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Abstract—For embedded system applications, high detection 
accuracy and fast detection must be achieved within a limited 
power budget This paper proposes an embedded system-oriented 
hardware accelerator for object detection with aggregated chan
nel features (ACF). The proposed accelerator consists of hard
ware architectures dedicated for HOG features, quantization, and 
boosted decision trees, and they contribute to 2006X speed-up 
and 601X memory reduction. Our FPGA implementation result 
shows that the proposed accelerator can detect pedestrians at 
170 fps for Full HD images, and 6-class traffic objects at 78 fps 
for Full HD images.
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I .  I n t r o d u c t io n

The primary goal of embedded object detection systems 
aiming at driver assistance and autonomous robots is to 
achieve fast and accurate detection with low power consump
tion. These applications are time-critical, and missed detection 
can be a threat to human life. Therefore, fast and accurate 
detection is indispensable and a social requirement. However, 
accurate detection with novel algorithms, for example, rich ob
ject representations, generally demands massive computations, 
which prevents fast detection and low power implementation. 
On the other hand, early works on object detection (e.g. [1]) 
use simple object representation, and the accuracy required for 
critical applications is not satisfied. We need to construct an 
accurate detection system with sophisticated algorithms and 
develop their efficient hardware implementations for attaining 
low latency and power consumption.

The automatic braking system in driver assistance needs to 
detect objects 33 meters ahead when driving speed is 30 km/h. 
In this case, Full HD 60 fps image processing is essential. 
Here, let us compare three well-known algorithms adopted 
for hardware implementation; support vector machine (SVM), 
convolutional neural network (CNN), and aggregated channel 
features (ACF) [2]. SVM is a linear classifier, and it is suitable 
for parallel implementation due to its simple structure [1]. 
However, it suffers from low detection accuracy, and it is 
not suitable for critical applications. CNN is drawing a lot of 
attention since it achieves high detection accuracy. However, 
due to its inherent tremendous amount of computation, low 
power consumption and fast detection are hardly achievable. 
Recently, CNN hardware is widely studied (e.g. [3]), but an 
implementation that satisfies high accuracy, low latency, and 
low power consumption is not presented yet. ACF achieves 
good detection accuracy. ACF uses a boosted decision tree 
(BDT) classifier, which requires a small amount of computa
tion, and achieves fast detection in software implementation.

Fig. 1. Proposed Object Detection System Overview.

TABLE I
P r o blem s  in  ACF H ardw a re  Im ple m e n ta tio n .

Memory Area Speed
HOG feature extraction X
Feature representation X X
Parallel classification using BDT X

Thanks to this, [4] achieves the fast classification of 480p30 
even with a serial hardware implementation. However, its 
parallel hardware implementation pursuing higher throughput 
is not straightforward since the memory access depends on 
input data, and it prevents parallel implementation.

This work uses ACF as a baseline to exploit its reasonably 
high accuracy and low computational cost. For enhancing 
throughput and minimizing hardware cost, we have performed 
algorithm-hardware co-optimization and improved the com
patibility of ACF with the hardware implementation [5]- 
[7]. This paper proposes a general object detection system 
shown in Fig. 1 and presents its FPGA implementation. ACF 
extraction is speeded up by adopting a hardware-oriented 
feature descriptor which extracts equivalent information in a 
small amount of computation [5], and 245 fps is achievable. 
BDT classification is speeded by parallel implementation and 
hiding load time of coefficients [7], and 112M windows/sec is 
attained. In addition, a quantization method which is robust 
to accuracy degradation [6] is adopted for memory saving 
and power reduction. Consequently, the proposed system can 
detect multi-objects of pedestrians, vehicles, and traffic signals 
in 1080p60, which satisfies the above-mentioned requirement 
for the automatic braking system.
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Fig. 2. Problems and Solutions for ACF Hardware Implementation.

Fig. 3. HOG Feature Extraction.

I I .  P r o b l e m s  o f  A C F  h a r d w a r e  im p l e m e n t a t io n

ACF is originally developed for software implementation, 
and the good accuracy with small computational cost is 
demonstrated in [2]. The following discusses the compatibility 
of ACF with hardware implementation and points out prob
lems to be addressed for high-throughput ACF implementa
tion.

ACF has high affinity with the hardware implementation 
regarding the following three points. In feature extraction, ACF 
aggregates feature maps by 4x4, and it reduces the required 
memory capacity to one-sixteenth (Pro#l). In the classification 
step, the BDT classifier does not require multipliers, and then 
the necessary hardware resource is small (Pro#2), where BDT 
classifier consists of multiple decision trees, and at each tree, 
the algorithm selects a leaf node by recursive comparison 
between a threshold and a feature from the root node. Also, 
BDT can use soft cascade, which rejects negative samples 
early, for fast detection (Pro#3) since a cascade structure 
represents BDT.

However, ACF has incompatibilities with hardware imple
mentation, which are listed in TABLE I. First, we need to 
extract HOG features from an input image, but this feature 
extraction process includes expensive computations such as 
trigonometric function and square root, which demands large 
hardware resource (Con#l). Second, a large memory is nec
essary to store features during feature extraction (Con#2) 
and classification. Finally, as explained, the parallel hardware 
implementation of BDT is difficult (Con#3) since the memory 
access patterns depend on input data, and straightforward 
memory segmentation cannot avoid memory access collision. 
We need to resolve these incompatibilities.

I I I . P r o p o s e d  h a r d w a r e  a c c e l e r a t o r  a r c h it e c t u r e

This section presents the proposed architecture for ACF- 
based object detection. Fig. 2 summarizes the problems of

object detection accelerator and their solutions. Each solution 
contributes to at least either of area reduction, speed-up, or 
memory reduction. The advantages of ACF (Pro#l) to (Pro#3) 
provide memory reduction in channel aggregation, area re
duction and fast classification in classification, respectively. 
(Con#l) to (Con#3), on the other hand, are resolved by the 
proposed architecture, and the following subsections explain 
the proposed hardware solutions one by one. As a result, 
the proposed accelerator achieves area reduction, 2,006-times 
speed-up, and memory reduction to 1/601 while keeping the 
detection accuracy almost identical to the original software 
ACF implementation.

A. Decomposed Vector Histograms o f Oriented Gradients 
(DV-HOG)

HOG feature extraction calculates the magnitude and ori
entation of edges in an input image and generates their his
togram. Gradient vector g  e  M2 is calculated by differentiating 
the input image along x and y-axes, and its magnitude and 
angle are defined as

M  = y/dx +9%>  ̂= tan_1(^)’
Histogram bins are linearly spread from 0 to 7r radian. Given 
g, it votes M  to adjacent bins using interpolation in terms 
of angle as shown in Fig. 3. HOG extraction includes the 
trigonometric function and square root calculation, and it 
requires a large amount of hardware resource.

To solve the problem, [5] proposes a complex computation- 
free interpolation based on vector decomposition as shown 
in Fig. 3. This DV-HOG regards g  as the weighted sum of 
adjacent unit vectors and adopts LI norm for magnitude cal
culation. DV-HOG is calculated only with multiplication with 
constant and addition, and it reduces the circuit area to 1/12 
without accuracy degradation compared with interpolation in 
terms of angle.

B. Quantization for Decision Tree Classifiers
Classification using decision trees compares a feature and 

a threshold at each decision node. To reduce the mem
ory requirement for decision tree classifiers, [6] proposed 
a quantization method focusing on the classifier’s threshold 
range. Namely, child node selection in BDT is based on the 
comparison result between feature and threshold values, and 
the difference between them is not used for classification.
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Fig. 4. Multi-scale ACF Hardware Architecture.

(a) Pedestrian detection (b) Traffic object detection 

Fig. 5. Detection Results.

TABLE II
Pa r a m et er s  u sed  in  th e  Ev a lu a tio n .

Module Parameter Value

Feature extraction Parallelism 24
Bit-width 4bit

Classification
ACF-CoreO

Parallelism
8x16x8

ACF-Corel 8x4x8
ACF-Core2 8x2x8

Therefore, fine quantization is applied only to the range of 
threshold values for memory saving. [6] reports that if 2% 
accuracy degradation on INRIA Person Dataset is allowed, 
the numerical precision is reduced from 32bit to 2bit, which 
indicates that memory requirement is reduced to one-sixteenth.

C. Hardware Architecture for BDT Classifier
Classification using a BDT classifier includes complicated 

memory access because selected decision nodes depend on 
input data. Thus, parallel processing is difficult due to memory 
access conflict. To solve the problem, [7] visits all the decision 
nodes and enables SIMD-like processing. When each channel 
has a memory bank, channel-wise parallel implementation 
is feasible. With the processing order scheduling and 1,024- 
parallel classification, the hardware can classify 350 fps multi
scale Full HD stream. Also, this method is compatible with 
soft cascade, and [7] reports that 33-times speed-up is obtained 
by soft cascade for pedestrian detection.

D. Hardware Architecture for ACF
Thanks to the above hardware solutions, the feature ex

traction and classification are implemented in parallel for 
fast detection. For detecting multiple sizes of objects, on 
the other hand, multi-scale detection, which scales the input 
image or applies classifiers of different window sizes, must 
be implemented. In this case, the processing time for the 
feature extraction is the bottleneck compared with that of 
classification. To reduce the feature extraction time, this archi
tecture adopts an approach proposed by Benenson et al. [8]. 
Fig. 4 shows the overview, where the scale octave is 1/2 and 
classifiers dedicated for each scaled image are applied to ACF- 
Core 0 to 2 in parallel. In the case of Full HD image, there 
exist three octaves.

IV. E v a l u a t io n  o n  FPGA B o a r d  

A. Implementation
The proposed hardware architecture is implemented on 

FPGA. The evaluation uses Xilinx ZC706 evaluation board

and two FMC cards for HDMI input and output. The FPGA 
board has programmable logic (PL) and ARM core, and the 
ACF-HW module is implemented at register transfer level 
using Verilog HDL in PL. To handle the 1080p60 input stream 
and overlay the bounding boxes on the output stream, we used 
the Vivado IPs of video input, video output, and video timing 
controller. The trained classifier is stored in the SD card, and 
loaded from software running on the ARM core.

TABLE II shows the parameters used in the implementation, 
and the target frequency for the ACF-HW module is 100MHz. 
TABLE III shows the resource utilization, which shows the 
balanced usage of resources. We can see that DV-HOG mod
ules occupy 8% of LUTs in total. It should be noted, on the 
other hand, that the original computation of Eq. (1) requires 
12x resources, which makes a single FPGA implementation 
infeasible.

B. Object Detection Performance Evaluation
The processing performance is evaluated on pedestrian 

detection and traffic object detection. The evaluation using 
pedestrian detection aims to compare the performance with 
the related approaches. In traffic object detection, multi-class 
classification is evaluated considering practical applications.

1) Pedestrian Detection: The evaluation uses twelve clas
sifiers whose window size ranges from 48x96 to 92x184, 
and each classifier consists of 2,048 depth-two decision trees. 
Training process uses INRIA Person Dataset [10]. Fig. 5(a) 
shows the detection result. For quantitative analysis, software 
simulation is used to count clock cycles for each step. The 
result shows that feature extraction and classification consume 
4.08 and 1.80 (=  0.15 x 12(scales)) milliseconds, respectively. 
Consequently, the proposed accelerator can process 170 fps 
of Full HD. TABLE IV shows the processing performance 
comparison. [1] and [9] achieve Full HD 60 fps processing. 
However, they suffer from the higher log-average miss rate 
(MR) of 46% and 20% on INRIA Person Dataset, respectively, 
whereas the log-average MR of the proposed architecture is 
17%. For a fair comparison between ACF-based architectures, 
we use the processing number of windows in a second as 
an evaluation metric. The table indicates that the proposed 
accelerator achieves 57 times speed-up compared with ACF 
hardware [4].

2) Traffic Object Detection: As a multi-class evaluation, 
pedestrian, vehicle, and traffic light detection are performed 
on FPGA. TABLE V summarizes the classifiers. The detection 
candidate area is limited as shown in TABLE V to reduce the 
number of false positives and speed-up. Fig. 5(b) shows the
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TABLE IE
FPG A  R e s o u r c e  U t il iz a t io n .

Module Slice LUT (Logic) LUT (Memory) LUT (FF) 32Kb BRAM DSP
ACF-HW 124,770 (57%) 124,476 (57%) 294 (0%) 128,626 (59%) 356.5 (65%) 122 (14%)
—F ACF-CoreO 70,755 (32%) 70,657 (32%) 98 (0%) 72,719 (33%) 204.5 (38%) 41 (5%)

—t ImageBuf 195 (0%) 195 (0%) 0 (0%) 601 (0%) 9 (2%) 0 (0%)
—F FeatGen 6,928 (3%) 6,831 (3%) 97 (0%) 8,215 (4%) 0 (0%) 0 (0%)

—y DV-HOG 6,168 (3%) 6,168 (3%) 0 (0%) 7,457 (3%) 0 (0%) 0 (0%)
—y AggCube 2,021 (1%) 2,021 (1%) 0 (0%) 2,878 (1%) 8.5 (2%) 40 (4%)
—F ACFCube 23,891 (11%) 23,891 (11%) 0 (0%) 24,420 (11%) 170 (31%) 0 (0%)
—t LeafCube 35,144 (16%) 35,143 (16%) 1 (0%) 36,839 (17%) 16 (3%) 0 (0%)
—F OutputBuf 39 (0%) 39 (0%) 0 (0%) 1,086 (0%) 1 (0%) 0 (0%)

—> ACF-Corel 26,127 (12%) 26,119 (12%) 98 (0%) 27,158 (12%) 84.5 (16%) 41 (5%)
—F ACF-Core2 18,859 (9%) 18,761 (9%) 98 (0%) 19,686 (9%) 64.5 (12%) 40 (4%)
Total 139,215 (64%) 137,939 (63%) 1,276 (2%) 149,129 (68%) 389 (71%) 128 (14%)

TABLE IV
D e t e c t io n  Pe r fo r m a n c e  C o m pa r iso n .

Method Speed Method log-avg. MR #win. /  sec.
[1] Full HD 60 fps SVM 46% 6284k
[9] Full HD 60 fps DPM 20% 3,975k
[4] VGA 30 fps ACF 17% 1,972k

Ours Full HD 170 fps ACF 17% 112,501k

TABLE V
C l a s sifie r s  fo r  T ra ffic  Ob je c t s .

Target Pedestrian Vehicle 
(Front, Rear)

Traffic light 
(Green, Yellow, Red)

Depth 2 2 2
#weak classifier 2,048 512 512

Window size
[48, 96], [48, 48], [48, 16],

[92, 184] [92, 92] [84, 28]
#classifier 12 12 4

Total #classifier 12 24 12
Area Lower 2/3 Lower 2/3 Upper half

detection result, and TABLE VI summarizes the processing 
time. We can see soft cascade contributes to 17.6 times speed
up on average. The system can process 78 fps of full HD 
frames, which is enough for the driving assistance system at 30 
km/h. It should be noted that the proposed accelerator does not 
use any domain-specific knowledge and hence it is applicable 
to any object detection applications, although the required fps 
for the driving assistance system is exemplified above.

V. C o n c l u s io n

Embedded object detection systems need to simultaneously 
achieve high detection accuracy, fast detection, and low power

TABLE VI
Cla ssific a t io n  Spe e d  Ev a lu a tio n .

# cycle
Speed-upSoft cas 

Off
cade

On

Vehicle Front 148,677 13,626 10.9x
Rear 153,143 15,193 lO.lx

Pedestrian 575,037 14,996 38.3x
Traffic
Light

Green 156,133 9,481 16.5x
Yellow 116,308 10,716 10.9x

Red 140,734 9,403 I3BÏT
Total 1,290,032 73,415 17.6x

consumption, and its design is highly challenging. To solve 
the issue, this paper proposed a hardware architecture for 
general multi-class object detection using ACF. The proposed 
hardware architecture makes use of the advantages of the 
ACF algorithm itself and incorporates multiplier-free DV- 
HOG, aggressive quantization and BDT parallel computation 
architecture with the overall accelerator architecture. In total, 
the system is speed-up by 2,000 times and reduced memory to 
1/600. FPGA implementation result showed that the proposed 
system could detect pedestrians at 170 fps for a Full HD 
image, and 6-class traffic objects at 78 fps for Full HD, which 
satisfied the requirement for the automatic braking system.
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