: (6)

Si is 0 or 1, where 0/1 means i is a positive/negative value. Fi is the
fraction part when i is converted to base-2 scientific notation with
multiplying 2M, and hence 0 � Fi/2M � 1. Ei is the exponent value that
includes a bias ¼ 2(N�1) � 1.

Fig. 4 explains the multiplication of two floating-point values
C ¼ A � B, where the sign parts (SA, SB and SC), exponential parts (EA, EB
and EC) and fraction parts (FA, FB and FC) in the floating-point repre-
sentation are processed individually.

S� ¼ SA � SB; (7)

Eþ ¼ EA þEB; (8)

F�
�
2M ¼ ð1þFA

�
2MÞ� ð1þFB

�
2MÞ; (9)

where (1 þ FA/2M) is obtained by appending 1 to the binary represen-
tation of FA, and supposing the binary point exists between 1 and FA.
Then, the multiplication result is expressed by:

SC ¼ S�; (10)

EC ¼
�
Eþ � bias F�

�
2M < 2;

Eþ � biasþ 1 otherwise;
(11)

FC ¼
�
F� � 2M F�

�
2M < 2;

F�
�
2� 2M otherwise:

(12)

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
In the hardware point of view, the multiplier for F� consumes
considerable power and area, and it often limits the speed since it con-
tains many full adders or similar logics in both width and depth.
Fig. 6. Operation of logarithm-approximate multiplier (LAM). S� and Eþ are
identical to those of the exact floating-point multiplier, but Fþ is directly
computed by adding the fractions without making their mantissas. EC and FC are
expressed by the conditional formula regarding Fþ.
3.2. Logarithm-approximate multiplier

Focusing on a positive floating-point number i, we simplify (6) for the
sake of clarity in the following discussion.

i ¼ 2eð1þ f Þ; (13)

where e replaces Ei�bias and f replaces Fi/2M. When converting i into log
domain, (13) becomes

log2i ¼ eþ log2ð1þ f Þ ffi eþ f ; (14)

where the approximated representation in the right term utilizes the
approximation below.

log2ð1þ xÞ ffi x; for0 � x � 1: (15)

When approximating log2(1 þ x) at x ¼ 0, (15) becomes 1.44x. On the
other hand, when we intend to approximate log2(1 þ x) in the region of
0 � x � 1, the approximation to 1.0x is also possible as shown in Fig. 5.
With this approximation, (13) and (14) make any manipulation unnec-
essary to approximate a floating-point value i to a fixed-point value log2i.

The logarithmic domain is beneficial in multiplication, as mentioned
in Section 2.2, since it can convert multiplication to addition. Fig. 6 il-
lustrates the approximate multiplier that we name as logarithm-
approximate multiplier (LAM). To compute C ¼ A � B, according to
LAM, the following primary computations are performed.

S� ¼ SA � SB; (16)

Eþ ¼ EA þEB; (17)

Fþ
�
2M ¼ FA

�
2M þFB

�
2M ; (18)

where we can find the calculation of fraction parts has changed from
multiplication to addition thanks to the property of log-domain while
(16) and (17) are still identical to (7) and (8). Making a mantissa from a
fraction is also excluded, and the fraction part is directly used for
computation. Then, the final multiplication result is expressed by:

SC ¼ S�; (19)
Fig. 5. Curves of functions log2(1 þ x), 1.0x, and 1.44x. Taking into the entire
range of 0 � x � 1, 1.0x is a possible approximation of log2(1 þ x), while 1.44x
is better at the point of x ¼ 0.

23
EC ¼ Eþ � bias Fþ 2M < 1;
Eþ � biasþ 1 otherwise;

(20)

� �

FC ¼
�
Fþ Fþ

�
2M < 1;

Fþ � 2M otherwise:
(21)

Note that equation (19) to calculate sign part SC is identical to (10) and
totally isolated from computing EC and FC. Therefore, LAM can perform
multiplication irrelevantly to positive and negative values using the
equations from (16) to (21). In our work, BWS is achieved by varying the
variableM denoted in Fig. 6, which can be easily integrated in both exact
multiplication and LAM.

Although EC and FC in (20) and (21) are conditional equations, they
can be efficiently computed in hardware implementations. We concate-
nate {EA, FA} and {EB, FB}, respectively, add them and subtract the bias
term followed by M-bits of 0s, as illustrated in Fig. 7. Then, the overflow
coming from FAþ FB can directly add a carry to EAþ EB. Finally, EC and FC
are exactly the first N bits and the last M bits of the computed result.

The approximation error of LAM can be analyzed by directly
comparing the computations of exact multiplication and LAM. Again, for
the sake of clarity, let us just focus on two positive floating-point values A
and B of A ¼ 2eA ð1þfAÞ and B ¼ 2eB ð1þfBÞ, where the notations of eA, eB,
fA, and fB refer to (13). The result of exact multiplication C ¼ A � B is:

Cexact ¼ 2eAþeB ð1þ fAÞð1þ fBÞ: (22)

When computing A � B by LAM, the expression is:

CLAM ¼
�
2eAþeB ð1þ fA þ fBÞ fA þ fB < 1;
2eAþeBþ1ðfA þ fBÞ otherwise:

(23)

By comparing the expressions under different conditions, relative
error of approximation, ErrLAM, can be derived as a conditional function
of fA and fB:

ErrLAM ¼ Cexact � CLAM

Cexact
¼ Err

ð1þ fAÞð1þ fBÞ (24)

where

Err ¼
�

fAfB fA þ fB < 1;
ð1� fAÞð1� fBÞ; otherwise:

(25)

Fig. 7. Algorithm for implementing LAM in hardware. EA and FA are concate-
nated, and EB and FB as well. Then, we can directly sum up them and subtract
the bias term that is followed by M-bits of 0s to compute EC and FC.

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
Here, both fA and fB are between 0 and 1, and hence ErrLAM is always
above 0. Fig. 8 shows a contour map of ErrLAM as a function of fA and fB.
The maximum value of ErrLAM is about 11.1% when both fA and fB equal
to 0.5. Note that ErrLAM is not affected by the exponents of A and B since
eA and eB are all canceled out when dividing (23) by (22). Similarly, the
sign values do not change the absolute value of ErrLAM neither. Fig. 8
also indicates that, as long as either fA or fB is closed to 0 or 1, the
approximate error is well suppressed. The advantage of LAM in terms of
the speed, power, and area will be discussed in Section 4.1, and the
impact of the approximation error on the NN training will be investigated
in Sections 4.3 and 4.4.

4. Experimental results for dedicated hardware design

This section shows the advantage of LAM as an arithmetic unit and
demonstrates the impact of LAM in NN training engine on the classifi-
cation accuracy and hardware resource.
4.1. LAM performance

We first evaluate the performance of LAM as a multiplier by
Fig. 8. Contour plot of ErrLAM, which represents the relative approximation
error between LAM and exact floating-point multiplier. The error depends on
the fraction values (fA, fB) of the multiplicand A and multiplier B under base-2
scientific notation, where 0 � fA, fB < 1.

24
comparing two multipliers; one is LAM, and another is the baseline exact
floating-point multiplier, denoted as EFM. LAM is manually implemented
at RTL with Verilog while EFM directly adopts Synopsys DesignWare IP
(DW_fp_mult) for functional credibility and sophisticated quality. The
two designs are synthesized by Synopsys Design Compiler with an open-
source 45 nm Nangate cell library. We examine their speed, power, and
area during benchmarking. The power and area evaluation are performed
in two scenarios, one is at their individual highest speed and the other
one is at a uniform speed at which the slowest multiplier can be
synthesized.

The evaluation results are shown in Fig. 9. For the sake of clarity, all
the results are normalized by that of 32-bit EFM. Fig. 9 shows LAM
achieves 2.5X speed compared with EFM and consumes 5.9X less power
and 8.3X less area at that speed while 12.5X less power and 7.7X less area
at the uniform speed in case of 32-bit floating-point expression (where
sign-exponent-fraction ¼ 1-8-23). The results of 16-bit version (1-5-10)
are also presented. An interesting observation is that 32-bit LAM operates
faster and consumes less power and area than even 16-bit EFM. Thus,
LAM can improve energy efficiency remarkably. The following sections
evaluate the impact of LAM on NN training with BWS in terms of the NN
classification accuracy and hardware performance.
4.2. Experimental setup for NN training

Table 1 lists the datasets [17,24–27] used for the experiments in this
paper and the numbers of neurons in the NNs for each dataset. For the
experiments, we prepare a 3-layer structure, which means 1 hidden layer
(each layer is denoted as I, H, O), and adopt ReLU (Rectified Linear Unit,
y ¼ max(x, 0)) and sigmoid function (y ¼ 1/(1 þ exp(�x))) as the acti-
vation function of hidden and output layers, respectively. Cross entropy
is chosen as the loss function since it can combine with the sigmoid
function to simplify (4) to a simple linear relation, δia ¼ Oa � Ta [28]. We
also adopt stochastic gradient decent with mini batch, which updates
weights and bias after accumulating ∂Loss/∂W and ∂Loss/∂B from a batch
size of training data, and apply learning rate decay, which gradually
declines learning rate along with iterations, as well for better convergent
speed during the training.

Besides, the hardware implementation of non-linear sigmoid function
is costly, and hence we adopt PLAN (Piecewise Linear Approximation of a
Nonlinear function) function to approximate sigmoid which is proposed
in Ref. [29]. PLAN function requires only shifters and adders, and hence
it is friendly to hardware implementation. Fig. 10a lists the conditional
equations used for sigmoid approximation, and Fig. 10b shows the curves
of the original and PLAN sigmoid functions. We can observe that PLAN is
well correlated with the original sigmoid function.

Fig. 11 plots the diagram of our dedicated NN training hardware
engine containing arithmetic units such as � for multipliers and � for
adders. Forward- block computes (1), Back- block calculates (4) and (5),
and then Updating block computes (2) and (3). Here a, b, and c denote the
numbers of neurons in Layer I, H, O, ReLU0 means the derivative function
of ReLU and Reg is register. The subtractor and PLAN function are an-
notated as adders since their functionality is similar while ReLU is drawn
by ○. In Updating block, we use the accumulators to add up the gradients
δ for the number of batch size and then update the associated weights and
biases based on the accumulated gradients with multiplying a learning
rate η.
4.3. Evaluation for FOURCLASS dataset

Now, we evaluate the NN training engine with FOURCLASS dataset
[17], which is a simple 2-D classification problem and its training results
can be graphically illustrated with the boundary line separating the two
classified groups. Fig. 12 shows the training results of 32-bit and 16-bit
floating-point cases, where the samples in the same group share the
same color. Note that the training and testing phase are both carried out

Fig. 9. Speed, power, and area benchmarking for synthesized LAM and EFM. There is one speed comparison and two scenarios for power and area under the max
speed circuit or the uniform speed circuit. All the values are normalized to EFM 32-bit case.

Table 1
NN structures for testcases based on 1-hidden layer.

Dataset #Neurons (I, H, O) batch size

FOURCLASS (2,8,2) 100
MNIST (400,300,10) 100
HARS (561,40,6) 40
ISOLET (617,100,26) 60
CNAE-9 (856,100,9) 40

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
with solo EFM or solo LAM. Although the boundary lines of EFM and
LAM show some discrepancy, both of them successfully distinguish the
groups of samples. In 32-bit case, both EFM and LAM achieve 100%
classification accuracy. In 16-bit case, which corresponds to BWS adop-
tion, LAM experiences 0.4% accuracy drop while it is negligibly small.
This result suggests LAM is compatible with BWS.

Fig. 13 shows the hardware evaluation results, to which a normali-
zation to 32-bit EFM engine is applied in the sameway as Section 4.1. The
training engine adopting LAM gains 10% speed-up over the EFM engine,
where this speed-up is smaller than Fig. 9 since the floating-point adder is
now a speed-limiting module. In addition to the speed improvement, the
maximum speed circuit achieves 2.1X (¼ 100%/47%) power and 2.2X (¼
100%/45%) area efficiency enhancements. On the other hand, in the
uniform speed circuit, 2.3X (¼ 100%/43%) power and 2.3X (¼ 100%/
44%) area efficiency enhancements are attained by LAM. These results
confirm that the multiplier is so power and space demanding that
reducing its computational cost improves the power and area efficiency
considerably. Furthermore, considering 16-bit LAM as a scenario that
Fig. 10. PLAN function, an approximate form of sigmoid function [29]. (a) E

25
LAM and BWS are applied together, 32% speed-up, 5.9X power, and 5.3X
area efficiency enhancements are attained in the maximum speed circuit,
where 5% (¼132% � 127%) speed-up, 2.5X (¼100%/17% � 100%/
30%) power reduction, and also 2.1X (¼100%/19% � 100%/32%) area
savings originate from LAM. The benefits of training with LAM are
quantitatively clarified.

4.4. Evaluation for higher dimensional datasets

We further evaluate the effectiveness of LAM with four other higher-
dimensional datasets. Also, to gain more insight into training method-
ology, we compare approximation strategies that individually adopt ac-
curate (EFM) and/or approximate (LAM) multipliers in training and
testing phases, respectively. Fig. 14 illustrates the four strategies we
evaluated.

Fig. 15 shows the training results for the four datasets. To test the
compatibility of LAM to BWS, we varied the number of fraction bits as 10,
16, and 23 while the bit width for exponent remains 8 bits to keep the
dynamic range. The results show that either case attains a similar accu-
racy both for training and testing sets. When looking into the details,
ISOLET with 23 bit and CNAE-9 with 16 bit in testing set lose 1% ac-
curacy, probably because training with LAM was trapped into over-
fitting. On the other hand, in different combinations of dataset and
fraction bit width, Cases #2 to #4 with LAM provide very close or even
better classification accuracy compared to Case #1 only with EFM.
Another observation is that the differences between Case #2 to Case #4
are also small. Overall, these results reveal that there is no reason to fully
or partially use EFM in training, at least for the databases used in our
xpression of PLAN and (b) Plot of original sigmoid and PLAN functions.

Fig. 11. Diagram of our dedicated NN training hardware, including forward-, back-, and updating blocks. � and � denote multipliers and adders, respectively. All the
� and � are spatially implemented at the same time.

Fig. 12. Boundaries trained for 2-D classification FOURCLASS.

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
experiment. LAM can provide trained NN models whose classification
accuracy is comparable to that of those trained by EFM.

We next evaluate the hardware cost. For estimating the hardware
improvement thanks to LAM, a simple projection is performed based on
the FOURCLASS results. The power consumption of the training engine is
estimated by the numbers of arithmetic units and registers. The power
values of each arithmetic unit and register are obtained from the logic
synthesis result. The remaining thing is to count the number of arithmetic
units and registers referring to Fig. 11. Table 2 lists our statistics for the
four datasets, indicating that the usage of three parts closed to 1:1:1.

As the number of multipliers, adders, and registers increase in higher-
dimensional datasets, the power improvement rate by LAM for training a
26
larger NN-size structure is roughly equal or slightly larger than that of
FOURCLASS. Meanwhile, as a conservative estimate, the least improve-
ment rate is accessed based on the FOURCLASS benefit. Table 3 shows
the projected values. Here, we align their synthesized frequency, and in
this particular estimation the power analysis is not annotated with actual
switching activity (i.e. vectorless power). Terminology “EFM” is EFM-
32bit, “LAM” represents LAM-32bit, “BWS” denotes EFM-19bit, and
then “LAM þ BWS” means LAM-19bit. Here, EFM-19bit and LAM-19bit
adopt 8 bits for the exponent and 10 bits for the fraction, and they
have the same fraction bit width as conventional 16-bit format. From
Table 3, LAM attains 2.5X and LAM þ BWS achieves 4.9X power effi-
ciency, where 2.2X originates from LAM.

In this section, the power efficiency is evaluated based on estimation.
In the next section, we are going to demonstrate the power efficiency
improvement through hardware measurement.

5. Evaluation in GPU design

Following the performance evaluation with dedicated training en-
gines in the previous section, this section applies LAM and BWS to an
open-source GPU design and clarifies the advantage in NN training.
5.1. LAM-based GPU implementation on FPGA

To train large NNs, training engines demand programmability since

Fig. 13. Speed, power, and area comparisons between synthesized LAM-based and EFM-based training engines. The synthesis setup is identical to that of Fig. 9, and all
the values are normalized by those of EFM 32-bit case.

Fig. 14. Different approximation strategies that use EFM and/or LAM in
training and testing phases.

Fig. 15. Training results for MNIST, HARS, ISOLET, CNAE-9 under different
approximation strategies illustrated in Fig. 14 for the fraction bit widths of 10,
16, and 23.

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
the entire datapath cannot be implemented spatially in a chip at once and
temporal sharing for, e.g., each layer and each kernel becomes indis-
pensable. Then, we select Nyuzi, which is an open-source processor for
GPGPU applications [30], as the baseline design and incorporate LAM
and BWS with Nyuzi. Nyuzi is distributed as a synthesizable RTL Verilog
with an instruction set emulator, and a C/Cþþ compiler.

Fig. 16 shows the power evaluation setup. To proceed with our
experiment, we modified the RTL code to integrate LAM and BWS
functionality. For performing power measurement on hardware, we
synthesized the original and modified RTL codes by Intel Quartus with
50 MHz clock frequency targeting Terasic DE2-115 evaluation board.
Table 4 lists the logic element counts for each case after Quartus syn-
thesis. Here, the bit-widths of the cases “EFM”, “LAM”, “BWS”, and
“LAMþ BWS” are aligned with those adopted in Table 3. From the table,
the hardware design embedded with LAM and LAM þ BWS saves about
12K and 14.3K logic elements compared to EFM, respectively, which are
mainly contributed from FPU blocks.

We also prepared a C-program code for NN training. The imple-
mented code is compiled and the binary code is loaded in Nyuzi on FPGA.
Then, we launch the NN training program on Nyuzi and measure the
power consumption of FPGA. Fig. 17 shows the hardware setup for
measuring power dissipation. Agilent N6705A DC power analyzer is used
to provide 12 V power supply of DE2-115 board, and it also serves as a
power meter. In this setup, the measured power includes not only the
27
power of Nyuzi on FPGA but also that of other peripheral circuitry on the
board.

5.2. Measurement results

Fig. 18 shows the measured transient power consumption during

Table 2
Statistics for usage of multipliers, adders, and registers in our dedicated NN
hardware.

Dataset Usage

#Multipliers #Adders #Registers

FOURCLASS 122 128 142
MNIST 372,310 372,340 371,050
HARS 68,326 68,344 69,352
ISOLET 195,626 195,704 194,664
CNAE-9 260,509 260,536 261,657

Table 3
Power estimation results for training larger-size of NN (projected from FOUR-
CLASS benchmarking result).

Power (Normalized to EFM)

EFM LAM BWS LAM þ BWS
100% 40% 37% 20%

Fig. 16. Flow for measuring power of LAM (and LAM þ BWS) based Nyuzi
on FPGA.

Table 4
Number of logic elements used to implement Nyuzi on FPGA.

of used logic elements

EFM LAM BWS LAM þ BWS

Overall 82,989 71,023 71,909 68,681
FPU 33,056 21,224 21,545 18,342

Fig. 17. Photo for power measurement setup of Nyuzi processor. The FPGA
board is placed on the DC power analyzer. The power analyzer is used for
voltage supply and power measurement.

Fig. 18. Transient power response measured during Nyuzi operation. Phase (2)
is the phase for executing NN training program. In Phase (3), the training pro-
cess already finished.

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
Nyuzi operation. The waveform is divided into three stages according to
the Nyuzi operation status, and the red line in Fig. 18 represents the
average value in each stage. Referring to the assembly code, the period
(3) executes only the “NOP” operation. Thus, we suppose that the dif-
ference in average power between period (2) and period (3) represents
the power necessary for NN training.

Fig. 19 firstly shows the measured power of NN training for FOUR-
CLASS dataset. Again, the definition of EFM, LAM, BWS, LAM þ BWS are
all consistent with Table 3. Here, the figure includes the results for
28
different programming styles; single-thread and multi-thread. The power
values for each style are normalized by that of EFM case with the same
style. The results show that LAM and BWS are effective in power saving
irrelevant to the programing styles.

Fig. 20 shows the measurement results for four higher-dimensional
datasets. Again, we obtained a similar amount of power reduction for
all the datasets. LAM-based floating-point training computation achieves
24%–28% power improvement, and the improvement increases to 35%–

41% in the LAM þ BWS case, which corresponds to 1.32X or higher
power efficiency.

6. Evaluation for deeper NNs

The advantage of applying LAM and BWS to deeper NN training is
presented in this section. We show the training results of NNs with 2, 3,
and 4 hidden layers, respectively, for MNIST dataset. In every NN
structure, each hidden layer consists of 50 neurons. The NN training
results for adopting solo-EFM and solo-LAMwith different configurations
of BWS are shown in Fig. 21.

Fig. 21 shows that, up to 4-hidden-layer NN, LAM-based training
yields the accuracy comparable to that of EFM-based training as long as

Fig. 19. Power measurement results for single-thread and multi-thread
(FOURCLASS dataset). All the values are normalized to EFM case.

Fig. 20. Power measurement results for MNIST, HARS, ISOLET, CNAE-9 data-
sets. All the values are normalized to EFM case.

Fig. 21. MNIST training results for NNs having 2, 3, and 4 hidden layers and
various fraction bits. The attained accuracies are almost identical.

Fig. 22. Training curves of 4-hidden-layer NNs with 23 fraction bits. The speeds
of EFM-based and LAM-based training are almost identical.

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
the result of EFM-based training with BWS is reasonably accurate. When
97% accuracy is considered acceptable (above 10 fraction bits), the ac-
curacy drop contributed by LAM is less than 0.3%. This result indicates
that the training accuracy is primarily determined by BWS instead of
LAM, and LAM is applicable even when aggressive BWS is implemented.
Note that the absolute accuracy could be improved with more sophisti-
cated NNs, such as CNN [11,35]. The results for other datasets of HARS,
ISOLET, and CNAE-9 show a similar trend as MNIST, and hence the
detailed results are omitted here. In overall, the average and maximum
accuracy drops by LAM for the cases other than MNIST are mere 0.1%
and 2.2% when 94% accuracy is considered acceptable, and LAM out-
performs at 31% points in all the cases we run.

Fig. 22 shows the training curve for MNIST dataset. For the sake of
clarity, we plot only one scenario for the NN with 4-hidden layers and 23
fraction bits. As shown in the figure, at each epoch from 1 to 40, there is
no significant difference in classification accuracy between LAM-based
and EFM-based training. This result indicates that adopting LAM in NN
training does not require additional processing time to reach the same
accuracy, and thus, at least within 4-hidden-layer NNs, training
completely relying on LAM is qualified and EFM is not necessary.

7. Conclusions

Edge computing drives the demands for more power-efficient data
processing, such as neuron network training. This work evaluated
whether approximate floating-point multiplier, which can cover a broad
dynamic range, could be adopted in NN training achieving higher energy
efficiency. Specifically, we focused on logarithm-approximate multiplier
29
(LAM) incorporating bit-width scaling (BWS) to reduce primary MAC
computation complexity. The experimental results with dedicated hard-
ware design show that training NNs with LAM can achieve 10% speed-up
and 2.3X power reduction in addition to 2.3X area saving as well at the
same speed when training a 2-D classification dataset. Even when
training with LAM þ BWS, there is no more than 1.0% accuracy
discrepancy compared with the exact multiplier, where LAM þ BWS
outperforms, rather than degrades, the accuracy more frequently. As for
the hardware performance, 4.9X energy efficiency is attained, where

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
2.2X originates from LAM. We further quantified LAM effectiveness with
an open-source GPU design. The power reduction was evaluated with the
FPGA hardware measurement. We confirmed 1.32X power efficiency
improvement in the LAM-based GPU design compared with the EFM-
based GPU design. Finally, LAM and LAM þ BWS are experimentally
qualified to be applicable to training up to 4 hidden layers, even with
aggressive BWS.

Declaration of competing interest

None.

CRediT authorship contribution statement

TaiYu Cheng: Conceptualization, Software, Validation, Formal
analysis, Data curation, Writing - original draft. Yukata Masuda: Re-
sources. Jun Chen: Methodology. Jaehoon Yu: Supervision. Masanori
Hashimoto: Supervision, Writing - review & editing.

References

[1] J. Chen, X. Ran, Deep learning with edge computing: a review, Proc. IEEE 107 (8)
(2019) 1655–1674.

[2] G.L. Pedro, et al., Edge-centric computing: vision and challenges, in: ACM
SIGCOMM Computer Communication Review, vol. 45, Oct. 2015, pp. 37–42, no. 5.

[3] P. Grulich, et al., Collaborative edge and cloud neural networks for real-time video
processing, in: Proc. VLDB Endowment, vol. 11, 2018, pp. 2046–2049.

[4] Y. Huang, et al., When deep learning meets edge computing, in: ICNP, Dec. 2012,
pp. 1–2.

[5] A. Krizhevsky, et al., Imagenet classification with deep convolutional neural
networks, in: NIPS, Dec. 2012, pp. 1097–1105.

[6] J.Y.F. Tong, et al., Reducing power by optimizing the necessary precision/range of
floating-point arithmetic, TVLSI 8 (3) (2000) 273–286.

[7] S. Venkataramani, et al., Axnn: energy-efficient neuromorphic systems using
approximate computing, in: ISLPED, Aug. 2014, pp. 27–32.

[8] Q. Zhang, et al., Approxann: an approximate computing framework for artificial
neural network, in: DATE, Mar. 2015, pp. 701–706.

[9] J. Kung, et al., A power-aware digital feedforward neural network platform with
backpropagation driven approximate synapses, in: ISLPED, Jul. 2015, pp. 85–90.

[10] J. David, et al., Training Deep Neural Networks with Low Precision Multiplications,
2014 arXiv:1412.7024.

[11] N. Wang, et al., Training deep neural networks with 8-bit floating point numbers,
in: Proc. NIPS, Dec. 2018, pp. 7685–7694.

[12] D. Kim, et al., A power-aware digital multilayer perceptron accelerator with on-chip
training based on approximate computing, TETIC 5 (2) (Feb. 2017) 164–178.

[13] Simons et al., A review of binarized neural networks, Electronics 8. 661. 10.3390.
[14] M. Horowitz. Energy Table for 45nm Process. Stanford VLSI wiki.
[15] T. Cheng, et al., Minimizing power for neural network training with logarithm-

approximate floating-point multiplier, in: PATMOS, Jul. 2019.
[16] M. Gao, et al., Energy efficient runtime approximate computing on data flow

graphs, in: ICCAD, Nov. 2017, pp. 444–449.
[17] C. Chang, C. Lin, Fourclass, 1996. https://www.csie.ntu.edu.tw/cjlin/libsvmtools/d

atasets/binary.html.
[18] S. Haykin, Neural Networks and Learning Machines, 3 edition, PEARSON

Education, 2008.
[19] K. Ueyoshi, et al., QUEST: a 7.49TOPS multi-purpose log-quantized DNN inference

engine stacked on 9MB 3D SRAM using inductive coupling technology in 40nm
CMOS, in: ISSCC, Feb. 2018, pp. 186–196.

[20] U. Lotri�c, et al., Applicability of approximate multipliers in hardware neural
networks, Neurocomputing 96 (Nov. 2012) 57–65.

[21] M. Imani, et al., RMAC: runtime configurable floating point multiplier for
approximate computing, in: ISLPED, Jul. 2018.

[22] M. Imani, et al., CANNA: neural network acceleration using configurable
approximation on GPGPU, in: ASPLOS, 2018.

[23] J. Johnson, Rethinking Floating Point for Deep Learning, 2018. arXiv:
1811.01721v1.

[24] Y. LeCun, et al., Mnist, 1998. http://yann.lecun.com/exdb/mnist.
30
[25] Uci Machine Learning Repository, Human Activity Recognition Using Smartphones
Data Set, 2012. http://archive.ics.uci.edu/ml/datasets/HumanþActivityþRec
ognitionþUsingþSmartphones.

[26] Uci Machine Learning Repository, ISOLET Data Set, 1994. http://archive.ics.uci
.edu/ml/datasets/ISOLET.

[27] Uci Machine Learning Repository, CNAE-9 Data Set, 2009. http://archive.ics.uci
.edu/ml/datasets/CNAE-9.

[28] K. Murphy, Machine Learning, MIT Press, Cambridge, Mass, 2012.
[29] A. Tisan, et al., Digital Implementation of the Sigmoid Function for FPGA Circuits,

Acta Technica Napocensis Electronics and Telecommunications, 2009.
[30] Jeff Bush, NyuziProcessor: Source Code, 2015, in: https://github.com/jbush

001/NyuziProcessor.
[31] E.H. Lee, et al., LogNet: energy-efficient neural networks using logarithmic

computation, in: ICASSP, 2017, pp. 5900–5904.
[32] D. Miyashita, et al., Convolutional Neural Networks Using Logarithmic Data

Representation, 2016 arXiv:1603.01025.
[33] M.S. Kim, et al., “Efficient Mitchell's approximate log multipliers for convolutional

neural networks, TOC 68 (5) (2019) 660–675.
[34] W. Liu, et al., Design and evaluation of approximate logarithmic multipliers for low

power error-tolerant applications, TCAS-I 65 (9) (2018) 2856–2868.
[35] R. DiCecco, et al., FPGA-based training of convolutional neural networks with a

reduced precision floating-point library, in: ICFPT, 2017, pp. 239–242.

TaiYu Cheng received the B.E. and M.E. degrees in electrical
engineering from National Taiwan University, Taipei, Taiwan,
in 2010 and 2012, respectively. From 2012 to 2018, he was
with Taiwan Semiconductor Manufacturing Company, Hsin-
chu, Taiwan, where he has been engaged in design flow of
timing closure. Since 2018, he has been a Ph. D. student with
the Department of Information Systems Engineering, Osaka
University, Osaka, Japan. His research interests include low-
power circuit design.
Yutaka Masuda received the B.E., M.E., and Ph.D. degrees in
Information Systems Engineering from the Osaka University,
Osaka, Japan, in 2014, 2016, and 2019, respectively. He is
currently an Assistant Professor in Center for Embedded
Computing Systems, Graduate School of Informatics, Nagoya
University. His research interests include low-power circuit
design. He is a member of IEEE, IEICE, and IPSJ.
Jun Chenreceived the B.E. and M.E. degrees in control theory
and engineering from Tongji University, Shanghai, China, in
2004 and 2007, respectively, and received his Ph.D. degree in
Information Systems Engineering from the Osaka University,
Osaka, Japan, in 2020. From 2008 to 2016, he was with Syn-
opsys Inc., Shanghai, China, where he has been engaged in
research and development of routing congestion, power and
placement optimization flow. He is currently a software engi-
neer at Giga Design Automation Co., Ltd. His research interests
include computer-aided-design for digital integrated circuits,
power and signal integrity analysis..

http://refhub.elsevier.com/S0167-9260(19)30582-6/sref1
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref1
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref1
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref2
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref2
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref2
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref3
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref3
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref3
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref4
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref4
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref4
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref5
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref5
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref5
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref6
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref6
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref6
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref7
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref7
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref7
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref8
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref8
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref8
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref9
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref9
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref9
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref10
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref10
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref11
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref11
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref11
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref12
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref12
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref12
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref15
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref15
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref16
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref16
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref16
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref18
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref18
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref19
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref19
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref19
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref19
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref20
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref20
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref20
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref20
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref21
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref21
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref22
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref22
http://yann.lecun.com/exdb/mnist
http://archive.ics.uci.edu/ml/datasets/Human&tnqh_x002B;Activity&tnqh_x002B;Recognition&tnqh_x002B;Using&tnqh_x002B;Smartphones
http://archive.ics.uci.edu/ml/datasets/Human&tnqh_x002B;Activity&tnqh_x002B;Recognition&tnqh_x002B;Using&tnqh_x002B;Smartphones
http://archive.ics.uci.edu/ml/datasets/Human&tnqh_x002B;Activity&tnqh_x002B;Recognition&tnqh_x002B;Using&tnqh_x002B;Smartphones
http://archive.ics.uci.edu/ml/datasets/Human&tnqh_x002B;Activity&tnqh_x002B;Recognition&tnqh_x002B;Using&tnqh_x002B;Smartphones
http://archive.ics.uci.edu/ml/datasets/Human&tnqh_x002B;Activity&tnqh_x002B;Recognition&tnqh_x002B;Using&tnqh_x002B;Smartphones
http://archive.ics.uci.edu/ml/datasets/Human&tnqh_x002B;Activity&tnqh_x002B;Recognition&tnqh_x002B;Using&tnqh_x002B;Smartphones
http://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/CNAE-9
http://archive.ics.uci.edu/ml/datasets/CNAE-9
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref28
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref29
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref29
https://github.com/jbush001/NyuziProcessor
https://github.com/jbush001/NyuziProcessor
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref31
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref31
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref31
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref32
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref32
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref33
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref33
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref33
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref34
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref34
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref34
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref35
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref35
http://refhub.elsevier.com/S0167-9260(19)30582-6/sref35

T. Cheng et al. Integration, the VLSI Journal 74 (2020) 19–31
Jaehoon Yu received his B.E. degree in Electrical and Elec-
tronic Engineering and his M.S. degree in Communications and
Computer Engineering from Kyoto University, Kyoto, Japan, in
2005 and 2007, respectively, and received his Ph.D. degree in
Information Systems Engineering from Osaka University,
Osaka, Japan, in 2013. From 2013 to 2019, he was an assistant
professor at Osaka University. He is currently an associate
professor at Tokyo Institute of Technology, Japan. His research
interests include computer vision, machine learning, and
system-level design. He is a member of IEEE, IEICE, and IPSJ.
31
Masanori Hashimoto received the B.E., M.E. and Ph.D. de-
grees in communications and computer engineering from Kyoto
University, Kyoto, Japan, in 1997, 1999, and 2001, respec-
tively. He is currently a Professor with the Department of In-
formation Systems Engineering, Graduate School of
Information Science and Technology, Osaka University, Suita,
Japan. His current research interests include the design for
manufacturability and reliability, timing and power integrity
analysis, reconfigurable computing, soft error characterization,
and low-power circuit design. Dr. Hashimoto was a recipient of
the Best Paper Awards from ASP-DAC in 2004 and RADECS in
2017, and the Best Paper Award of the IEICE Transactions in
2016. He was on the Technical Program Committee of inter-
national conferences, including DAC, ICCAD, ITC, Symposium
on VLSI Circuits, ASP-DAC, and DATE. He serves/served as an

Associate Editor for the IEEE Transactions on VLSI Systems,
IEEE Transactions on Circuits and Systems I, ACM Transactions
on Design Automation of Electronic Systems, and Elsevier Mi-
croelectronics Reliability.

	Logarithm-approximate floating-point multiplier is applicable to power-efficient neural network training
	1. Introduction
	2. Preliminaries, related work and research motivation
	2.1. Basics of neural network
	2.2. Related work and research motivation

	3. Logarithm approximate multiplier
	3.1. Floating-point multiplication
	3.2. Logarithm-approximate multiplier

	4. Experimental results for dedicated hardware design
	4.1. LAM performance
	4.2. Experimental setup for NN training
	4.3. Evaluation for FOURCLASS dataset
	4.4. Evaluation for higher dimensional datasets

	5. Evaluation in GPU design
	5.1. LAM-based GPU implementation on FPGA
	5.2. Measurement results

	6. Evaluation for deeper NNs
	7. Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	References

