
VOL. E101-A NO. 9
SEPTEMBER 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

1298
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.9 SEPTEMBER 2018

PAPER Special Section on Intelligent Transport Systems

Hardware Architecture for High-Speed Object Detection Using
Decision Tree Ensemble

Koichi MITSUNARI†a), Student Member, Jaehoon YU†, Takao ONOYE†,
and Masanori HASHIMOTO†, Members

SUMMARY Visual object detection on embedded systems involves a
multi-objective optimization problem in the presence of trade-offs between
power consumption, processing performance, and detection accuracy. For
a new Pareto solution with high processing performance and low power
consumption, this paper proposes a hardware architecture for decision tree
ensemble using multiple channels of features. For efficient detection, the
proposed architecture utilizes the dimensionality of feature channels in ad-
dition to parallelism in image space and adopts task scheduling to attain
random memory access without conflict. Evaluation results show that an
FPGA implementation of the proposed architecture with an aggregated
channel features pedestrian detector can process 229 million samples per
second at 100MHz operation frequency while it requires a relatively small
amount of resources. Consequently, the proposed architecture achieves
350 fps processing performance for 1080P Full HD images and outper-
forms conventional object detection hardware architectures developed for
embedded systems.
key words: decision tree ensemble, task scheduling, object detection,
machine learning, embedded systems

1. Introduction

Object detection is now an indispensable component of mul-
tiple practical applications on embedded systems such as ad-
vanced driving assistant system, robotics, and surveillance.
These types of systems have strong constraints on power con-
sumption, processing performance, and detection accuracy,
which are in a trade-off relationship. Recently deep learning
largely improved this trade-off, and features computed by
deep convolutional networks achieved remarkable inference
performance beyond hand-engineered features. However,
considering the power constraint and the limited resources
of embedded systems, such features that require computa-
tionally intensive networks are not always the best choice.

In the field of computer vision, multiple studies have
proposed deep learning methods for real-time object detec-
tion [1]–[4]. The features for object detection are extracted
through a fully convolutional network, and the computational
cost is often reduced by a region of interests (RoI) estimator.
Here, let us take Fast YOLO in [2] as an example since it is,
to the best of our knowledge, the fastest method at the current
stage. Fast YOLO processes 448x448 input images at more
than 150 frames per second on Titan X GPU, which means
the constraints of object detection accuracy and processing

Manuscript received December 4, 2017.
Manuscript revised April 20, 2018.
†The authors are with Graduate School of Information Science

and Technology, Osaka University, Suita-shi, 565-0871 Japan.
a) E-mail: k-mitunr@ist.osaka-u.ac.jp
DOI: 10.1587/transfun.E101.A.1298

performance are satisfied. However, the other constraint of
power consumption is not satisfied at all: inference using Ti-
tanXGPU requires approximately 200Watts [5], and it is not
affordable for embedded systems. Alternatively, when using
Tegra GPUs for embedded use, the processing performance
is not sufficient.

On the other hand, researchers in hardware community
focus on conventional machine learning algorithms such as
support vector machines (SVMs) and shallow neural net-
works (NNs) due to their implementation easiness [6]–[8].
SVMs and shallow NNs mainly consist of multiply accumu-
lation operations and are implementable with a uniformly
distributed array structure. However, it is a well-known fact
that object detection using SVMs and shallow NNs suffer
from poor detection accuracy and the circuit area of multi-
pliers becomes a critical issue when designing an accelerator
that exploits the high degree of parallelism. For address-
ing this issue, it is necessary to find out an object detection
methodwith reasonably high detection accuracy and develop
its efficient hardware for high processing performance.

In this point of view, we focused on conventional
object detection methods using decision tree ensembles
(DTE) [9], [10]. These object detection methods have mul-
tiple advantages in hardware implementation: low computa-
tional cost with soft cascade and multiplier-free operations
in classification. Even with these attractive features, only a
few studies onDTE hardware architectures are reported [11],
because conditional branches of decision stumps composing
a DTE require random memory accesses, which prevents
efficient parallel processing.

As a solution, this paper proposes a hardware architec-
ture for DTEs. The proposed architecture processes object
detection in a SIMD-like homomorphic manner even while
DTEs are adopted as a classifier. Also, this paper proposes a
task scheduling algorithm to control memory accesses from
multiple modules to improve processing performance. The
proposed architecture has two distinctive features as follows.
First, it supports three-dimensional parallel memory access,
1-D for feature channels and 2-D for image space, achieving
multiple times higher processing performance than conven-
tional hardware architectures. Second, it takes advantage of
algorithmic acceleration by using soft cascade, which im-
proves processing performance by over one to two orders
of magnitude. For evaluating the proposed DTE hardware
architecture, we assume the feature extraction method called
aggregated channel features (ACF) [10] and classification us-

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

MITSUNARI et al.: HARDWARE ARCHITECTURE FOR HIGH-SPEED OBJECT DETECTION USING DECISION TREE ENSEMBLE
1299

ing multi-scale classifiers with octave-wise feature maps [9].
The rest of this paper is organized as follows. Sec-

tion 2 explains DTEs and conventional hardware architec-
tures. Section 3 provides a hardware architecture for DTEs,
and Sect. 4 proposes a task scheduling algorithm to han-
dle memory access conflict. Section 5 describes evaluation
results and provides an analysis of the proposed hardware
architecture. Section 6 concludes the paper.

2. Target Application and Available Architectures

This section briefly explains the object detection method
based on the DTE using ACF [10], which is the target of
hardware implementation in this work, and introduces DTE
hardware architectures proposed so far.

2.1 Decision Tree Ensemble using Aggregated Channel
Features

The underlying idea of ensemble learning is to boost the final
learner’s predictive performance by accumulating weighted
votes from weak learners whose predictive performance is
merely better than random guessing. As shown in Fig. 1,
a DTE is one of ensemble learning methods using multiple
decision trees (DTs) as weak learners. Each DT consists of
decision nodes and leaf nodes, where a decision node selects
one of its child nodes based on the comparison result between
its input and threshold, and a selected leaf node returns its
evaluation value. Given an input feature vector x, the final
learner H is defined as

H (x) = sign *
,

T∑
i=1

hi (x)+
-
, (1)

where hi is the prediction function of the i-th DT and returns
the value of a selected leaf node, and T is the number of
DTs in the DTE. Compared with recent deep learning al-
gorithms, a DTE is a shallow machine learning algorithm.
However, it is reasonably deep and shows good classification
performance for practical applications [12], which will also
be demonstrated experimentally in Sect. 4.

In computer vision, non-rigid object detection has been
a challenging issue and studied for several decades. Of many
existing methods, Dollár et al. proposed a remarkably effi-
cient and accurate object detectionmethod based on the DTE
usingACF [10]. Figure 2 shows the processing flow of object
detection using ACF. As shown in Fig. 2, ACF consists of

Fig. 1 Depth-two binary DTE.

ten channels extracted from three types of features: six chan-
nels from HOG, three channels from LUV color space, and
one channel from gradient magnitudes. ACF calculates raw
features of each channel, aggregates each 4x4 block to build
an aggregated channel, and classifies input data extracted
from sliding window sampling. Non-maximum suppression
clusters detection results corresponding an object into one.
In [10], Dollár et al. reported that DTE using ACF achieved
17% log-averagemiss rate (MR) and 31.9 fps processing per-
formance on a single CPU, which outperforms other types of
state-of-the-art methods. However, to implement a hardware
for exploiting ACF, it is necessary to clarify how to utilize
multiple channels of features in parallel computation.

2.2 Hardware Architectures for Decision Tree Ensemble

There exist multiple hardware architectures for DTEs [13],
[14], and Struharik and Novak classified them into three
types in [15]: threshold networks, single-path architectures,
and single-node architectures. Figure 3 shows a threshold
network, a single-path architecture, and a single-node archi-
tecture, which are available implementations for a depth-two
DT. The threshold network, shown in Fig. 3(b), is an archi-
tecture that processes all decision nodes of a DT in parallel,
calculating an output O as follows:

O = l1(d1d2) + l2(d1 d̄2) + l3(d̄1d3) + l4(d̄1 d̄3), (2)

where di is the binary response of the i-th decision node,
0 or 1, and l j is the value of the j-th leaf node. Since
threshold networks enable to calculate output instantly after
input, it is suitable for applications requiring short time de-
lay between input and output. The single-path architecture,
shown in Fig. 3(c), is an architecture that has pipeline stages
of universal nodes, where the number of pipeline stages is
equal to the depth of the DT, and the universal nodes are
processing elements to carry out the function of decision
nodes. Since single-path architectures adopt a pipelined ho-
mogeneous structure, it achieves equivalent throughput to
the corresponding threshold network with a relatively small

Fig. 2 Object detection flow with DTE using ACF.

1300
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.9 SEPTEMBER 2018

Fig. 3 DTE and available hardware architectures.

amount of hardware resources. The single-node architecture,
shown in Fig. 3(d), also uses universal nodes as processing
elements but does not have pipeline stages. The single-node
architecture has more flexibility in its design than the others
mentioned above in that it can handle any processing order
of decision nodes and there exist multiple hardware architec-
tures for storing the responses of decision nodes. However,
its processing performance and required hardware resources
largely depend on the design. Therefore, for the hardware
implementation based on the single-node architecture, the
architecture design plays an important role.

3. Parallel Implementation of Decision Tree Ensembles
Using Multiple Memory Banks

The proposed hardware architecture is a single-node archi-
tecture designed for exploiting multiple memory banks with
a small amount of routing resources. This section explains
its overview and details in order.

3.1 Architecture Overview

ACF hasmultiple types of features and requires sophisticated
memory access patterns. Considering the parallel feature ex-
traction before classification, we need to allocate a dedicated
memory bank for each channel. In this case, the threshold
network and the single-path architecture are not suitable be-
cause they require a massive amount of routing resources
for supporting random memory access to all the banks. On
the other hand, the single-node architecture can resolve the
routing resource problem by assigning a universal node to
each channel and merging the responses of decision nodes
belonging to each DT.

The proposed architecture is designed based on the
idea mentioned above. Figure 4 shows the overview
of the proposed hardware architecture, and Table 1 lists
the notations used in Fig. 4. The proposed architecture

mainly consists of three sub-modules: decisionNodeCube,
leafNodeCube, and ctrl, where they are a 3-D array of
decision nodes, a 3-D array of leaf nodes, and a control
unit, respectively. The decisionNodeCube consists of C
decisionNodeMatrix modules, and the leafNodeCube
consists of M leafNodeMatrixmodules, an accumMatrix
module, and a chSelMemmodule, where M is less or equal to
C due to the non-uniformity of the channel usage described in
Sect. 4. The decisionNodeCube receives feature input Fin
and outputs decision responses Dres. The leafNodeCube
selects corresponding leaf values Lval from a part of the
decision responses Dres and accumulates the leaf values to
calculate the final responses Ares.

This architecture enables a 3-D parallel classifica-
tion, and the hardware handles a massive amount of
data. Thus, in hardware design, the scalability of the
architecture for each sub-module, decisionNodeMatrix,
leafNodeMatrix, and accumMatrix needs to be carefully
considered, which are discussed in Sect. 3.2.

3.2 Details of Sub-Modules

In the proposed architecture, its processing flow completely
depends on the ctrl and the chSelMemmodules. The ctrl
observes the states of all the sub-modules and dynamically
provides control signals, and the chSelMem provides static
task schedules generated by the proposed scheduling algo-
rithm described in Sect. 4. Therefore, the proposed architec-
ture can handle any DTEs by updating task schedules.

Each of C decisionNodeMatrix modules com-
posing the decisionNodeCube corresponds to one of
C input feature channels: HOG channels, LUV chan-
nels, and a gradient magnitude channel described in
Sect. 2. Each decisionNodeMatrix consists of three sub-
modules: a decisionMem, a featureMem, and a 2-D ar-
ray of Wnode × Hnode decisionNode modules. In the
decisionNodeMatrix, the decisionMem is the only mod-
ule controlled by the signal cd from the control unit, and the
data, dx, dy, and dt, loaded from decisionMem controls the
others. The featureMem providesWnode×Hnode feature val-
ues, f , of the block at the (dx, dy) position to decisionNode
modules. To support loading the feature block at an arbi-
trary position, featureMem uses Hnode dual port line buffers,
lineBuffer, and Hnode shift registers, horShiftReg, for
location adjustment. The dual port line buffers enable to load
malaligned data at any vertical position with a single cycle,
and shift registers enable to extract the target data columns
at any horizontal position. Each decisionNode generates a
1-bit comparison result as the decision response between a
feature value of f and a threshold dt as shown in Fig. 5(b),
where dt is the threshold shared in all decisionNode mod-
ules of a decisionNodeMatrix.

Each of M leafNodeMatrix modules composing the
leafNodeCube consists of three sub-modules: a leafMem, a
ringShiftReg, and a 2-D array ofWnode×Hnode leafNode
modules. The leafMem provides all leaf values of each
DT to leafNodeMatrix, the ringShiftReg vertically and

MITSUNARI et al.: HARDWARE ARCHITECTURE FOR HIGH-SPEED OBJECT DETECTION USING DECISION TREE ENSEMBLE
1301

Fig. 4 Hardware architecture overview.

Table 1 Notation and description of each module.
Module Notation Description

Top Module

Fin A set of input features
Dres A set of decision responses
Lval A set of leaf values
Ares A set of accumulated responses
Wnode #horizontal D/L/A nodes of a matrix
Hnode #vertical D/L/A nodes of a matrix
C #decision node matrices
M #leaf node matrices

decisionMem
dx Feature x position
dy Feature y position
dt Decision node threshold

featureMem f All feature values of a block
leafMem l All leaf values of a DT

accumMatrix as Sign bit for soft cascade

chSelMem
sc Channel index
sn Node index
sl Last node flag

ctrl

cs Address control signal
cd decisionNodeCube control signal
cl leafNodeCube control signal
ca accumMatrix control signal

Misc.
dres A decision response
lval A leaf value
ares An accumulated response

horizontally rotates the Wnode × Hnode ×C 1-bit decision re-
sponses to correct positions, and leafNode selects a leaf
value from l based on each series of decision responses.
Figure 5(c) shows the details of the leafNode for depth-two
DTEs. As shown in Fig. 5(c), the leafNode includes a de-
multiplexer for rearranging the order of decision responses,
three flip-flops (FFs) for storing the decision responses of
a depth-two DT, a leafNodeSel for selecting a leaf value
based on the responses. This structure enables the leafNode
to handle the random input order of decision responses and to
improve the processing performance by task scheduling tech-
nique. Also, a simple modification of the leafNode allows
to handle DTEs deeper than depth-two DTEs: for processing
depth-three DTEs, the leafNode requires 7-bit FFs to store
seven decision responses, and the leafNodeSel requires an
extension to select a leaf value of eight leaf values.

The accumMatrix consists of Wnode × Hnode accum
modules. Figure 5(d) describes the details of the accum.
The accum accumulates the leaf values of each DTE by
using an adder and FFs, where the FFs are initialized with

Fig. 5 Block diagrams of processing elements.

the offset, which is used for soft cascade rejection. When the
static threshold of the soft cascade is −s, the offset is set to
s, so that the control unit can decide soft cascade rejection
only with the sign bit of the accumulated value, as.

4. Task Scheduling for Parallel Implementation

The proposed hardware architecture can process decision
nodes of a DT in random order, and its processing perfor-
mance depends on the efficiency of the parallel memory ac-
cess. For further acceleration, we propose a task scheduling
algorithm dedicated to the proposed architecture. This task
scheduling is an optimization problem considering each de-
cision node as a task subject to two constraints derived from
the architecture design. This section explains how to for-
mulate the task scheduling problem, describes the proposed
algorithm, and analyzes its effectiveness.

4.1 Decision Tree Ensemble Scheduling Problem

Memory accesses resulted from conditional branches may
cause memory conflict while processing multiple DTs at
once. The purpose of task scheduling is to avoid this mem-
ory conflict by processing all decision nodes of a DT in a
fixed order as shown in Fig. 6 and controlling parallel mem-
ory accesses from multiple DTs. Given a DTE classifier,

1302
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.9 SEPTEMBER 2018

Fig. 6 Input dependency removal of DT by visiting all nodes.

Fig. 7 Target scheduling problem.

this scheduling algorithm fixes a task schedule in an offline
manner, and classification requires no additional computa-
tion for scheduling. The task scheduling is an optimization
problem finding the minimum completion time t∗comp and its
assignment matrix A∗ for M modules defined as

t∗comp B min tcomp(A), A∗ B argmin
A

tcomp(A), (3)

where tcomp(A) = max{t | ∃m ∈ {1, . . . ,M }, amt , 0}, in
which tcomp(A) is the completion time using an assignment
matrix A, and amt is the (m, t)-th entry of A representing
the decision node processed on the m-th module at the t-th
cycle. If there is no task assignment, amt will be zero. The
two constraints of this scheduling problem are defined as
follows. When a decision node di j is assigned to ami j ti j , the
first constraint is

∀i ∈ {1, . . . ,T },∀ j1, j2 ∈ {1, . . . , S},mi j1 = mi j2, (4)

where S is the number of decision nodes in a DT, and for
any i, each ti j needs to be a consecutive number. The second
constraint is

∀t ∈ {1, . . . ,Tmax},∀m1,m2 ∈ {1, . . . ,M },m1 , m2,

c(am1t) , 0, c(am2t) , 0, c(am1t) , c(am2t), (5)

where c(di j) represents the channel used in di j , and Tmax is
the possible maximum completion time. These constraints
represent that an identical leafNode processes all deci-
sion nodes belonging to a DT without preemption, and each
leafNodeMatrix exclusively uses decision responses from
a decisionNodeMatrix at each time, respectively. Then,
the scheduling problem can be defined as an offline problem
as shown in Fig. 7. This scheduling problem can be consid-
ered as an extension of the NP-hard job shop scheduling
problem.

4.2 Proposed Heuristic Scheduling Algorithm

As mentioned above, the target scheduling problem is NP-
hard, and it is difficult to find the optimal solution t∗comp.

Algorithm 1 Task scheduling of a DTE
Input:

H B {hi | hi = {di1, . . . , diS }, 1 ≤ i ≤ T },
M B parallel degree

Output:
A = Assignment matrix
t∗comp = completion time of A

1: c ← SortAndMergeChannels(H)
2: Tmax ← ST
3: A← O ∈ NM×Tmax

+

4: for n = 1 to M do
5: Hn ← {hn | ∃ j, c(di j) = n}
6: for all h ∈ Hn do
7: (m∗, t∗tgt, t

∗) ← (0, Tmax, Tmax)
8: P(h): a set of tuples consisting of permutation of h
9: for all P ∈ P(h) do
10: (m, t) ← SearchWithConstraint(A, P)
11: ttgt ← t +max{i | c(pi) = n}
12: if ((ttgt < t∗tgt) ∨ ((ttgt = t∗tgt) ∧ (t < t∗))) then
13: (m∗, t∗tgt, t

∗) ← (m, ttgt, t), P∗ ← P
14: end if
15: end for
16: for s = 1 to |P∗ | do
17: am∗, t∗+s ← p∗s
18: end for
19: end for
20: H ← H \ Hn

21: end for
22: t∗comp ← max{t | ∃m ∈ {1, . . . , M }, amt , 0}

23: procedure SortAndMergeChannels(H)
24: Chist ← calculate channel histogram from H
25: k ← |Chist |
26: while k > M do
27: (c1, . . . , ck−1, ck) ← sortChist in descending order
28: Chist ← (c1, . . . , ck−2, ck−1 + ck): merge channels
29: Update c(di j)
30: k ← k − 1
31: end while
32: (c1, . . . , ck−1, ck) ← sortChist in descending order
33: Update c(di j)
34: return c
35: end procedure

36: procedure SearchWithConstraint(A, P)
37: (m∗, t∗) ← (0, Tmax − |P |)
38: for (m, t) ∈ {1, . . . , M } × {1, . . . , t∗ } do
39: if (∀(m′, t′) ∈ {1, . . . , M } × {1, . . . , |P | },

am, t+t′ = 0 ∧ c(am′, t+t′) , c(pt′)) then
40: if ((t < t∗)) then
41: (m∗, t∗) ← (m, t)
42: end if
43: end if
44: end for
45: return (m∗, t∗)
46: end procedure

Thus, the proposed algorithm aims to find a solution which
is close to the lower bound, where the lower bound is equal
to the maximum number of frequency in channel histogram.
The proposed algorithm adopts a greedy approach and fo-
cuses on the frequency of channels in aDTE. The assignment
is in the order that the frequency of channels represents the
priority, which reduces the number of assignment candidates
and reduces the amount of computation. Also, for improving

MITSUNARI et al.: HARDWARE ARCHITECTURE FOR HIGH-SPEED OBJECT DETECTION USING DECISION TREE ENSEMBLE
1303

Fig. 8 Detection error trade-off curves on INRIA Person Dataset.

the completion time, it is a promising approach to make a flat
histogram by reducing the number of channels considering
the variations of the frequency in the channel histogram.

Algorithm 1 shows the proposed algorithm. As a
preprocessing, the proposed method merges the input C
channels to M channels, where the two channels of low-
est frequencies are merged in each iteration as described in
lines 23–35. The assignment process consists of M itera-
tions of the merged channels, and in its n-th iteration, DTs
containing the channel n, represented as Hn, are assigned.
For each DT h in Hn, the proposed algorithm searches the
assignment position satisfying the constraint described in
Eqs. (4) and (5) for all the patterns of processing orders as
shown in lines 36–46. From all of the processing orders,
the one with the earliest completion time and the channel n
is selected using the condition shown in line 12, and it is
assigned to an assignment matrix.

4.3 Analysis of Scheduling Algorithm

In the analysis, the target classifiers are depth-two and depth-
three ACF classifiers trained in the same manner as [10],
consisting of 2,048 and 1,673 DTs. The MATLAB evalua-
tion code of Caltech Pedestrian Detection Benchmark [16]
is used to evaluate detection accuracy. The log-average MRs
on INRIA Person Dataset [17] are 16.5% and 16.3%, respec-
tively. Figure 8 shows the detection error trade-off curves
of these two classifiers and the classifier reported in [10],
where our classifiers achieve equivalent detection accuracy
to the original ACF classifier. Figure 9 shows the histograms
of input channels for these classifiers, which indicates that
there exists large variance of frequencies among channels in
both histograms. Taking into account the memory access ex-
clusiveness, the lower bound for this problem is equal to the
maximum number of decision nodes in a channel. Figure 10
shows the relationship between the parallel degree M and the
number of the cycles required for processing the classifiers
based on the task schedules. For both classifiers, the number

Fig. 9 Histograms of input channels.

Fig. 10 Scheduling results for the different number of modules.

Table 2 Detailed scheduling result on M = 8.
Depth Lower bound / tcomp Occupancy cneg

2 936 / 936 82.1% 50.9
3 1,820 / 1,820 80.4% 59.4

of processing cycles decreases as M increases until 8. When
M is equal to 8, both numbers of processing cycles reach the
lower bound drawn in dotted lines. Compared with serial
classification, the proposed scheduling achieves 6.6 and 6.4
times speed up for the depth-two and depth-three classifiers,
respectively. For more details, Table 2 lists the number of
processing cycles and the occupancy of the leafNodeCube.
From the result, the proposed scheduling reduces the num-
ber of cycles to the lower bound. Also, using soft cascade
enables to accelerate the processing performance of negative
windows. In Table 2, cneg represents the average number of
processing cycles for negative windows, and Table 2 shows
that combining the proposed task scheduling and soft cas-
cade can reduce both average cycles of depth-two and depth-
three ACF classifiers to 3.3% and 5.4% of processing cycles
required for a positive window.

4.4 Scheduling under Deeper Decision Tree Ensemble

Recent work [18] reports that deeper DTs show good de-
tection performance. To analyze the relationship between
the task scheduling performance and the depth of DTs, the
proposed task scheduling is applied to a deep DTE classifier.
The evaluation uses a depth-six classifier provided by the
authors†, which is trained for Caltech Pedestrian Detection
Benchmark [16]. The classifier consists of 3,324 DTs, and
the number of decision nodes in the classifier is 137,043.
The number of available permutations calculated in line 8
in Algorithm 1 is exponentially proportional to the depth

†https://eshed1.github.io/code/BoostICPR.zip

https://eshed1.github.io/code/BoostICPR.zip

1304
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.9 SEPTEMBER 2018

Fig. 11 Result of depth-six ACF classifier.

of a DT, and then it is necessary to reduce the number of
candidates for deep DTs. For mitigating this, the processing
order is fixed to the order of channel frequency in this exper-
iment. Figures 11(a) and 11(b) show its channel histogram
and the scheduling results, respectively. The result shows the
similar convergence curve to the shallow DTE and achieves
4.1 times speed-up compared with the serial implementation
when M is equal to 8. However, the processing cycles do
not reach the lower bound even when the parallelism is equal
to the channel since Eq. (5) is difficult to satisfy for all the
decision nodes. Improving the task scheduling for deeper
DTs is included in our future work.

5. Evaluation

This section explains how to generate a fixed-point classi-
fier and implementation settings, used in the evaluation, and
evaluates the FPGA implementation based on the proposed
hardware architecture regarding resource usage and process-
ing performance.

5.1 Evaluation Settings

For hardware implementation, we converted the depth-two
DTE described in Sect. 4 into a classifier in fixed-point rep-
resentation by using the method proposed in [19]. Figure 12
shows detection results of the converted fixed-point classi-
fier. The proposed hardware architecture is implemented
using Verilog hardware description language (HDL) at reg-
ister transfer level (RTL). Table 3 shows the implementation
settings. The target device is Xilinx xc7z045ffg900, the
target operating frequency is 100MHz, and the degree of
parallelism is 1,024: parallel degree 8 from feature channels
and 128 from image blocks, respectively. In feature extrac-
tion, we use three types of feature descriptors, i.e., HOG,
gradient magnitude, and RGB color channels. We adopted
RGB channels instead of LUV channels because the differ-
ence of color channels does not cause notable accuracy loss
and converting to LUV channels is computationally inten-
sive [20]. Also, for hardware implementation efficiency, we
assumed the classification procedure proposed by Benen-
son et al. [9], which uses multiple classifiers corresponding
to different window sizes and feature maps extracted from
scaled images, instead of the genuine ACF classification pro-
cedure using a classifier and the fast feature pyramid (FFP)
proposed in [10]. Although FFP shows efficient memory

Fig. 12 Detection results from INRIA Person Dataset.

Table 3 FPGA implementation settings.
Target device Xilinx xc7z045ffg900
Synthesis tool Vivado 2015.4.2
Simulation tool ModelSim SE-64 10.3
Target frequency 100MHz

Parallelism 1,024 (channel: 8, block size: 8x16)

usage and higher processing performance for software im-
plementation, it is not suitable for hardware implementation
because FFP needs to generate each layer of feature pyramid
sequentially.

5.2 Resource Usage

For the evaluation of resource utilization, we synthesized the
RTL implementation with Vivado 2015.4.2. Table 4 shows
the resource utilization of the proposed implementation. As
in Table 4, it occupies less than 35% of both slice and block
RAM resources of the target FPGA for processing 1,024 de-
cision nodes in parallel. Also, from the details of LUT usage,
the balanced use of both LUTs and FFs can be confirmed.

5.3 Processing Performance

For the evaluation of processing performance, we simulated
the RTL implementation with actual input images onModel-
Sim SE-64 10.3. In the simulation, the classification process
takes 45,809 cycles or 0.46 milliseconds for a full HD image
without scaling. Since processing time is linearly propor-
tional to the image resolution, when the processing time
tsingle represents the required cycle or time for a single-scale
full HD image, the entire processing time tall for full search
detection with sliding-window sampling is defined as fol-
lows:

tall =

Nscale∑
i=1

tsingle

S2i
scale
, (6)

where Nscale is the number of scale images. Given tsingle is
0.46 and the parameters shown in Table 5, the processing
time tall becomes 2.86 milliseconds. Thus, the proposed
hardware enables to process full HD images at 350 fps.

Table 5 provides a processing performance compari-
son between the proposed method and three conventional
methods: an ACF software implementation [10], an ACF
hardware implementation [11], and a deformable part model
(DPM) hardware implementation [8]. The DPM hardware

MITSUNARI et al.: HARDWARE ARCHITECTURE FOR HIGH-SPEED OBJECT DETECTION USING DECISION TREE ENSEMBLE
1305

Table 4 FPGA resource utilization.
Module Slice LUT (Logic) LUT (Memory) LUT (FF) 32Kb BRAM DSP
decisionNodeCube 7,796 (14.3%) 23,891 (10.9%) 0 (0.0%) 24,420 (11.2%) 170 (31.2%) 0 (0.0%)
→ 10 featureMem 5,649 (10.3%) 15,609 (7.1%) 0 (0.0%) 15,602 (7.1%) 160 (29.4%) 0 (0.0%)
→ 10 decisionMem 163 (0.3%) 252 (0.1%) 0 (0.0%) 262 (0.1%) 10 (1.8%) 0 (0.0%)
leafNodeCube 10,822 (19.8%) 35,143 (16.1%) 1 (0.0%) 36,839 (16.9%) 16 (2.9%) 0 (0.0%)
→ 8 leafMem 476 (0.9%) 1,114 (0.5%) 0 (0.0%) 1,125 (0.5%) 8 (1.5%) 0 (0.0%)
→ chSelMem 1,090 (2.0%) 2,086 (1.0%) 0 (0.0%) 2,086 (1.0%) 8 (1.5%) 0 (0.0%)
→ accumMatrix 1,952 (3.6%) 5,541 (2.5%) 0 (0.0%) 5,557 (2.5%) 0 (0.0%) 0 (0.0%)
ctrl 286 (0.7%) 503 (0.2%) 0 (0.0%) 420 (0.2%) 0 (0.0%) 1 (0.1%)
→ decisionNodeCtrl 194 (0.4%) 396 (0.2%) 0 (0.0%) 315 (0.1%) 0 (0.0%) 1 (0.1%)
→ leafNodeCtrl 92 (0.2%) 107 (0.0%) 0 (0.0%) 105 (0.0%) 0 (0.0%) 0 (0.0%)
Total 18,904 (34.6%) 59,537 (27.2%) 1 (0.0%) 61,679 (28.2%) 186 (34.1%) 1 (0.1%)

Table 5 Processing performance comparison with conventional implementations.

Method Platform Image size Window size Scale step Pixel step fps #window/sec.
Wimg × Himg Wwin × Hwin Sscale Spixel Nfps Nwps

ACF [10] CPU 640× 480 48× 96 21/8 4 31.9 2,181k (1/105.0)
ACF [11] FPGA 640× 480 32× 64 21/6 4 30 1,972k (1/116.1)
DPM [8] ASIC 1,920× 1,080 64× 128 21/3 8 60 3,975k (1/57.6)
Ours FPGA 1,920× 1,080 48× 96 21/8 4 350 229,079k (1.0)

implementation is the fastest hardware implementation so
far, using a deformable part model [8]. Evaluation based
on frame rate does not provide precise result because it
does not use detailed implementation settings, and window-
based evaluation is suitable for a fair comparison [21]. Here,
window-based evaluation is adopted, and the processing per-
formance is evaluated by recalculating to processed windows
per second, Nwps, using the following equation:

Nwps =
Nfps

S2
pixel

Nscale∑
i=1

*
,

Wimg

Si
scale
−Wwin+

-
*
,

Himg

Si
scale
− Hwin+

-
. (7)

As shown in Table 5, the proposed implementation is 105.0
and 116.1 times faster than the software and the hardware
implementations of ACF, respectively. Also, it is 57.6 times
faster compared with the DPM hardware implementation,
which was the fastest implementation.

5.4 Discussion

The processing performance of practical applications de-
pends on both feature extraction and classification. So far, we
have shown the proposed hardware architecture can process
350 fps for full HD images. Now, we discuss the process-
ing performance of the feature extraction part. We assumed
three feature descriptors as mentioned the above. To verify
the feasibility of our assumption, we implemented feature
extraction modules in Verilog HDL and evaluated them in
terms of throughput and resource utilization. Table 6 sum-
marizes the implementation result with 32 degrees of par-
allelism, where the parallelism comes from eight channels
and four scaled images from a full HD image. As in Ta-
ble 6, the entire utilization of feature extraction modules is
less than 10% of slices. With 32 degrees of parallelism,
the feature extraction modules can achieve 60 fps processing
performance for full HD images. However, it does not seem

Table 6 Resource usage of feature extraction with 32 degrees of paral-
lelism.

Feature Slice LUTs Slice registers Throughput
HOG [22] 12,288 (5.6%) 1,440 (0.3%) 32 features/cycle

RGB 6,144 (2.8%) 6,144 (1.4%) 32 features/cycle
Magnitude 2,272 (1.0%) 1,764 (0.4%) 32 features/cycle

to be enough for providing featuremaps to the proposedDTE
classifier. Besides, to realize N-class object detection, the
proposed DTE classifier needs to process N× faster than the
feature extraction modules. In this case, the proposed DTE
classifier with the assumed feature extraction modules can
classify five classes of objects simultaneously.

6. Conclusion

For practical applications using visual object detection, the
improvement of the trade-offs between hardware resources,
processing performance, and detection accuracy has been a
critical issue, and the proposed architecture successfully re-
solved this issue by improving classification speed without
detection accuracy degradation. The proposed architecture
adopted a hardware and software cooperative design and is
distinctive from other existing architectures. The hardware
implementation based on the single-node architecture ex-
ploits its resources by using the proposed task scheduling
method. Since the task schedules are static within a DTE,
once one fixed the task schedules of a DTE, there is no pro-
cessing overhead in detection phase. Also, the task schedule
focusing on the lower bound of required cycles clarified that
the efficient parallel degree is less than the number of feature
channels used in ACF, and made it possible to reduce the
hardware resource for leaf nodes without lowering process-
ing performance. In the evaluation, the proposed architec-
ture achieved more than 100 times faster than conventional
ACF implementations without any detection accuracy degra-
dation and more than 50 times faster than the fastest DPM

1306
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.9 SEPTEMBER 2018

implementation. The proposedmethod outperforms the con-
ventional methods in terms of the scalability and processing
performance.

Acknowledgments

This work was supported by JSPSKAKENHIGrant Number
JP16K16085.

References

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detectionwith region proposal networks,” Proc. Adv.
Neural Inform. Process. Syst., pp.91–99, Dec. 2015.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” Proc. IEEE Comput. Soc.
Conf. Comput. Vis. and Pattern Recognit., pp.779–788, June 2016.

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A.C. Berg, “SSD: Single shot multibox detector,” Proc. Eur. Conf.
Comput. Vis., pp.21–37, Oct. 2016.

[4] T.Y. Lin, P. Dollar, R. Girshick, K.He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. and Pattern Recognit., pp.936–944,
July 2017.

[5] NVIDIA, “GPU-based deep learning inference: A performance and
power analysis,” http://www.nvidia.com/content/tegra/embedded-
systems/pdf/jetson_tx1_whitepaper.pdf, Nov. 2015.

[6] A. Suleiman and V. Sze, “An energy-efficient hardware implemen-
tation of HOG-based object detection at 1080HD 60 fps with multi-
scale support,” J. Signal Process. Syst., vol.84, no.3, pp.325–337,
Sept. 2016.

[7] G.M. Lozito, A. Laudani, F.R. Fulginei, and A. Salvini, “FPGA
implementations of feed forward neural network by using floating
point hardware accelerators,” Advances Elect. and Electron. Eng.,
vol.12, no.1, pp.30–39, 2014.

[8] A. Suleiman, Z. Zhang, andV. Sze, “A58.6mW30 frames/s real-time
programmable multiobject detection accelerator with deformable
parts models on full HD 1920 × 1080 videos,” IEEE J. Solid-State
Circuits, vol.52, no.3, pp.844–855, March 2017.

[9] R. Benenson, M. Mathias, R. Timofte, and L. Van Gool, “Pedestrian
detection at 100 frames per second,” Proc. IEEE Comput. Soc. Conf.
Comput. Vis. and Pattern Recognit., pp.2903–2910, June 2012.

[10] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyra-
mids for object detection,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.36, no.8, pp.1532–1545, Aug. 2014.

[11] H. Song, B. Jeong, H. Choi, T. Cho, and H. Chung, “Hardware
implementation of aggregated channel features for ADAS,” Proc.
Int. SoC Des. Conf., pp.167–168, Oct. 2016.

[12] Y. Bengio, O. Delalleau, and C. Simard, “Decision trees do not
generalize to new variations,” Comput. Intell., vol.26, no.4, pp.449–
467, Nov. 2010.

[13] A. Bermak and D. Martinez, “A compact 3D VLSI classifier using
bagging threshold network ensembles,” IEEE Trans. Neural Netw.,
vol.14, no.5, pp.1097–1109, Sept. 2003.

[14] M. Owaida, H. Zhang, C. Zhang, and G. Alonso, “Scalable infer-
ence of decision tree ensembles: Flexible design for CPU-FPGA
platforms,” Proc. Int. Conf. Field-Programmable Logic and Appl.,
pp.1–8, Sept. 2017.

[15] R.J.R. Struharik and L.A. Novak, “Hardware implementation of de-
cision tree ensembles,” J. Circuits, Syst., Comput., vol.22, no.05,
p.1350032, 2013.

[16] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” IEEE Trans. Pattern Anal.
Mach. Intell., vol.34, no.4, pp.743–761, April 2012.

[17] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. and Pattern
Recognit., pp.886–893, June 2005.

[18] E. Ohn-Bar and M.M. Trivedi, “To boost or not to boost? on the
limits of boosted trees for object detection,” Proc. Int. Conf. Pattern
Recognit., pp.3350–3355, Dec. 2016.

[19] K.Mitsunari and J. Yu, “Influence of numerical precision onmachine
learning and embedded systems,” Proc. Int. Workshop Smart Info-
Media Syst. Asia, pp.164–169, Sept. 2016.

[20] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral channel fea-
tures,” Proc. Brit. Mach. Vis. Conf., pp.91.1–91.11, Sept. 2009.

[21] X. Ma, W.A. Najjar, and A.K. Roy-Chowdhury, “Evaluation and
acceleration of high-throughput fixed-point object detection on FP-
GAs,” IEEE Trans. Circuits Syst. Video Technol., vol.25, no.6,
pp.1051–1062, June 2015.

[22] P.-Y. Chen, C.-C. Huang, C.-Y. Lien, and Y.-H. Tsai, “An efficient
hardware implementation of Hog feature extraction for human de-
tection,” IEEE Trans. Intell. Transp. Syst., vol.15, no.2, pp.656–662,
April 2014.

Koichi Mitsunari received his Master’s de-
gree in information science from Osaka Univer-
sity, Osaka, Japan, in 2016. He is currently a
Ph.D. student at Graduate School of Information
Science and Technology, Osaka University. His
research interests include computer vision, ma-
chine learning, and pattern recognition. He is a
student member of IEEE and IPSJ.

Jaehoon Yu received hisB.E. degree inElec-
trical and Electronic Engineering and his M.S.
degree in Communications and Computer Engi-
neering from Kyoto University, Kyoto, Japan,
in 2005 and 2007, respectively, and received
his Ph.D. degree in Information Systems Engi-
neering from Osaka University, Osaka, Japan,
in 2013. He is currently an assistant professor
in the Department of Information Systems Engi-
neering, OsakaUniversity. His research interests
include computer vision, machine learning, and

system level design. He is a member of IEEE and IPSJ.

Takao Onoye received B.E. and M.E. de-
grees in Electronic Engineering, and Dr.Eng.
degree in Information Systems Engineering all
from Osaka University, Japan, in 1991, 1993,
and 1997, respectively. He is currently a profes-
sor in the Department of Information Systems
Engineering, Osaka University. His research in-
terests include media-centric low-power archi-
tecture and its SoC implementation. He is a
member of IEEE, IPSJ, and ITE-J.

http://dx.doi.org/10.1109/cvpr.2016.91
http://dx.doi.org/10.1109/cvpr.2016.91
http://dx.doi.org/10.1109/cvpr.2016.91
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/cvpr.2017.106
http://dx.doi.org/10.1109/cvpr.2017.106
http://dx.doi.org/10.1109/cvpr.2017.106
http://dx.doi.org/10.1109/cvpr.2017.106
http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
http://dx.doi.org/10.1007/s11265-015-1080-7
http://dx.doi.org/10.1007/s11265-015-1080-7
http://dx.doi.org/10.1007/s11265-015-1080-7
http://dx.doi.org/10.1007/s11265-015-1080-7
http://dx.doi.org/10.15598/aeee.v12i1.831
http://dx.doi.org/10.15598/aeee.v12i1.831
http://dx.doi.org/10.15598/aeee.v12i1.831
http://dx.doi.org/10.15598/aeee.v12i1.831
http://dx.doi.org/10.1109/jssc.2017.2648820
http://dx.doi.org/10.1109/jssc.2017.2648820
http://dx.doi.org/10.1109/jssc.2017.2648820
http://dx.doi.org/10.1109/jssc.2017.2648820
http://dx.doi.org/10.1109/cvpr.2012.6248017
http://dx.doi.org/10.1109/cvpr.2012.6248017
http://dx.doi.org/10.1109/cvpr.2012.6248017
http://dx.doi.org/10.1109/tpami.2014.2300479
http://dx.doi.org/10.1109/tpami.2014.2300479
http://dx.doi.org/10.1109/tpami.2014.2300479
http://dx.doi.org/10.1109/isocc.2016.7799844
http://dx.doi.org/10.1109/isocc.2016.7799844
http://dx.doi.org/10.1109/isocc.2016.7799844
http://dx.doi.org/10.1111/j.1467-8640.2010.00366.x
http://dx.doi.org/10.1111/j.1467-8640.2010.00366.x
http://dx.doi.org/10.1111/j.1467-8640.2010.00366.x
http://dx.doi.org/10.1109/tnn.2003.816362
http://dx.doi.org/10.1109/tnn.2003.816362
http://dx.doi.org/10.1109/tnn.2003.816362
http://dx.doi.org/10.23919/fpl.2017.8056784
http://dx.doi.org/10.23919/fpl.2017.8056784
http://dx.doi.org/10.23919/fpl.2017.8056784
http://dx.doi.org/10.23919/fpl.2017.8056784
http://dx.doi.org/10.1142/s0218126613500321
http://dx.doi.org/10.1142/s0218126613500321
http://dx.doi.org/10.1142/s0218126613500321
http://dx.doi.org/10.1109/tpami.2011.155
http://dx.doi.org/10.1109/tpami.2011.155
http://dx.doi.org/10.1109/tpami.2011.155
http://dx.doi.org/10.1109/cvpr.2005.177
http://dx.doi.org/10.1109/cvpr.2005.177
http://dx.doi.org/10.1109/cvpr.2005.177
http://dx.doi.org/10.1109/icpr.2016.7900151
http://dx.doi.org/10.1109/icpr.2016.7900151
http://dx.doi.org/10.1109/icpr.2016.7900151
http://dx.doi.org/10.1109/tcsvt.2014.2360030
http://dx.doi.org/10.1109/tcsvt.2014.2360030
http://dx.doi.org/10.1109/tcsvt.2014.2360030
http://dx.doi.org/10.1109/tcsvt.2014.2360030
http://dx.doi.org/10.1109/tits.2013.2284666
http://dx.doi.org/10.1109/tits.2013.2284666
http://dx.doi.org/10.1109/tits.2013.2284666
http://dx.doi.org/10.1109/tits.2013.2284666

MITSUNARI et al.: HARDWARE ARCHITECTURE FOR HIGH-SPEED OBJECT DETECTION USING DECISION TREE ENSEMBLE
1307

Masanori Hashimoto received the B.E.,
M.E. and Ph.D. degrees in Communications and
Computer Engineering from Kyoto University,
Kyoto, Japan, in 1997, 1999, and 2001, respec-
tively. Since 2016, he has been a Professor in
Department of Information Systems Engineer-
ing, Graduate School of Information Science and
Technology, Osaka University. His research in-
terest includes computer-aided design for digital
integrated circuits, and high speed circuit design.
Dr. Hashimoto served on the technical program

committees for international conferences including DAC, ICCAD, ITC,
Symposium on VLSI Circuits, ASP-DAC, DATE, ISPD and ICCD. He is a
member of IEEE, ACM, and IPSJ.

