
When Single Event Upset Meets Deep Neural Networks: Observations, Explorations,
and Remedies

Zheyu Yan∗, Yiyu Shi†, Wang Liao‡, Masanori Hashimoto‡, Xichuan Zhou§, Cheng Zhuo∗
∗ Zhejiang University, {yanzheyu, czhuo}@zju.edu.cn † University of Notre Dame, yshi4@nd.edu

‡ Osaka University, {wang.liao, hasimoto}@ist.osaka-u.ac.jp § Chongqing University, zxc@cqu.edu.cn

Abstract— Deep Neural Network has proved its potential
in various perception tasks and hence become an appealing
option for interpretation and data processing in security sensitive
systems. However, security-sensitive systems demand not only
high perception performance, but also design robustness under
various circumstances. Unlike prior works that study network
robustness from software level, we investigate from hardware
perspective about the impact of Single Event Upset (SEU)
induced parameter perturbation (SIPP) on neural networks. We
systematically define the fault models of SEU and then provide
the definition of sensitivity to SIPP as the robustness measure
for the network. We are then able to analytically explore the
weakness of a network and summarize the key findings for the
impact of SIPP on different types of bits in a floating point
parameter, layer-wise robustness within the same network and
impact of network depth. Based on those findings, we propose
two remedy solutions to protect DNNs from SIPPs, which can
mitigate accuracy degradation from 28% to 0.27% for ResNet
with merely 0.24-bit SRAM area overhead per parameter.

I. INTRODUCTION

Deep neural networks (abbrev. DNNs) have recently at-
tracted enormous attention due to the success in various

perception tasks [1]–[3] and it is an appealing idea to adopt

DNNs in security sensitive systems for in-depth inference

and efficient data processing, such as autonomous automobile

and medical monitoring. On the other hand, the robustness

of DNN itself is of great concern for such security related

applications and hence has been widely studied. Various

methods, including adversarial example [4] and fault injection

[5], are devised to attack DNNs. Their aim is to fool the

networks to generate adversarial outputs.

Other than such carefully generated perturbations, adding

small but random noise to DNNs may also induce severe

damage. Stevenson et. al. and Cheney et. al. [6], [7] analyze
the impact of random numerical noise to the weights of DNNs

and observe significant degradation in classification accuracy

when certain layers are ”polluted”. Although such noises are

numerically small, they are not necessarily insignificant when

implemented in hardware.

Thus, Donato et al., Liu et al., Reagen et al. and Sha et al.
[8]–[11] investigate the robustness of DNNs from emerging

device, circuit, architecture and system perspective. However,

they treated all error conditions homogeneously and sampled

only a small portion of the errors to analyze the average

effects. In security sensitive applications, the focus is more on

the worst case instead of average performances [12]. Thus, in

this work, we conduct more thorough experiments to explore

the worst case. To reduce the complexity of our searches, we

Fig. 1. Classification accuracy for different neural networks (NIN, VGG16
and ResNet56) under different types of SEU-induced perturbation. Blue:
the accuracy for the original network; Orange: the minimum accuracy with
perturbation on one weight’s sign bit across all the weights; Gray: the
minimum accuracy for perturbation on one exponent bit across all the
exponent bits of the weights.

place our focus on the minimum perturbation that can occur

in a digital system, i.e., single bit flip. Single bit flip can be
triggered by Single Event Upset (abbrev. SEU) in daily lives
with ionizing particles hitting storage devices and logic units

[13], [14]. In reliability analysis, SEUs are often manifested as

”bit flips” in which the value of a single bit is reversed from

”0” to ”1” or vice versa [15]. Fig. 1 demonstrates the impact

of SEU induced parameter perturbation on different network

architectures including Network in Networks (NIN) [16],

VGG16 [17] and Residual Neural Networks (ResNet) [18].

The figure compares the case without perturbation and the

cases with perturbations occurring at sign bit or exponent bit.

The accuracy of ResNet56 (trained on CIFAR-100 [19]) drops

to almost 1% for bit flip on the exponent. The figure simply

presents that the smallest perturbation in DNN parameters

may cause serious damage. Since SEUs are not uncommon in

our everyday lives, the aforementioned perturbation is actually

detrimental to the security-sensitive systems [7].

Thus, in this paper, we thoroughly investigate the problem

of SEU-Induced Parameter Perturbation (abbrev. SIPP) for
DNNs as well as its remedy solutions. To the best of our

knowledge, this is the first work that studies the worst case of

SIPP for DNNs. The contributions of the work include:

• We formally define the fault models to study SEU in-

duced perturbation and propose an experimental flow to

measure the network robustness sensitivity to SIPP. Sev-

eral key observations are then summarized for ResNet56

with the proposed flow.

• We analytically explore the impact of SIPP on parameters
and the propagation of SIPP to the network output.

The analysis provides us in-depth understanding of how

SIPP affects the system and provides us guidelines to

investigate the weakness of other DNNs.

• We then thoroughly investigate the robustness of three
representative DNNs, NIN, VGG16 and ResNet56. After

978-1-7281-4123-7/20/$31.00 © 2020 IEEE
163

3A-2

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 03,2020 at 09:07:57 UTC from IEEE Xplore. Restrictions apply.

the investigation, three key findings which confirm our

observations are presented.

• Based on the findings, we propose two simple yet effi-
cient remedy solutions, triple modular redundancy (TMR)

and error-correction code (ECC) to ensure complete

protection from SIPP. Design trade-off is then explored

between protection overhead and robustness for both

methods.

Experimental results show that without any protection, SIPP

on a Sign bit for ResNet56 may easily induce more than

28% accuracy degradation. ECC based protection scheme can

reduce such degradation to 0.27% with SRAM overhead of

merely 0.24 additional bit per parameter on average.

II. BACKGROUND

A. Single Event Upset

SEU is a transient information destruction on memory or

logic elements caused by an energetic ionizing radiation.

Ionized radiation particles may generate electron-hole pairs

when they penetrate into the silicon substrate of a transistor

[15]. The transportation of the generated electron-hole pairs,

such as diffusion and drift, collects electric charge to the

drain region of transistors. In memory elements, the collected

charge accumulates and finally induces a glitch in the affected

transistors, upsetting stored information. In terrestrial environ-

ment, SEU is generally induced by alpha particles emitted

from package material and neutrons originating from cosmic

ray. In security sensitive applications, package material with

low alpha particle emission is used to mitigate alpha particle

induced SEU. However, since abundant neutrons in the cosmic

ray go through materials on the ground and consequently

they are difficult to eliminate with shielding, SEU threatens

terrestrial VLSIs and hence demands sophisticated protections.

B. Deep Neural Networks

A typical feed forward DNN is a collection of convolu-

tion, activation, normalization, pooling and fully connected

(abbrev. FC) layers. The network is specified by a set of
parameters, including weights, biases means and variances.

Since means and variances can be written in the form of

weights and biases, for simplicity, parameters specified in
this paper just refer to weights and biases.

A convolution layer applies 2D convolutions over an input

signal composed of several input planes. The output is then

a 3D tensor with a similar shape. In the simplest case, the

output value of the convolution layer with Cin input channels

and Cout output channels can be precisely described as:

O(q) = b(q) +

Cin−1∑

p=0

K(q, p)⊗ I(p), q = 1, . . . , Cout (1)

in which I(·) and O(·) denote the input and output planes, and
⊗ is the convolution operation. K is a set of 2D convolution

kernels, with each corresponding to one pair of input and

output planes. b is a set of scalars globally added to each
2D output plane. The operation of FC layers can also be

represented by Eq. (1) using scalars instead of 2D planes. The

activation and pooling layers are normally hard-wired without

extra parameters. The normalization layers normalizes each

channel’s output with trained means and variances.

C. IEEE Standard for Floating Point Arithmetic

According to IEEE standard [20], 32-bit FP numbers com-

monly used in DNNs can be represented by:

x = (−1)Sign × (1 + Fraction)Exponent−Bias (2)

in which Sign is the sign bit. Exponent is an unsigned integer
for exponent that uses the 2nd to the 9th bits. Bias is 127.
Fraction is a fixed point number represented by the rest of
the bits with the highest bit representing 2−1.

III. OBSERVATIONS

A. Single Event Upset in Neural Networks

Hirokawa et al. [13] show that, when exposed to terrestrial
neutrons, a bit in SRAM has a probability of 1.33× 10−24 to

flip in 1 ns. For all the parameters in one Neural Network, as-
suming that the flip of each bit is independent, the probability

of at least one bit flip is:

Pflip = 1− ((1− Psingle)
N∗W)T/t

=

n−1∑

i=0

(
n

i

)
(−1)n−i+1Pn−i

single, n = N ×W × T/t

≈ N ×W × T/t× Psingle

(3)

in which N is the number of trained parameters, W is the

parameter data width, T is device life time, t is the test time
interval, i.e., 1 ns as above, and Psingle is the probability

for one bit flip within t. The approximation in Eq. (3) is
appropriate when N ×W ×T/t << 1/Psingle, which usually

holds for DNNs [13]. For a typical DNN with more than 10M

parameters, in one month, the probability of having at least

one bit flip would be as high as 10%, which is hazardous for

the security-sensitive scenarios and hence demands in-depth

understanding of the impact of SEU induced perturbation.

B. Fault Model

It is crucial to select an appropriate fault model to measure

the impact of SEU-induced failures to DNNs. In our exper-

iments, for simplicity, we rely on the following assumptions

for our fault model:

1) The training and inference processes are fault-free, and

the fault is only introduced by hardware failures in stor-

age devices, which preserves the network’s parameters.

2) Among all the parameters, only one bit of one parameter

is with fault and the others are fault-free.

C. SSIPP: Measuring Neural Network Robustness

To analyze the effect of SIPP, it is crucial to have a

rigorously-defined metric to measure the impact of SIPP on

DNNs. Apparently the most straightforward way is to compare

the output difference for the same set of inputs. Thus, here we

propose the concept of Sensitivity to SIPP (abbrev. SSIPP) as
a quantitative measure to assess the differences of network

robustness. The definition of SSIPP is as below:

Definition: For SIPP on a particular bit i, its performance
change due to the perturbation from the original network can

be calculated by ΔPi = Poriginal − PSIPPi , where P (·)
denotes the performance measure for a network.1 Then the

robustness measure of SSIPP is defined as

1Performance measure is specific to the network type and application, e.g.,
cross-entropy for segmentation, accuracy for classification.

164

3A-2

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 03,2020 at 09:07:57 UTC from IEEE Xplore. Restrictions apply.

SSIPP = max
∀ i

ΔPi (4)

Unlike similar performance degradation based methods pro-

posed in [8], [9], SSIPP focuses on searching all possible fault

patterns (flipping all the bits of a network) and finding the

worst case. If the perturbed bits are limited to one particular

layer, then it measures SSIPP of this particular layer. The one

with a smaller SSIPP is considered more robust.

Fig. 2. Flow to measure SSIPP for a DNN.

The work flow to measure SSIPP is illustrated in Fig. 2.

First, the original network is tested on the validation set to

obtain the reference performance Poriginal. Then, we induce

SIPP on one bit of the network to obtain a perturbed network,

which is also tested on the same validation set to measure

its performance PSIPP . After that we can compute the

performance change ΔPi due to this particular bit. Finally,

by visiting every bit of the network, we obtain the network

robustness measure SSIPP .

D. Observations
With the given definition of SSIPP and flow in Fig. 2, we

conduct a preliminary experiment to understand the impact of

different SIPP patterns. We use ResNet-56 as the underlying

DNN. The perturbation is introduced to the MSBs of a FP

number, i.e. sign bit, the highest exponent bit and the highest
fraction bit of the parameters, respectively. After checking all

the parameters in the network, Table I summarizes SSIPP for

different layers of ResNet-56. From the table, there are a few

key observations that can be made for the impact of SIPP on

ResNet56:

• Observation 1: the highest exponent bit consistently has
the highest SSIPP across different layers while the impact

of SIPP on a fraction bit is very limited.

• Observation 2: the first layer, which directly deals with
the input stream, has higher SSIPP than the other layers,

then follow the last layers. This indicates higher robust-

ness for the hidden layers in the middle of a network.

Then a natural question for the observations is: “Are those

observations universal or unique to ResNet56?” This motivates

us to conduct more in-depth explorations to understand the

DNN robustness to SIPP, which will be discussed in the next

section.

TABLE I
SSIPP FOR DIFFERENT LAYERS IN RESNET56: INPUT, RESIDUAL (STACK

1, 2 AND 3) AND FC.

SSIPP Input Stack 1 Stack 2 Stack 3 FC

Sign 28.09% 6.43% 2.08% 0.27% 0.90%
Ex1 70.19% 70.19% 70.19% 70.19% 70.19%
Frac1 0.43% 0.29% 0.41% 0.25% 0.30%

IV. EXPLORATIONS

In this section, we conduct systematical analysis of the

impact of SIPP on parameter value in a DNN and how SIPP

propagates to the output. The analysis then provides theoretical

explanations to the observations in the last section.

A. Understanding the Impact of SIPP on Parameters

As is discussed in Sect. III, there are different types of

bits in a 32-bit FP parameter, including Sign, Exponent
and Fraction bits. Thus, SIPP on different bits may impose
different impacts on the parameter value. For a pre-trained

DNN with known parameters, we can analyze the relative

error Δrel imposed by SIPP. SIPP on Sign bit will cause

the parameter to take its opposite value, i.e., Δrel = 2. For
SIPP on Exponent bit, flip patterns affect Δrel greatly. A ”1”

to ”0” flip reduces the absolute value of the parameter closer

to 0, resulting in a Δrel between 0.5 and 1.0 while a ”0” to

”1” flip multiplies the parameter by a power of two. Δrel for

such a change is larger than 1 and up to 2128, which can be
detrimental. For Fraction bit, SIPP only induces a relatively
smaller change with Δrel between 0 and 0.5.

Thus, this explains the first observation in the last section

why we observe much higher SSIPP for Sign and Exponent
bits than Fraction bits.

B. Understanding the Propagation of SIPP

For different SIPP patterns, the impact of SIPP on

Exponent bit and Fraction bit are detrimental or very

limited, respectively, as discussed in the last sub-section. The

impact of SIPP on Sign bit is uncertain, which needs thorough
analysis. Moreover, analyzing the impact of SIPP on Fraction
and Sign bits can also provide some insights for widely used
fixed-point accelerators [21], [22].

Thus, in this section we will focus on analyzing the impact

of SIPP on Sign bit. Since SIPP on a Sign bit in former
layers of DNNs actually needs to go through multiple layers

to reach output, it is crucial to understand how the perturbation

is propagated and why it is not cancelled out during the

procedure. In the following we will provide detailed analysis

to understand the propagation procedure of SIPP for both FC

and convolution layers.

For the lth FC layer with N inputs and M outputs, N ×M
weights and M biases are needed. The output of this layer is:

Olj =
N∑

i=1

Ii × ωlij + blj , j = 1, 2, ...,M (5)

where ωlij and blj are the corresponding weight and bias.

Fig. 3. An example of perturbation propagation on FC layers: perturbation
on w122 at the 1st layer (left) and on w222 at the 2nd layer (right).

For simplicity we will use a portion of FC layers as shown

in Fig. 3 to demonstrate how the perturbation is propagated.

The example contains 3 FC layers with 2 inputs and 2 outputs.

The blue represents SIPP free data and connection, while the

red represents SIPP affected data and connection. If ignoring

nonlinear activation between FC layers for the moment, we

can write down the output as the following:

O3j =ω31j [ω211(ω111I1 + ω121I2) + ω221(ω112I1 + ω122I2)]

+ω32j [ω212(ω111I1 + ω121I2) + ω222(ω112I1 + ω122I2)]
(6)

165

3A-2

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 03,2020 at 09:07:57 UTC from IEEE Xplore. Restrictions apply.

where j = 1, 2. Then for perturbation on the first and second
layers, for example, ω122 and ω222, the changes at the outputs

from the original values (Δ3j = O
′
3j −O3j) are:

Δ3j = 2 · (ω31jω221 + ω32jω222)ω122I2, for ω122 (7)

Δ3j = 2 · ω32jω222(ω112I1 + ω122I2), for ω222 (8)

From a layer-wise perspective when evaluating SIPP for

all the parameters in a particular layer, we may reasonably

assume the weights from the same layer are similar (but can be

significantly different from layer to layer). For I1 and I2 from
the same input source or distribution, so as those weights in

the same layers. We then may claim that the two perturbations

impose very similar impacts on the output, i.e. ΔSIPP is

statistically insignificant. In other words, SIPP on sign bit from

different layers may eventually result in very similar impact

on the final output of the network if the network only contains

linear operations as in Eq. (6)-(8).

Similar analysis can be conducted on the convolution layer

to find the impact of SIPP on the sign bit of weight and bias

using the following formulations:

OF
′
lq = OFlq − 2× ωlpqrs × IFlp ⊗ Slrs (9)

OF
′
lq = OFlq − 2× blq (10)

where l is the layer index, p and q are the input and output
feature map indexes, r and s are the weight location of the
convolution kernel, ωlpqrs is the perturbed weight. OF

′
lq is

the perturbed 2D feature map, while IFlp and OFlq are the

original input and output. In Eq. (9), Slrs is a convolution

kernel with the same size as the convolution kernel, with 1 at

the perturbed weight’s position and 0 for the others.

Fig. 4. An example of perturbation propagation for convolution layer.

Unlike FC layer where the perturbation only impacts the

connected data, the perturbation in convolution layer gets am-

plified and effectively propagates to a broader region through

convolution of feature maps, as shown in Fig. 4. The affected

region grows from a kernel to one feature map and then

multiple feature maps. For perturbations on weights in two

different layers, for example, ω11111 and ω21111, the output

differences Δ3122 of (2,2) in the output feature map OF31 for

the two perturbations are:

Δ3122(1) = 2
∑

q,r,s,i,j

ω31qrsω21qijω11111I11(r+i−3)(s+j−3) (11)

Δ3122(2) = 2
∑

p,r,s,i,j

ω3p1rsω21111ω1p1ijI1p(r+i−2)(s+j−2) (12)

where i and j are the indexes to compute the 2D convolution,∑
q,r,s,i,j denotes the summation over each variable. From

Eq. (12), we may draw a similar conclusion as the FC layers

that, without activation layers, the effect of SIPP on weights

from different convolution layers are almost equivalent for the

output.

The analysis above shows that the key contributors of

the layer-wise difference of SSIPPs are the activation layers.

Thus, the analysis of activation layers is needed. The models

analyzed in this work use ReLU layers for activation. The

calculation of ReLU layers is: Out = max(0, Input), which
means Inputs greater than 0 could propagate through while
the smaller ones would be deactivated. As shown in Fig. 3 and

Fig. 4, the effects of SIPP on the former layers spreads wider

than latter ones, they are less likely to be totally deactivated

by activation layers, and thus more likely to propagate to the

output and affect the classification results.

The analysis above provides systematical support for obser-

vation 2 in the last section.

C. Design Explorations

In this subsection we validate the impact of SIPP and our

findings on different DNN architectures for image classifi-

cation, the performance of which is measured by accuracy.

Three representative architectures are employed in our de-

sign explorations, including a Network in Network (NIN)

model (trained on CIFAR-10) [16], a 56-layer Deep Residual

Network (ResNet56) (trained on CIFAR-100) [18], [23], and

VGG16 (trained on ImageNet) [17], [24].

The three network architectures are selected to represent

different types of feed forward deep neural networks. NIN is

a model with no FC layer and hence helps us understand the

role of convolution layers when evaluating network robustness.

ResNet56 belongs to ResNets, a group of very deep neural

network that consists of tens to hundreds of convolution

layers. Unlike ResNet56 with residual blocks, VGG net is a

more classical deep convolutional neural network with simpler

architecture and widely adopted by a variety of perception

works [25] and analyzed by a variety of accelerators [22],

[26]. The numbers of parameters for the three neural networks

are summarized in Table III. Due to the size of DNN, we only

present the results of the first five layers and the last layer of

each DNN.

Table II demonstrates the impact of SIPP on the different

types of bits, i.e., Sign (denoted by Sign), Exponent (de-
noted by Ex) and Fraction (denoted by Fr), of both weights
(denoted by W) and biases (denoted by B). For each network,

we calculate its SSIPP for a particular layer for the first five

layers (denoted by layer 1 to 5) plus the last layer (denoted

by Last). It is found that the impact of exponent bit is very

prominent while fraction bit has very limited SSIPP. Moreover,

sign bits of the first few layers have larger impacts than the

rest layers, which is consistent with our analysis in the last

subsection. The SSIPP on Exponent bits in each layer is
similar because they could always destroy the whole network

into a random guesser.

We further investigate the propagation of SIPP on the same

network architecture but with different complexity. Fig. 5

compares SSIPP of first layer on Sign bit for 4 residual

networks with different depth, i.e., ResNets with 20, 56, 110
and 164 layers. As shown in the Figure, with deeper network,

the impact of SIPP is more prominent, which is also consistent

with the findings in the last subsection.

Thus, based on the observation, analysis and experimental

results, we may summarize the following findings:

• Finding 1: For the three types of bits in a 32-bit FP
parameter, SIPP on Exponent bit has the largest impact

166

3A-2

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 03,2020 at 09:07:57 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SSIPP OF DIFFERENT LAYERS FOR THE THREE NEURAL NETWORKS WITH SIPP ON THE Sign (SIGN), Exponent (EX) AND Fraction (FR) BITS OF

WEIGHTS (W) AND BIASES (B).

NIN/Sign NIN/Ex NIN/Fr Res56/Sign Res56/Ex Res56/Fr VGG16/Sign VGG16/Ex VGG16/Fr
Layer W B W B W B W B W B W B W B W B W B

1 1.0% 2.2% 80% 80% 0.2% 0.4% 28.1% 16.9% 70% 70% 0.4% 0.4% 4.2% 2.4% 70% 70% 0.9% 0.9%
2 0.2% 4.4% 80% 80% 0.1% 0.2% 6.4% 1.2% 70% 70% 0.3% 0.2% 0.1% 0.4% 70% 70% 0.1% 0.2%
3 0.3% 2.4% 80% 80% 0.2% 0.1% 2.1% 1.2% 70% 70% 0.4% 0.5% 0.1% 0.1% 70% 70% 0.1% 0.1%
4 0.1% 0.1% 80% 80% 0.1% 0.1% 0.3% 1.1% 70% 70% 0.3% 0.4% 0.1% 0.1% 70% 70% 0.1% 0.1%
5 0.3% 0.2% 80% 80% 0.2% 0.1% - - - - - - 0.1% 0.1% 70% 70% 0.1% 0.1%
Last 2.4% 0.2% 80% 80% 0.7% 0.1% 1.0% 0.1% 70% 70% 0.3% 0.1% 0.0% 0.0% 70% 70% 0.1% 0.1%

TABLE III
NUMBER OF PARAMETERS (WEIGHT AND BIAS) FOR DIFFERENT LAYERS

IN THE THREE DNNS: NIN, RESNET56 AND VGG16.

NIN ResNet56 VGG16
Layer #Weight #Bias #Weight #Bias #Weight #Bias

1 14k 192 0.4k 16 1.7k 64
2 30k 160 1.5k 16 37k 64
3 15k 96 3k 32 74k 128
4 460k 192 6.1k 64 295k 128
5 36k 192 - - 590k 256
Last 1.9k 10 6.4k 100 4096k 1000

on network output while the impact from Fraction bit is
the minimal, with the impact of Sign bit in the middle.

• Finding 2: SIPP on Sign bit has layer-wise impact

within the same network. The layer farther from the out-

put is typically more sensitive and brings more significant

change to the output.

• Finding 3: For two networks, with width of the network
being the same, the deeper the network, the more sensi-

tive the network is to SIPP.

Fig. 5. SSIPP of ResNets with different depth for perturbation on Sign bit
of the first layer.

V. REMEDIES

With the findings in the last section, the weakness of a

network is more observable. Thus, it is necessary to further

investigate the possible remedy solutions to the weakness.

This section discusses two simple yet efficient remedies to the

issues caused by SIPP and then investigates design trade-offs

for the two methods.

A. Triple Modular Redundancy for Parameter Protection

For the parameters susceptible to SIPP, a natural solution is

to provide multiple copies for the parameters of interest. Triple

Modular Redundancy (TMR) [27] is just such a method that

copies twice the circuit to be protected, thereby forming a

group of three identical circuits with three outputs. The three

outputs then go through a majority-voter to mask the fault

and decide a single output. With the findings presented in

previous sections, we can prepare three identical copies of the

parameters in SRAM to fully prevent SIPP. When parameters

are fetched and sent to neural networks, the three copies of one

parameter will go through a simple TMR circuit to chooses

the correct output.

B. Error-Correcting Code

Apparently, the area overhead of TMR based parameter

protection can be significant. To resolve this issue, we further

adopt error-correcting code (ECC) to protect parameters in

SRAM with much smaller area overhead.

Hamming code is a family of binary linear ECCs by offering

redundant correcting bits. With its single-bit protection feature,

we can rely on Hamming code based ECC to fully protect the

issues caused by SIPP. The number of redundant bits (r) to
protect d data bits needs to satisfy the following constraint:

r + d ≤ 2r − 1 (13)

Thus, the area overhead of ECC is exponentially smaller than

TMR based approach. However, the SRAM area saving of

ECC is at the cost of more complex logic to implement the

protection and correction circuit. Fig. 6 presents the SRAM

area and protection logic overhead for ECC w.r.t. TMR-
based protection. It is found that, to protect 100 bits, with the

SRAM and logic area overhead of the TMR-based method,

only 3.5% of the area overhead could be achieved at a cost

of approximately 3.5× of protection logic.

Fig. 6. Relative SRAM (a) and logic (b) area overhead for ECC w.r.t. TMR
based protection.

C. Design Trade-Off

With the explorations in the last section, we are aware of

the sensitivity of layers and bits for a DNN. Thus, instead of

fully protecting all the parameters, we can further reduce both

SRAM and protection logic area overhead by tolerating SIPP

in non-sensitive bits. Fig. 7 demonstrates the area overhead for

SRAM and protection logics, respectively, when implementing

the TMR based protection. The area overhead is normalized

to the case of full protection, i.e., all the parameters are
protected. The SSIPP on the y-axis is normalized to the

case without any protection, i.e., the wrost case SSIPP. The
figure then provides design trade-off opportunities for the

three DNNs. It can be seen that with merely 24% SRAM

167

3A-2

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 03,2020 at 09:07:57 UTC from IEEE Xplore. Restrictions apply.

and protection logic overhead, we can reduce the SSIPP for

ResNet56 to only 2.08%. Similar design trade-off can be

conducted for ECC based protection, as shown in Fig. 8(a)

and (b). With 23% SRAM area overhead and 25% protection

logic overhead, ECC based protection can reduce the SSIPP

for ResNet56 to 2.08%. By further increasing SRAM overhead

to 25%, i.e., 0.24-bit SRAM area overhead per parameter on

average, SSIPP can be further reduced to 0.27%.

Fig. 7. Normalized area overhead (normalized to full protection) using TMR
based protection for three DNNs: (a) SRAM area overhead and (b) Protection
logic area overhead for SSIPP (normalized to the case without protection).

Fig. 8. Normalized area overhead (normalized to full protection) using ECC
based protection for three DNNs: (a) SRAM area overhead and (b) Protection
logic area overhead for SSIPP (normalized to the case without protection).

VI. CONCLUSIONS

In this paper, we investigate the robustness of DNNs from

a hardware prospective about the impact of SIPP. We system-

atically define the fault models of SEU and then provide the

definition of SSIPP as the robustness measure for the network.

We then analytically explore the weakness of a network and

summarize the key findings for impacts of SIPP on different

types of bits in an FP parameter, layer-wise robustness within

the same network and impact of network depth. Based on

these findings, two remedy solutions can be adopted to protect

DNNs from SIPP.

ACKNOWLEDGMENTS

This work was partially supported by NSFC with Grant

No. 61974133, 61601406, JSPS Invitational Fellowship, and

Guangdong Province with Grant No. 2018B030338001.

REFERENCES

[1] G. Zheng, Y. Xiong, X. Zang, J. Feng, H. Wei, H. Zhang, et al.,
“Learning phase competition for traffic signal control,” arXiv preprint
arXiv:1905.04722, 2019.

[2] L. Cheng, C. Zhang, and Z. Liao, “Intrinsic image transformation via
scale space decomposition,” in Proc. of CVPR, pp. 656–665, 2018.

[3] C. Zhuo, S. Luo, H. Gan, J. Hu, and Z. Shi, “Noise-aware dvfs for
efficient transitions on battery-powered iot devices,” TCAD, pp. 1–1,
2019.

[4] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[5] A. Barenghi et al., “Fault injection attacks on cryptographic devices:
Theory, practice, and countermeasures,” Proc. of IEEE, vol. 100, no. 11,
pp. 3056–3076, 2012.

[6] M. Stevenson, R. Winter, and B. Widrow, “Sensitivity of feedforward
neural networks to weight errors,” IEEE Trans. Neural Netw., vol. 1,
no. 1, pp. 71–80, 1990.

[7] N. Cheney, M. Schrimpf, and G. Kreiman, “On the robustness of
convolutional neural networks to internal architecture and weight per-
turbations,” arXiv preprint arXiv:1703.08245, 2017.

[8] M. Donato, B. Reagen, L. Pentecost, U. Gupta, D. Brooks, and G.-Y.
Wei, “On-chip deep neural network storage with multi-level envm,” in
Proc. of DAC 2018, p. 169, ACM, 2018.

[9] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in Proc. of DAC 2018, pp. 1–6, IEEE, 2018.

[10] E. Sha, H. Dong, W. Jiang, Q. Zhuge, X. Chen, and L. Yang, “On the
design of reliable heterogeneous systems via checkpoint placement and
core assignment,” in Proc. of GLSVLSI 2018, pp. 475–478, ACM, 2018.

[11] Z. Liu, S. Luo, X. Xu, Y. Shi, and C. Zhuo, “A multi-level-optimization
framework for fpga-based cellular neural network implementation,” J.
Emerg. Technol. Comput. Syst., vol. 14, pp. 47:1–47:17, Nov. 2018.

[12] J. F. Ziegler and W. A. Lanford, “Effect of cosmic rays on computer
memories,” Science, vol. 206, no. 4420, pp. 776–788, 1979.

[13] S. Hirokawa, R. Harada, K. Sakuta, Y. Watanabe, and M. Hashimoto,
“Multiple sensitive volume based soft error rate estimation with machine
learning,” in RADECS 2016, pp. 1–4, IEEE, 2016.

[14] C. Zhuo, K. Unda, Y. Shi, and W.-K. Shih, “From layout to system:
Early stage power delivery and architecture co-exploration,” TCAD,
vol. 38, pp. 1291–1304, July 2019.

[15] R. Pettit and A. Pettit, “Detecting single event upsets in embedded
software,” in Proc. of ISORC, pp. 142–145, IEEE, 2018.

[16] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of CVPR, pp. 770–778, 2016.

[19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” tech. rep., Citeseer, 2009.

[20] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008,
pp. 1–70, Aug 2008.

[21] W. Jiang, E. H.-M. Sha, X. Zhang, L. Yang, Q. Zhuge, Y. Shi, and
J. Hu, “Achieving super-linear speedup across multi-fpga for real-time
dnn inference,” arXiv preprint arXiv:1907.08985, 2019.

[22] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proc. of FPGA 2015, pp. 161–170, ACM, 2015.

[23] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical convolu-
tional features for visual tracking,” in Proc. of ICCV, pp. 3074–3082,
2015.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. of CVPR 2009,
pp. 248–255, IEEE, 2009.

[25] M. He, J. Liao, L. Yuan, and P. V. Sander, “Neural color transfer between
images,” arXiv preprint arXiv:1710.00756, 2017.

[26] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu,
“Accuracy vs. efficiency: Achieving both through fpga-implementation
aware neural architecture search,” in Proceedings of the 56th Annual
Design Automation Conference 2019, p. 5, ACM, 2019.

[27] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM journal of research and develop-
ment, vol. 6, no. 2, pp. 200–209, 1962.

168

3A-2

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on June 03,2020 at 09:07:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

