
Sneak Path Free Reconfiguration of
Via-switch Crossbars Based FPGA

Ryutaro Doi †, ‡ Jaehoon Yu † Masanori Hashimoto †

† Department of Information Systems Engineering,
Graduate School of Information Science and Technology, Osaka University

‡ Research Fellow of Japan Society for the Promotion of Science
[doi.ryutaro,yu.jaehoon,hasimoto]@ist.osaka-u.ac.jp

ABSTRACT
FPGA that utilizes via-switches, which are a kind of nonvolatile
resistive RAMs, for crossbar implementation is attracting attention
due to higher integration density and performance. However, pro-
gramming via-switches arbitrarily in a crossbar is not trivial since
a programming current must be provided through signal wires
that are shared by multiple via-switches. Consequently, depending
on the previous programming status in sequential programming,
unintentional switch programmingmay occur due to signal detour,
which is called sneak path problem. This problem interferes the
reconfiguration of via-switch FPGA, and hence countermeasures
for sneak path problem are indispensable. This paper identifies the
circuit status that causes sneak path problem and proposes a sneak
path avoidance method that gives sneak path free programming
order of via-switches in a crossbar. We prove that sneak path free
programming order necessarily exists for arbitrary on-off patterns
in a crossbar as long as no loops exist, and also validate the
proof and the proposed method with simulation-based evaluation.
Thanks to the proposed method, any practical configurations of
via-switch FPGA can be successfully programmed without sneak
path problem.

KEYWORDS
Nonvolatile Via-switch FPGA, Sneak Path Avoidance, Crossbar
Programming, Switch Programming Order

1 INTRODUCTION
Field programmable gate arrays (FPGAs) are gaining their popu-
larity since the development cost of application specific integrated
circuits (ASICs) is elevating due to the device miniaturization and
larger scale integration. However, conventional FPGAs are still
inferior to ASICs regarding operating speed, power consumption,
and implementation area [5]. These drawbacks originate from a
large number of programmable switches that are included in FP-
GAs to acquire reconfigurability. In static random access memory
(SRAM)-based FPGAs, which are the most widely used FPGAs,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240849

a programmable switch is composed of a transmission gate for
switching and an SRAM cell to hold the on/off-state of the switch.
These components consist of transistors, and hence the trans-
mission gate has high resistance and large capacitance and the
SRAM cell having six transistors consumes large area. Therefore,
SRAM-based programmable switches lead to the degradation of
interconnect performance and area efficiency [7].

To overcome the drawbacks of conventional FPGAs, FPGAs
that exploit resistive random access memories (RRAMs) as pro-
grammable switches instead of SRAM-based ones are widely stud-
ied [3, 4, 6, 8, 10–12]. In these RRAM-based FPGAs, however, one
or two access transistors per a programmable switch are required
for switch programming. The access transistor is relatively large
despite the small footprint of an RRAM-based switch, and hence
it prevents further area reduction. To eliminate access transistors,
nonvolatile via-switch is actively developed [1, 2]. The via-switch
consists of atom switches, which are a kind of nonvolatile RRAMs
developed for application to FPGAs, and varistors in place of access
transistors.

In the via-switch FPGA, the crossbar, which has a via-switch at
each intersection of horizontal signal wire and vertical signal wire,
is responsible for the routing of interconnects. However, program-
ming those via-switches arbitrarily in a crossbar is not trivial since
a programming voltagemust be given through signal wires that are
shared by multiple via-switches. In this case, unintentional switch
programming may occur depending on the previous programming
status due to signal detour, which is called sneak path problem.
This problem interferes the reconfiguration of FPGA, and hence
the verification of occurrence conditions and countermeasures is
crucially important.

This paper identifies the crossbar programming status that
causes sneak path problem and proposes a method that provides
a programming sequence of via-switches for sneak path free
programming. We prove that such an order for sneak path free
programming must exist for arbitrary on-off patterns in a crossbar
as long as no loops exist, and devise an algorithm to find the
programming order representing the connection status of signal
wires in a crossbar as a tree structure. This paper also validate the
proof and the proposed method with simulation-based evaluation.
Thanks to the proposed method, any practical configurations of
via-switch FPGA can be successfully programmed without sneak
path problem.

The remainder of this paper is organized as follows. Section 2
explains the structure of via-switch FPGA and sneak path problem.
In Section 3, we investigate occurrence conditions of sneak path

https://doi.org/10.1145/3240765.3240849

���

�� ����	
���

����

����	
���	�

�� ����	
���

��� ��

��

��

��

��

��� ���

����� ����

���	
�� ����

����� ����

��

����� ����

���	
�� ����

����� ����

Figure 1: Structure and operation
of (a) atom switch and (b) CAS.

��������

�	

����

���

������ ���

����

���

Figure 2: Via-switch
structure.

problem and identify the circuit status that causes sneak path.
Section 4 proposes a sneak path avoidance method that deter-
mines the sneak path free programming order of via-switches in a
crossbar followed by the simulation-based validation in Section 5.
Concluding remarks are given in Section 6.

2 VIA-SWITCH FPGA
2.1 Via-switch
The via-switch is a nonvolatile, rewritable, and compact switch
that is developed to implement a crossbar switch by Banno et
al. [1], and it is composed of atom switches and varistors. Here,
we explain the device structure, functionality, and characteristics
in the following. The programming of via-switch crossbar will be
explained later in Section 2.2.

The atom switch consists of a solid electrolyte sandwiched
between copper (Cu) and ruthenium (Ru) electrodes as shown in
Figure 1-(a). By applying a positive voltage to the Cu electrode, a
Cu bridge is formed in the solid electrolyte, and the switch turns
on. On the other hand, when a negative voltage is applied, Cu
atoms in the bridge are reverted to the Cu electrode, and then the
switch turns off. The switching between on-state and off-state is
repeatable, and each state is nonvolatile. For improving the device
reliability, the complementary atom switch (CAS) is devised, where
it consists of two atom switches connected in series with opposite
direction as shown in Figure 1-(b). In the programming of CAS, a
pair of signal line and control line supply a programming voltage
to each atom switch, and two atom switches are programmed
sequentially. During normal operation, on the other hand, only
signal lines are used for routing [8].

To accurately provide the programming voltage only to the
target atom switch in a switch array, the varistor is introduced into
the via-switch. Figure 2 shows the structure of via-switch, where
the varistor is connected to the control terminal of CAS. When a
voltage higher than the threshold value (programming voltage) is
applied between the signal and control lines, the varistor supplies
programming current to an atom switch. On the other hand, the
varistor isolates the control lines from the signal lines during
normal operation [1].

Here, we summarize the main of via-switch to FPGAs. The
footprint, on-resistance, and capacitance are 18 F2, 200 Ω, and
0.14 fF respectively [1, 9]. Thanks to these characteristics, the area

��� ��� ���

��� ��� ���

��� ��� ���

�����

�	��

���������

����������

�	��

������

�	��

Figure 3: Structure of via-switch FPGA.

efficiency and performance of via-switch FPGA are dramatically
improved compared to SRAM-based one. Ochi et al. report that
the crossbar density is improved by 26x, and the delay and energy
in the interconnection are reduced by 90% or more at 0.5 V
operation [9].

2.2 Sneak Path Problem in Via-switch FPGA
The structure of via-switch FPGA is an array of configurable
logic blocks (CLBs), and each CLB is composed of a logic block
and a crossbar where a via-switch is placed at each intersection
of signal lines as shown in Figure 3 [9]. The via-switch in the
crossbar is responsible for connection and disconnection between
the horizontal and vertical signal lines. Besides, the top half of
the crossbar serves as input and output multiplexers to the logic
block and corresponds to the connection block in conventional
FPGAs. On the other hand, the bottom half of the crossbar, which
corresponds to the switch block, routes global interconnections.
The logic block organizes combinational and sequential circuits.

The following explains the programming of a via-switch cross-
bar and sneak path problem. Figure 4 illustrates the via-switch
based crossbar structure. Both signal and control lines are aligned
horizontally and vertically. Figure 4 also exemplifies programming
steps in 2x2 crossbar where an atom switch is turned on at each
step. A pair of the perpendicular signal and control lines crossing
at the via-switch of interest are used for switch programming. Two
programming drivers are activated at each step, and a positive
voltage is given to one of the signal lines, and a ground voltage is
given to one of the control lines. Other lines are floated.We can see
that the via-switch at the bottom left is successfully turned on at
steps (1) and (2). Succeeding steps (3) and (4) also turn on the top
left via-switch normally. However, the next programming of the
bottom right via-switch at step (5) cannot be performed correctly.
The atom switch that composes the top right via-switch is under
programming unintentionally at step (5) since the positive voltage
is provided through the on-state via-switches at the bottom left and
top left. Such an unintentional switch programming due to signal
detouring through on-state via-switches is sneak path problem.
The sneak path problem interferes the reconfiguration of FPGA,
and hence it is essential to identify the occurrence conditions and
find countermeasures of this problem.

��������

���	 �
����

�����		��� ������

������ ����

������� ����

������ �������

������� �������

�������� ���	��
����

����� �����������	

�����		��� ������

�������������	

��������

���������	

������

�������

������!

������"

������# ������$

Figure 4: Via-switch based crossbar structure and switch
programming steps.

2.3 Conventional Countermeasure for Sneak
Path Problem

Here, let us introduce a conventional countermeasure for the sneak
path problem and its drawback. Ochi et al. claim that the sneak
path problem can be avoided by imposing a programming con-
straint [9]. This constraint allows multiple on-state via-switches
on the same signal line only in one direction. In other words, this
constraint prohibits the configurations in which multiple on-state
via-switches exist in both the same horizontal line and the same
vertical line such as step (5) in Figure 4. The authors also prove that
there is no sneak path problem in the programming of any-sized
crossbar under the programming constraint with mathematical in-
duction. However, their countermeasure involves a clear disadvan-
tage. The programming constraint prohibits some configurations
of via-switch FPGA, and hence imposing the constraint leads to a

�������

�	�
���

�������

�	�
��

����	� ��	�������

��� ��

��� ���

��� ��

���

��

����	�

��	�������

�����������	
���������������������	��

�������������	���������������������

�����������
���������������������	��

�������������	���������������������

Figure 5: Two occurrence conditions of sneak path problem.

decrease in the number of available configurations. Consequently,
the routing flexibility is limited.

3 OCCURRENCE CONDITIONS OF SNEAK
PATH PROBLEM

This section clarifies the programming status of a crossbar that
leads to the sneak path problem for developing a more efficient
countermeasure. As explained in Section 2.2, the atom switch at
the intersection is turned on when a positive voltage is provided
to the signal line and a ground voltage is provided to the control
line. When the number of such intersections is two or more, the
sneak path problem occurs. Focusing on the number of bends of
the programming signal given to the signal line, we can classify
the circuit status that causes the sneak path problem into two
situations, namely conditions (a) and (b) as shown in Figure 5. In
condition (a), the programming signal provided to the signal line
bends twice or more, whereas the number of signal bends is one
or zero in condition (b). The followings discuss each condition in
detail. It should be noted that we only consider the programming
operations to turn on the atom switch in the following because
programming operations to turn on and off an atom switch are
a symmetrical operation and the same discussion can be done by
swapping the voltage given to the signal line and control line.

In condition (a) of Figure 5, two vertical signal lines SV1 and
SV2 are connected by multiple on-state via-switches VS3 and VS4
in the same line SH2. When a programming signal is given to
one of signal lines SV1 and SV2, the same signal is provided to
the other signal line, which means we cannot distinguish SV1 and
SV2 anymore in the programming. Therefore, when we try to turn
on the lower atom switch of via-switch VS1 in the line SV1, the
atom switch in the same position of signal line SV2, i.e. lower
atom switch of via-switch VS2 is programmed simultaneously. In
summary, the sneak path problem arises when programming an
atom switch in already undistinguishable vertical lines or undis-
tinguishable horizontal signal lines. From the opposite point of
view, we could avoid the sneak path problem if we would program
such an atom switch before multiple vertical/horizontal signal
lines become undistinguishable. For example, in condition (a) in
Figure 5, we need to turn on the lower atom switch of via-switch
VS1 before programming VS3 and VS4. It should be noted that, for
programming a via-switch, we must turn on two atom switches,
which are the lower atom switch connected to the vertical signal
line and the upper atom switch connected to the horizontal signal

line. The vertical signal line is used when programming the lower
atom switch (e.g. step (2) in Figure 4), and hence we need to pay
attention to multiple on-state via-switches in the same horizontal
signal line that connect multiple vertical signal lines. On the
other hand, we should care about multiple on-state via-switches in
the same vertical signal line when programming the upper atom
switch.

Let us move to condition (b) in Figure 5, where the number of
bends of programming signal given to the signal line is one or
zero. In this case, a sneak path problem can occur in configurations
where the control signal is detoured through two bents as shown
in condition (b) of Figure 5. In this case, the two horizontal control
lines are indistinguishable. On the other hand, such a condition
is satisfied only when a loop is intentionally programmed in a
crossbar. For example, in Figure 5-(b), all the four via-switches are
intended to be turned on, otherwise the top two atom switches
of VS1 and VS3 never be on. This condition arises only when
programming the last two atom switches that compose a loop, and
the ground voltage applied to the control line is propagated to the
non-target switch because of a loop structure.

From the above discussion, the sneak path problem cannot be
avoided in the configurations that include a loop. Fortunately, such
configurations with a loop are not used in practical applications
since the looped signal routing increases the wire capacitance
and degrades delay and power compared to non-loop routing.
Therefore, we do not need to take care of condition (b). Conse-
quently, what we have to consider for sneak path avoidance is only
condition (a).

4 PROPOSED SNEAK PATH AVOIDANCE
METHOD

In this section, we propose a sneak path avoidance method based
on the discussion in Section 3. The proposed method gives sneak
path free programming order of via-switches in a crossbar. Target
configurations are non-looped configurations, which are used for
signal routing. Some key properties necessary for proving that a
sneak path free programming order necessarily exists are in italic.
With those properties, Section 4.3 gives a proof.

4.1 Overview of Proposed Method
The proposed method consists of two steps: step (1) turning on all
the upper atom switches of interest and step (2) turning on all the
lower atom switches of interest.

In step (1), all the upper atom switches of the via-switches to
be turned on in a target configuration are programmed. The via-
switch connects the vertical and horizontal signal lines only when
both the upper and lower atom switches that compose the via-
switch are on-state. Therefore, any signal lines are not connected
each other in step (1), and hence no sneak path problem arises in
this step. Then, arbitrary programming order works fine in step (1).

Step (2) turns on all the lower atom switches to be programmed
after step (1) completion. In step (2), a vertical line and a hori-
zontal line are connected by a via-switch each time a lower atom
switch is turned on since the corresponding upper atom switch
is already turned on in step (1). Therefore, we have to determine
the programming order of the lower switches paying attention to
the occurrence condition of sneak path problem as discussed in
Section 3. Please remind that we provide a programming signal

���������	
����
��

������������
��

����������������
��

��� ��� ��� ��� ���

�

	
 �

�

� �

�

Figure 6: Example of non-looped configuration and defini-
tion of connector/non-connector switches.

to a vertical signal line when programming a lower atom switch
and hence we care about only multiple on-state via-switches in
the same horizontal signal line. Multiple on-state via-switches in
the same vertical signal line do not matter. The details on how
to determine the programming order are explained in the next
subsection.

It should be noted that the swapped sequence of step (2) fol-
lowed by step (1), i.e. programming all the upper atom switches
after turning on all the lower atom switches can also avoid the
sneak path problem since the crossbar has a symmetrical structure.
In this case, we need to determine the programming order of the
upper switches. In the following, we consider only the sequence of
step (1) and step (2).

4.2 Programming Order Determination with
Connection Tree

Here, we explain how to derive a sneak path free programming
order of via-switches in a crossbar. In the following, we use a
configuration of a 5x5 crossbar shown in Figure 6 as an example.

As mentioned in the previous subsection, we have to pay
attention to multiple on-state via-switches in the same horizontal
signal line that connect multiple vertical signal lines and make
them undisistinguishable. Therefore, we define two categories
of the via-switch, namely connector switch and non-connector
switch. When multiple on-state via-switches exist in the same
horizontal signal line, these switches are classified as the connector
switch. On the other hand, when there is only one via-switch
in the horizontal signal line, we categorize such a switch as the
non-connector switch. For example, via-switches B, C, D, E, F,
G, and H are connector switches and via-switches A and I are
non-connector switches in Figure 6. A pair of connector switches
connects two vertical signal lines, e.g. via-switches E and F connect
vertical signal lines SV1 and SV2 in Figure 6. The non-connector
switch, on the other hand, does not connect any vertical signal
lines.

Please remind that the sneak path problem occurs when turning
on the lower atom switch included in the already connected
vertical signal lines as explained in Section 3. Therefore, all the
non-connector switches should be programmed before the connector
switches so that we can avoid the sneak path problem in program-
ming the non-connector switches since the connector switches
which may connect vertical lines are still off-state. In this case, the
programming order of the non-connector switches is arbitrary.

��� ��� ��� ��� ���

� 	

� �

 �

���������	
���	�
�����	�

���

���

���

���

���

	
�

�

� �

Figure 7: Example of connection tree for connector switches
in Figure 6.

Next, we determine the programming order of connector
switches. In this step, the programming order is not arbitrary since
the sneak path problem may arise depending on the programming
order. For example in Figure 6, when we are turning on the con-
nector switches B or G after programming the connector switches
of E and F, the sneak path problem occurs since switches E and F
connect vertical lines SV1 and SV2.

To determine the programming order, we construct a connec-
tion tree that represents the connection status of vertical signal
lines in a crossbar. Figure 7 exemplifies a connection tree for the
connector switches in Figure 6, where each node corresponds to
a vertical signal line. The root node can be arbitrarily selected.
Vertical line SV3 is selected as the root node in Figure 7. When
two vertical signal lines are supposed to be connected in the
configuration of interest, we give an edge between the two nodes
corresponding to these two vertical signal lines. Two black dots
depicted at both ends of an edge represent connector switches, and
when both the two connector switches are turned on, we suppose
the edge is activated and two vertical lines are connected. From
the definition, any non-looped configurations can be necessarily
expressed by the tree structure, which means loops are not included
in the graph.

The connection tree tells us the connector switch that can be
turned on at the end of programming as the leaf node of the connec-
tion tree. Let us explain what happens when we program the con-
nector switch in the leaf node and non-leaf node of the connection
tree at the last programming step, where the last programming step
means that only one switch remains off and the others are already
turned on in the target configuration. In Figure 8-(a), the connector
switch in the leaf node SV1 is under programing, and the other
connector switches are already on-state. In this case, node SV1
and node SV2 are not connected yet, and hence the programming
signal never propagate to any other vertical signal lines. Conse-
quently, the target connector switch can be turned on without the
sneak path problem. We can also confirm that there is no sneak
path problem when programming the connector switch in the leaf
node from Figure 8-(b), which is the circuit diagram corresponding
to Figure 8-(a). Next, let us turn on the connector switch in non-leaf
node SV2 in Figure 8-(c) at the last programming step. In this
case, the programming signal reaches the other vertical signal
lines through the connector switches that are already on-state, and
consequently the sneak path problem arises. The circuit diagram
of Figure 8-(d) also indicates that atom switches placed at the same
vertical position as the target on the connected indistinguishable
vertical signal lines are unintentionally programmed.

���������	
���	�
�����	�

���

���

���

���

���

����������	
���	�
�����	�

�	
��

�������� ������

������
��������
��	
���	�
��

���	����������
��

������	����������

	
�����
������
����

������������������
����

���������	
���	�
�����	�

���

���

���

���

���

����������	
���	�
�����	�

�	
��

���

���

���

�	����
��������
��	
���	�
��

���	�����
��������
��

������	����������

	
�����
������
��	�

�������� ������ ���

�
� �

��

� �

�
� �

�

�
� �

Figure 8: Programming of connector switch in leaf/non-leaf
node at the last programming step.

We propose to recursively search a connector switch that can be
turned on at the final programming step for obtaining a sneak path
free programming order of connector switches. Figure 9 illustrates
the recursive process. Here, there are two types of connector
switches in each node, namely the connector switch connected
to the parent node (e.g. switch B in node SV2) and the connector
switch connected to the child node (e.g. switches F and G in
node SV2). In each node, all the switches connected to the child node
must be turned on before the switch connected to the parent node.
Otherwise, the sneak path problem arises when programming the
switch connected to the child node since the programming signal
is propagated to the parent node through the on-state switch to
the parent node as pointed out in Figure 8-(c).

Let us roll back the recursive programing step one by one with
Figure 9. As we discussed, we can program only the connector
switch in the leaf node at the final programming step. Then, switch
E in SV1 is selected as the last switch to be programmed and
node SV1 and the edge between SV2 and SV1 are deleted. This
modified graph is again analyzed to find the next last switch to be
programmed. In this case, switch H is selected. After SV1 and SV5
are removed from the graph, SV2 has no child nodes, and hence
switch B in leaf node SV2 connecting to parent node SV3 can be
programmed. In this way, one recursive process chooses one leaf
node, identifies the switch in the leaf node connecting to the parent
node as the last switch to be programmed in the current graph, and
remove the leaf node and its edge to the parent node. Eventually,
all the nodes except the root node are removed, and the recursive
process finishes. It should be noted that there remain some on-state

���

���

���

���

���

�
	

��

 �

���

���

���

���

���

�
	

��

 �

���

���

���

���

���

�
	

��

 �

���

���

���

���

���

�
	

��

 �

���

���

���

���

���

�
	

��

 �

���

���

���

���

���

�
	

��

 �

���������	
���	�
�����	� ����������	
���	�
�����	�

Figure 9: Recursively searching switch which can be pro-
grammed lastly for each shrinking graph.

connector switches, for example switches C, F, and G in Figure 9.
These switches can be programmed in an arbitrary order as long as
they are programmed before the switches selected in the recursive
processes.

Depending on the target configuration, multiple connection
trees may be constructed for a non-looped configuration. Each
tree has no connection to other trees, and hence the programming
signal never propagates to other trees when programming the
switch in the tree of interest. Consequnetly, we can handle each
connection tree independently with the proposed method.

4.3 Proof of Existence of Sneak Path Free
Programming Order

This subsection proves that a sneak path free programming order
always exists for arbitrary non-looped configurations. Firstly, all
the upper atom switches can be programmed in an arbitrary order
as clarified in the second paragraph of Section 4.1. After this,
non-connector switches can be programmed in an arbitrary order,
which is verified in the third paragraph of Section 4.2. In the
following, the programming of remaining connector switches is
addressed in the proof. The proof consists of three lemmas, and
hence we prove them.

Lemma 4.1. Given a non-looped configuration, it can be expressed
by a connection tree or multiple trees.

Proof. Any non-looped configuration can necessarily ex-
pressed by a undirectional graph or multiple graphs without loops
where each node corresponds to each vertical signal line. When
a node is selected as the root node, the graph is expressed by
a tree structure, which is called connection tree in the previous
section. □

Lemma 4.2. At the last programming step for a connection tree,
only a switch in a leaf node connecting to its parent node can be
programmed without the sneak path problem.

Proof. When programming a switch in a leaf node at the final
programmming step, there is no connection between the leaf node
and its parent node, and hence the programming signal never
propagates to any other nodes. On the other hand, a non-leaf node
has at least two connections, i.e. connection to its parent node and
child node. Therefore, programming a switch in a non-leaf node at
the end always causes the sneak path problem by propagating the
programming signal to other node through the connection to the
parent or child node. □

Lemma 4.3. Recursively searching a switch which can be pro-
grammed at the last programming step always finds the sneak path
free programming order.

Proof. By recursive searching a switch that can be turned on
at the final programming step in the current graph and removing
the leaf node and its edge to the parent node from the graph, all
the nodes except the root node must be eventually eliminated and
the recursive search necessarily finishes since the tree must have
at least one leaf node when the number of nodes is two or larger.
The remaining switches can be programmed in an arbitrary order
before the switches chosen in the recursive search since each node
has no connection to other nodes at thismoment, i.e. all the vertical
signal lines are distinguishable. □

4.4 Pseudo Code and Execution Example
Algorithm 1 summarizes the overall determination procedure of a
programming order. This algorithm determines a sneak path free
programming order of non-connector and connector switches, and
stores it to queue ProдOrder . Line 1 defines a set S of switches to be
turned on. Lines 2-4 search non-connector switches by checking
the number of on-state switches in each horizontal signal line.
Specifically, line 2 creates a set Hj of on-state switches in j-th
horizontal signal line, line 3 enumerates non-connector switches
in j-th horizontal line where the number of elements of Hj is one,
and line 4 enqueues all the non-connector switches to ProдOrder .
Then, line 5 removes all the non-connector switches from the
set S, and subsequent lines 6-9 determine the programming order
of connector switches. Line 6 selects i∗-th vertical signal line,
in which the connector switch to be turned on exists, as the
root node of a connection tree, and the programming order of
connector switches in this connection tree is determined by the
function SEARCH in line 7. SEARCH is a recursive function and
traverses a connection tree from the root node to leaf nodes. Please
remind that all the switches connected to child nodes need to
be programmed before programming any switch connected to its
parent node. SEARCH classifies the switches connected to child
nodes of the parent node i∗ (line 11) and the switches connected to
the parent node i∗ (line 15). The former is enqueued to ProдOrder
in line 16 since switches connected to the child have to turn on
before the switches connected to the parent. On the other hand,
the latter is enqueued in Bu f f er in line 17 until all the switches
connected to the child node are enqueued to ProдOrder by the
recursive function SEARCH. This function is recursively executed
for all the child nodes of the node of interest (lines 19-21), and
returns when the node of interest is a leaf node of the connection
tree (lines 12-14). Finally, all the switches connected to the parent
node in all nodes are enqueued to ProдOrder in line 9.

Let us explain an example when the proposed algorithm is
applied to the configurations as shown in Figure 6. Lines 2-4 find

Algorithm1 Programming order determination of non-connector
and connector switches.
1: S = {Si, j | Si, j is on-state, 0 ≤ i <W , 0 ≤ j < H }
2: Hj = {Si, j | Si, j ∈ S}
3: SN = {Si, j | |Hj | = 1, Si, j ∈ S}
4: enqeue(SN) to ProдOrder
5: S← S − SN
6: for i∗ ∈ {i | ∃Si, j ∈ S} do
7: search(i∗, S, ProдOrder ,Bu f f er)
8: end for
9: enqeue(Bu f f er) to ProдOrder

10: function search(i∗, S, ProдOrder ,Bu f f er)
11: SP = {Si∗, j | Si∗, j ∈ S}
12: if SP = ∅ then
13: return
14: end if
15: SC = {Si, j | i , i∗,∃Si∗, j ∈ SP }
16: enqeue(Sp) to ProдOrder
17: enqeue(Sc) to Bu f f er
18: S← S − (SP ∪ SC)
19: for i ′ ∈ {i | ∃Si, j ∈ SC } do
20: search(i ′, S, ProдOrder ,Bu f f er)
21: end for
22: end function

W : crossbar width; H : crossbar height

non-connector switches A and I, and enqueue them to ProдOrder .
Line 7 determines a programming order of the remaining connec-
tor switches B-H. Assuming the vertical line SV3 is selected as a
root node i∗, at the first execution of the function SEARCH, the
set SP contains the switch C connected to the child node as shown
in Figure 7, and the set SC contains switches B and D connected
to the parent node (root node). Line 16 enqueues the switch C to
ProдOrder and line 17 stores switches B and D to Bu f f er . After
that, function SEARCH is executed again for vertical lines SV2 and
SV4 where switches B and D exist. When SEARCH is executed for
line SV2, set SP contains switches F and G, and set SC contains
switches E and H. On the other hand, when SEARCH is executed
for line SV4, set SP is empty and SEARCH returns. Eventually,
we successfully obtain a sneak path free programming order and
it is switches A, I, C, F, G, B, D, E, and H. Figure 10 shows the
programming order determined by the proposed method in two
example configurations. In each configuration, we can see that the
proposed method finds a sneak path free programming order.

Also, in the case that there exist multiple connection trees, “for
statement” in line 6 of Algorithm 1 is executed as many times as
the number of connection trees.

Thus far, we discussed the programming order for operations of
turning on the switch. Programming operations to turn on and off
an atom switch are symmetric except that applied voltages to the
signal line and control line are reversed. Therefore, we can turn
off all the switches without the sneak path problem in the reverse
order.

�

�

�

��

�

�

�

	

�

� ��

� �

�	

�

Figure 10: Results of programming order determination
with the proposed method in two non-looped configura-
tions.

Table 1: Evaluation results of comprehensive simulation for
small crossbars.

Crossbar # of all # of looped # of non-looped
size configs. configs. configs.

No SPP SPP occurs
2x2 16 1 15 0
3x3 512 184 328 0
4x4 65,536 49,391 16,145 0
5x5 33,554,432 32,078,576 1,475,856 0

SPP: sneak path problem

5 EXPERIMENTAL RESULTS
5.1 Simulation based Validation
The previous section proved that the proposed method could find
a sneak path free programming order of via-switches for arbitrary
configurations without a loop in an arbitrarily-sized crossbar.
Here, we validate the discussion in the previous section with
simulations just in case. We implement the proposed method and
verify the sneak path problem in each programming step of the
determined programming order. We perform two types of evalua-
tion, which are comprehensive evaluation for small crossbars and
Monte Carlo evaluation for large crossbars.

In small crossbars, the total number of configurations is rela-
tively small, and hence we can simulate all the configurations. We
evaluated four crossbars including 2x2, 3x3, 4x4, and 5x5 crossbars
with the comprehensive simulation. Table 1 shows evaluation
results. The column of “No SPP” in the table represents the number
of non-looped configurations where the sneak path problem can
be avoided by the determined programming order. The column of
“SPP occurs” lists the number of non-looped configurations where
the proposed method cannot eliminate the sneak path problem.
As discussed in Section 3, the sneak path problem is unavoidable
in looped configurations, but those configurations are practically
meaningless for signal routing. In any non-looped configurations,
on the other hand, we can see that the sneak path problem can be
avoided by the proposedmethod in Table 1. This simulation results
definitely support the theoretical proof in the previous section.

When the number of via-switches in a crossbar is n, the
number of possible configurations is 2n since each via-switch
has two states, namely on- and off-state. Consequently, the total
number of configurations exponentially increases as the crossbar
size becomes larger, and the comprehensive simulation of larger
crossbars is infeasible. We generated random configurations for

Table 2: Evaluation results of Monte Carlo simulation.

% of on-state # of # of looped # of non-looped
via-switches samples configs. configs.

No SPP SPP occurs
2% 10,000 10,000 0 0
1% 10,000 3,690 6,310 0

0.5% 10,000 154 9,846 0
0.1% 10,000 0 10,000 0

SPP: sneak path problem

������

������

������

������

������

�����	

�����

������

��� ��� ��� 	�	

�
��
��
�
�
�
��
�
	
�

��
�
�
��

�
��
��
�
�
�

������������

�����������

��������

��������� ���!���"

Figure 11: Number of available configurations with conven-
tional countermeasure and proposed method.

a large crossbar in Monte Carlo manner and checked the sneak
path avoidance. In this evaluation, the crossbar size was set to
100x100 and the number of trials was 10,000. We also varied the
percentage of on-state via-switches in the 100x100 crossbar from
0.1% to 2%. Evaluation results are shown in Table 2. The proposed
method successfully solved the sneak path problem in non-looped
configurations as we expected with the proof in Section 4.

5.2 Advantage of Proposed Method
Next, we discuss the advantage of the proposed method. As ex-
plained in Section 2.3, the conventional countermeasure for the
sneak path problem imposes a programming constraint that pro-
hibits a class of configurations of the via-switch FPGA. Therefore,
the number of usable configurations decreases in the conventional
countermeasure, and consequently the routing flexibility is dimin-
ished. On the other hand, the proposed method can give a sneak
path free programming order for any non-looped configurations.
Figure 11 compares the number of programmable configurations
with the conventional countermeasure and the proposed method
in 2x2, 3x3, 4x4, and 5x5 crossbars. In this evaluation, the conven-
tional countermeasure prohibits configurations in which multiple
on-state via-switches exist in both the same horizontal line and
the same vertical line. We can see that the proposed method
increases the number of usable configurations compared to the
conventional countermeasure. Even in the small 5x5 crossbar, the
number of available configurations increases by over two orders
of magnitude. The figure also shows that the increasing ratio
of the number of usable configurations becomes larger as the
crossbar size increments, which suggests that the increase in the
number of configurations that are newly enabled by the proposed
is significant in practically-sized crossbars.

There are almost no disadvantages of the proposed counter-
measure since the crossbar structure is unchanged and then no

hardware overhead is required. A small disadvantage is the com-
putation of the sneak path free programming order, but it can be
derived efficiently by the proposed algorithm.

6 CONCLUSION
This paper identified programming status of the via-switch cross-
bars based FPGA that cause the sneak path problem, and clarified
that the sneak path problem cannot be avoided in looped configu-
rations. On the other hand, we have proved that a via-switch pro-
gramming order which can avoid the sneak path problem always
exists for all the non-looped configurations, and we proposed a
sneak path avoidance method that gave sneak path free program-
ming order of via-switches in a crossbar. We also validated the
proof and the proposed method with supportive simulation-based
evaluation. The proposed method successfully solves the sneak
path problem in any practical configurations of via-switch FPGA.
Future works include evaluating the computational complexity of
the proposed algorithm.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Number
JP17J10008 and JST CREST Grant Number JPMJCR1432, Japan.

REFERENCES
[1] N. Banno, M. Tada, K. Okamoto, N. Iguchi, T. Sakamoto, M. Miyamura, Y. Tsuji,

H. Hada, H. Ochi, H. Onodera, M. Hashimoto, and T. Sugibayashi. 2015. A novel
two-varistors (a-Si/SiN/a-Si) selected complementary atom switch (2V-1CAS)
for nonvolatile crossbar switch withmultiple fan-outs. In 2015 IEEE International
Electron Devices Meeting (IEDM). 2.5.1–2.5.4.

[2] N. Banno, M. Tilda, K. Okamoto, N. Iguchi, T. Sakamoto, H. Hada, H. Ochi, H.
Onodera, M. Hashimoto, and T. Sugibayashi. 2016. 50x20 crossbar switch block
(CSB) with two-varistors (a-Si/SiN/a-Si) selected complementary atom switch
for a highly-dense reconfigurable logic. In 2016 IEEE International Electron
Devices Meeting (IEDM). 16.4.1–16.4.4.

[3] J. Cong and B. Xiao. 2014. FPGA-RPI: A Novel FPGA Architecture With
RRAM-Based Programmable Interconnects. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 22, 4 (April 2014), 864–877.

[4] P. E. Gaillardon, D. Sacchetto, G. B. Beneventi, M. H. Ben Jamaa, L. Perniola,
F. Clermidy, I. O’Connor, and G. De Micheli. 2013. Design and Architectural
Assessment of 3-D Resistive Memory Technologies in FPGAs. IEEE Transactions
on Nanotechnology 12, 1 (Jan 2013), 40–50.

[5] I. Kuon and J. Rose. 2007. Measuring the Gap Between FPGAs and ASICs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 26, 2
(Feb 2007), 203–215.

[6] Y. Y. Liauw, Z. Zhang, W. Kim, A. E. Gamal, and S. S. Wong. 2012. Nonvolatile
3D-FPGA with monolithically stacked RRAM-based configuration memory. In
2012 IEEE International Solid-State Circuits Conference. 406–408.

[7] M. Lin, A. El Gamal, Y. C. Lu, and S. Wong. 2007. Performance Benefits of
Monolithically Stacked 3-D FPGA. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 26, 2 (Feb 2007), 216–229.

[8] M. Miyamura, T. Sakamoto, M. Tada, N. Banno, K. Okamoto, N. Iguchi, and
H. Hada. 2014. Low-power programmable-logic cell arrays using nonvolatile
complementary atom switch. In Fifteenth International Symposium on Quality
Electronic Design. 330–334.

[9] H. Ochi, K. Yamaguchi, T. Fujimoto, J. Hotate, T. Kishimoto, T. Higashi, T.
Imagawa, R. Doi, M. Tada, T. Sugibayashi,W. Takahashi, K.Wakabayashi, H. On-
odera, Y. Mitsuyama, J. Yu, and M. Hashimoto. 2018. Via-Switch FPGA: Highly
Dense Mixed-Grained Reconfigurable Architecture With Overlay Via-Switch
Crossbars. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26
(2018), 1–14.

[10] K. Okamoto, M. Tada, T. Sakamoto, M. Miyamura, N. Banno, N. Iguchi, and
H. Hada. 2011. Conducting mechanism of atom switch with polymer solid-
electrolyte. In 2011 International Electron Devices Meeting. 12.2.1–12.2.4.

[11] S. Tanachutiwat, M. Liu, and W. Wang. 2011. FPGA Based on Integration of
CMOS and RRAM. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 19, 11 (Nov 2011), 2023–2032.

[12] X. Tang, P. E. Gaillardon, and G. De Micheli. 2014. A high-performance low-
power near-Vt RRAM-based FPGA. In 2014 International Conference on Field-
Programmable Technology (FPT). 207–214.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 30.60 points
 Normalise (advanced option): 'original'

 32

 D:20180816092532
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 30.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 10.80 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 89
 226
 Fixed
 Down
 10.8000
 0.0000

 Both
 15
 CurrentPage
 15

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1
 8
 1
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 10.80 points
 Normalise (advanced option): 'improved'

 32

 D:20170515135440
 612.0000
 5.5 8.5
 Blank
 396.0000

 Tall
 1
 0
 Full
 89
 226

 Fixed
 Down
 10.8000
 0.0000

 Both
 15
 CurrentPage
 15

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 8
 2
 1

 1

 HistoryList_V1
 qi2base

