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Abstract—FPGA that introduces via-switches, a kind of non-
volatile resistive RAMs, for crossbar implementation is drawing
attention due to higher integration density and performance.
However, programming those switches arbitrarily in a crossbar
is not trivial since a programming voltage must be given
through signal wires that are shared by multiple via-switches.
Consequently, depending on the previous programming status,
unintentional switch programming may occur due to signal
detour, which is called sneak path problem. This paper encodes
programming operations in via-switch based crossbar into a
satisfiability problem and rigidly verifies the sneak path problem.
Verification results show that sneak path problems can be solved
by imposing a specific programming constraint.

I. INTRODUCTION

Field programmable gate arrays (FPGAs) become more

popular since the development cost of application specific in-

tegrated circuits (ASICs) is elevating due to the device minia-

turization and larger scale integration. However, conventional

FPGAs are still inferior to ASICs regarding operating speed,

power consumption, and implementation area [1]. These draw-

backs arise from a huge number of programmable switches

that are included in FPGAs to acquire reconfigurability. In

static random access memory (SRAM)-based FPGAs, which

are the most widely used FPGAs, a programmable switch

is composed of a transmission gate for switching and an

SRAM cell to hold the on/off-state of the switch. Since these

components consist of transistors, the transmission gate has

high resistance and large capacitance and the SRAM cell

that requires six transistors consumes large area. Therefore,

SRAM-based programmable switches lead to the degradation

of interconnect performance and area efficiency [2].

To overcome drawbacks of conventional FPGAs, FPGAs

that exploit resistive random access memories (RRAMs) as

programmable switches instead of SRAM-based ones are

widely studied [3]–[9]. In these RRAM-based FPGAs, how-

ever, one or two access transistors per a programmable switch

are required for switch programming. The access transistor is

relatively large despite the small footprint of an RRAM-based

switch, and hence it interferes with further area reduction.

For eliminating access transistors, nonvolatile via-switches are

actively developed [10], [11]. The via-switch consists of atom

switches, which are a kind of nonvolatile RRAMs developed

for application to FPGAs, and varistors in place of access

transistors.

In the via-switch FPGA, the crossbar, which has a via-

switch at each intersection of horizontal signal wire and

vertical signal wire, is responsible for the routing of intercon-

nects. However, programming those via-switches arbitrarily in

a crossbar is not trivial since a programming voltage must

be given through signal wires that are shared by multiple

via-switches. In this case, unintentional switch programming

may occur depending on the previous programming status due

to signal detour, which is called sneak path problem. This

problem interferes the reconfiguration of FPGA, and hence

the verification of occurrence conditions and countermeasures

is crucially important.

This paper encodes programming operations and occurrence

conditions of sneak path problem in a via-switch crossbar into

a Boolean satisfiability problem (SAT), and rigidly verifies

the sneak path problem by using an SAT solver. Verification

results show that the programming status of crossbar where the

sneak path problem occurs can be detected by the proposed

SAT encoding-based verification. Furthermore, we confirm

that sneak path problems can be solved by imposing a specific

programming constraint.

The remainder of this paper is organized as follows. Sec-

tion II explains the structure of via-switch FPGA and sneak

path problem. Section III presents the SAT encoding-based

verification methodology for sneak path problem in via-switch

FPGA followed by the verification results in Section IV.

Concluding remarks are given in Section V.

II. VIA-SWITCH FPGA

A. Via-switch

The via-switch is a nonvolatile, rewritable, and compact

switch that is developed to implement a crossbar switch by

Banno et al. [10], and it is composed of atom switches and

varistors. Here, we explain the device structure, functionality,

and characteristics in the following. The programming of via-

switch crossbar will be explained later in Section II-B.

The atom switch consists of a solid electrolyte sandwiched

between copper (Cu) and ruthenium (Ru) electrodes as shown

in Figure 1-a. By applying a positive voltage to the Cu

electrode, a Cu bridge is formed in the solid electrolyte, and
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Fig. 1. Structure and operation of (a) atom
switch and (b) CAS.
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Fig. 2. Structures of via-
switch. The top is 1V-1CAS
structure, and the bottom is 2V-
1CAS structure.

the switch turns on. On the other hand, when a negative

voltage is applied, Cu atoms in the bridge are reverted to the

Cu electrode, and then the switch turns off. The switching

between on-state and off-state is repeatable, and each state is

nonvolatile. For improving the device reliability, the comple-

mentary atom switch (CAS) is devised, where it consists of

two atom switches connected in series with opposite direction

as shown in Figure 1-b. In the programming of CAS, a pair

of signal line and control line supply a programming voltage

to each atom switch, and two atom switches are programmed

sequentially. During normal operation, on the other hand, only

signal lines are used for routing [9].

To accurately provide the programming voltage only to the

target CAS in a switch array, the varistor is introduced into the

via-switch. Figure 2 shows the structure of via-switch, and the

varistor is connected to the control terminal of CAS. When a

voltage higher than the threshold value (programming voltage)

is applied between the signal and control lines, the varistor

supplies programming current to an atom switch. On the other

hand, the varistor isolates the control lines from the signal

lines during normal operation [10]. As shown in Figure 2, two

structures of via-switch, one-varistor-one-CAS (1V-1CAS) and

two-varistor-one-CAS (2V-1CAS) structure, are proposed.

Here, we summarize contribution of via-switch to FPGAs.

The footprint, on-resistance, and capacitance are 18 F2, 200 Ω,

and 0.14 fF respectively [10], [12]. Thanks to these charac-

teristics, the area efficiency and performance of via-switch

FPGA are dramatically improved compared to SRAM-based

one. Hotate et al. report that the crossbar density is improved

by 26x, and the delay and energy in the interconnection are

reduced by 90% or more [12].

B. Sneak Path Problem in Via-switch FPGA

The structure of via-switch FPGA is an array of configurable

logic blocks (CLBs), and each CLB is composed of logic

block and crossbar where a via-switch is placed at each

intersection of signal lines as shown in Figure 3 [12]. The

via-switch in the crossbar is responsible for connection and

disconnection between the horizontal and vertical signal lines.
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Fig. 3. Structure of via-switch FPGA.

Besides, the top half of the crossbar serves a function of input

and output multiplexers to the logic block and corresponds

to the connection block in conventional FPGAs. On the other

hand, the bottom half of the crossbar, which corresponds to the

switch block, routes global interconnections. The logic block

organizes combinational and sequential circuits.

The following explains the programming of a via-switch

crossbar and sneak path problem. The crossbar structure with

the 1V-1CAS via-switch is illustrated in Figure 4. Signal lines

are placed horizontally and vertically, whereas control lines

are aligned diagonally. Figure 4 also shows an example of

programming steps in 2x2 crossbar where an atom switch is

turned on at each step. Two programming drivers are activated

at each step, and a positive voltage is given to one of the signal

lines, and a ground voltage is given to one of the control lines.

Other lines are floated. Steps 1 and 2 successfully turn on the

via-switch at the bottom left. However, the next programming

of the top left via-switch at steps 3 and 4 cannot be performed

correctly. The atom switch that composes the bottom right via-

switch is under programming unintentionally at step 4 since

the positive voltage is provided through the on-state via-switch

at the bottom left. Such an unintentional switch programming

due to signal detour that is caused by on-state via-switches is

the sneak path problem.

Next, Figure 5 shows the crossbar structure using 2V-1CAS

via-switches and an example of programming steps, where this

example is the same as Figure 4. In this crossbar structure, both

signal and control lines are aligned horizontally and vertically.

A pair of the signal and control lines crossing at the via-

switch of interest are used for switch programming at each

step, whereas other lines are floated. We can see that two via-

switches at the bottom left and top left are successfully turned

on without sneak path problem at steps 1-4. If turning ON the

bottom right or top right via-switch after step 4, on the other

hand, sneak path problem occurs.

The sneak path problem interferes the reconfiguration of

FPGA, and hence it is essential to verify the occurrence con-

ditions and countermeasures of this problem. The following

sections verify the sneak path problem by using SAT encoding.
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Fig. 4. Crossbar structure with 1V-1CAS via-switch and switch programming
steps.

III. SAT ENCODING OF SNEAK PATH PROBLEM

A. Basics of SAT

A Boolean satisfiability problem (SAT) is a problem of

searching an interpretation that satisfies a given logical ex-

pression. When a variable assignment that makes the given

expression True exists, this expression is called satisfiable

(SAT). On the other hand, if the given expression is False

for all the possible variable assignments, this expression is

unsatisfiable (UNSAT). In recent years, SAT is widely used in

various fields thanks to dramatic performance improvement of

SAT solvers. The typical flow of problem-solving using SAT

is as follows. First, the original problem is translated into a

logical expression, and this step is called SAT encoding. Next,

we search the solution of the encoded problem by using an

SAT solver. Finally, the solution from the solver is decoded,

and then we can obtain the solution of the original problem

[13].

B. Verification Methodology of Sneak Path Problem

The sneak path problem in via-switch FPGA changes the

on/off-state of multiple via-switches due to the detour of the

programming signal. This paper encodes this problem into

SAT and mathematically verifies the sneak path problem.

The verification flow is as follows. First, we translate the

programming operations of via-switch crossbar and occurrence

�������	 ������
	

�������	 �������	

�������

���� ������

����������� ������

������ ����

������� ����

���

 ���

!�"����� �����������

����# ��������$���

����������� ������

Fig. 5. Crossbar structure with 2V-1CAS via-switch and switch programming
steps.

conditions of sneak path problem into Boolean logical ex-

pressions. We define logical variables that express the on/off-

state of via-switches, the electrical potential of wires, and

so on. Then, we encode each circuit operation such as an

operation to turn on/off the atom switch with the defined

variables. The occurrence conditions of sneak path problem

can be encoded into a proposition “multiple conditions for

turning on/off an atom switch are satisfied at the same time”.

The details of SAT encoding are presented in Section III-C.

After the SAT encoding, the logical expressions are input to the

SAT solver. Finally, by analyzing the output of solver, namely,

SAT or UNSAT and Boolean values assigned to each variable,

we can evaluate whether the sneak path problem exists and

the programming status of the crossbar when the sneak path

problem occurs.

C. SAT Encoding of Sneak Path Problem

Here, let us explain how to SAT-encode the programming

operations and sneak path problem in via-switch FPGA. Al-

though the following supposes the 2x2 crossbar with 2V-1CAS

via-switches, the SAT encoding for crossbars of any size and

crossbars with 1V-1CAS via-switches can be derived in the

same manner.

First, we define logical variables that represent the status

of each element of the crossbar as shown in Figure 6. Atom

switch and varistor have two states, on- and off-states, and
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Fig. 6. Definition of Boolean variables in crossbar with 2V-1CAS via-
switches.

then their status can be expressed by one variable, where True

and False are allocated to on-state and off-state respectively.

On the other hand, the electrical potential of each wire and the

output voltage of each programming driver have three states,

namely, low, high, and floating. To express these three states,

we introduce a pair of two variables (a, b), where (False,

False), (False, True), and (True, False) correspond to low, high,

and floating respectively.

Next, we encode circuit operations of crossbar into logical

expressions using the variables defined above. The conditions

for turning on/off an atom switch, for example, are represented

as Equations 1 and 2. To make Equation 1 True, both sides

of the equality operator (⇔) need to be False or True. The

right side becomes True only when (SXa1, SXb1) is (False,

True) and (Ma1,1, Mb1,1) is (False, False), in other words, a

high voltage is provided to signal line SX1 and a low voltage

is provided to intermediate line M1,1. Also, the left side

ONASX1,1 becomes True only when the right side is True.

Therefore, ONASX1,1 is a variable that becomes True when a

programming voltage for turning on is applied to atom switch

ASX1,1. Otherwise, it becomes False. Similarly, OFFASX1,1

in Equation 2 represents whether a programming voltage to

turn off ASX1,1 is applied.

ONASX1,1 ⇔ (¬SXa1 ∧ SXb1) ∧ (¬Ma1,1 ∧ ¬Mb1,1).
(1)

OFFASX1,1 ⇔ (¬SXa1 ∧ ¬SXb1) ∧ (¬Ma1,1 ∧Mb1,1).
(2)

Due to the sneak path problem, the programming voltage

is given to multiple switches by the signal detour, and their

on/off-states are changed at once. Given the conditions for

turning on/off an atom switch expressed by Equations 1 and 2,

the sneak path problem can be translated into a proposition

“two or more conditions for turning on/off an atom switch are

True”. When logical expressions presenting this proposition is

input to SAT solver and the output is satisfiable, we notice

that the sneak path problem occurs. Then, the status of atom

switches and electrical potentials can be obtained by checking

the assigned Boolean value to each variable. On the other hand,

when the solver output is unsatisfiable, there is no sneak path

problem.

For investigating countermeasures for the sneak path prob-

lem, this paper verifies the crossbar operations under some

programming constraints. Banno et al. claim that the sneak

path problem in the 2V-1CAS crossbar occurs when multiple

on-state via-switches exist in both the same horizontal line

and the same vertical line [10]. In the crossbar with 1V-

1CAS via-switches, on the other hand, the authors say that

the sneak path problem arises when multiple via-switches in

either the same horizontal line or the same vertical line are on-

state. For rigidly verifying their claims, we introduce the fol-

lowing two programming constraints, namely, row constraint

and row & column constraint. The row constraint prohibits

configurations where multiple on-state via-switches exist in

the same horizontal line, whereas multiple via-switches in the

same vertical line are acceptable. On the other hand, under

row & column constraint, multiple on-state via-switches in

both the same horizontal line and the same vertical line are

prohibited. By adding logical expressions of these constraints

to solver input, we can verify whether the sneak path problem

occurs under the programming constraints.

In addition to the above, we encode the behaviors below

of all components in the crossbar, namely, atom switches,

varistors, wires, and drivers

• The varistor is turned on when the applied voltage is

higher than the threshold.

• The electrical potential of wire is determined by active

programming drivers and connection status of signal

lines.

• The number of active programming drivers (two in total)

and their positions (horizontal, vertical, diagonal direc-

tions) are restricted.

• Assigning variables (True, True) to wires and drivers is

prohibited.

Among them, determining the potentials of signal lines is

complicated since it depends on the connection status of signal

lines. The connection status of signal lines is different for each

FPGA configuration, and we found that we needed to prepare

logical expressions to determine the potentials separately for

each configuration. For example, when all the via-switches

in a crossbar are off-state, the potential of each signal line

can be determined independently since each signal line is not

connected to any other signal lines. In other words, each line

is driven only if the programming driver that directly connects

to the line is active. Otherwise, the signal line is floating. On

the other hand, once via-switches are turned on, the potentials

of all the signal lines that are connected to each other through

on-state switches cannot be determined independently. We
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need to check the status of all the drivers that connect to the

signal lines of interest and determine the potentials according

to the combinations of their status. When all the drivers of

the connected signal lines are inactive, the connected signal

lines are floating. Otherwise, the potentials of the connected

lines are fixed by the active drivers. From the above, when

determining the potentials, the position of drivers that we have

to check varies depending on the FPGA configuration.

The details of SAT encoding for the varistors and program-

ming drivers are omitted due to space limitations.

IV. VERIFICATION RESULTS

A. Effectiveness of SAT Encoding-based Verification

First, we confirm that the proposed SAT encoding-based

verification can evaluate the sneak path problem in the via-

switch crossbar. For this purpose, we prepare a logical ex-

pression that connects all the expressions explained in Sec-

tion III-C by logical product, and input it to an SAT solver.

We use MiniSat [14], which is open source SAT solver.

We evaluate both 2V-1CAS and 1V-1CAS crossbars where

their size is 2x2. No programming constraint is given in this

evaluation.

In both 2V-1CAS and 1V-1CAS crossbars, the output of the

solver is satisfiable, which means sneak path problem arises.

The analysis of the variable assignment results successfully

reveals the circuit status that causes the sneak path problem.

Thus, we confirm the detectability of the sneak path problem.

It should be noted that the total number of possible variable

assignments that satisfy the input expression is 256 in a 2V-

1CAS crossbar and 456 in a 1V-1CAS crossbar, and we

analyzed the variable assignments not in all cases but in some

of them. Our future works include confirming whether all

sneak path problems can be detected and whether the input

expression is not satisfied with the circuit status that does not

cause the sneak path problem.

B. Countermeasures for Sneak Path Problem

If the proper programming constraint that prohibits all the

configurations where sneak path problem occurs is available,

we can correctly reconfigure the via-switch FPGA since the

programming of any target via-switch without any unexpected

programming is ensured. As candidates of such constraints, we

verify whether the output of SAT solver varies by imposing

the row constraint and row & column constraint described

in Section III-C. If the output varies from satisfiable to

unsatisfiable, the programming constraint is confirmed to be

effective for the sneak path problem.

Verification results are listed in Table I. As previously

mentioned, the sneak path problem occurs when the output

is satisfiable (SAT), and there is no sneak path problem when

the output is unsatisfiable (UNSAT). Although we verify 14

sizes of the crossbar, 2x2-2x7, 3x2-3x4, 4x2-4x3, 5x2, 6x2,

and 7x2, Table I summarizes the verification results since the

same output is obtained regardless of the crossbar size. We can

see that the sneak path problem in a 2V-1CAS crossbar can be

avoided by either row constraint or row & column constraint.

TABLE I
EFFECTIVENESS OF PROGRAMMING CONSTRAINTS.

No constraint Row Row & column
constraint constraint

2V-1CAS crossbar SAT UNSAT UNSAT
1V-1CAS crossbar SAT SAT UNSAT
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Fig. 7. Number of available configurations under programming constraints.

In a 1V-1CAS crossbar, on the other hand, the row constraint

cannot prevent the sneak path problem. To solve the sneak

path problem in the 1V-1CAS crossbar, we need to impose

the row & column constraint, which is more severe constraint

than row constraint.

Next, we evaluate the impact of programming constraints

on the number of available configurations. The programming

constraints prohibit some configurations of via-switch FPGA,

and hence imposing the constraint leads to a decrease in the

number of usable configurations. Figure 7 shows the number

of available configurations under no constraint, row constraint,

and row & column constraint. Here, 2x2, 3x3, 4x4, and 5x5

crossbars are evaluated. We can see that the decrease in the

number of usable configurations due to the programming

constraints is significant in larger crossbars. For example,

compared to the 5x5 crossbar with no constraint, the row

constraint and row & column constraint diminish the number

of available configurations by three orders of magnitude and

four orders of magnitude, respectively.

From the above results, we find that the sneak path problem

can be solved by employing the proper programming con-

straint. Verification results also show that the programming

constraints to avoid the sneak path problem are different

depending on the structure of via-switch. We need to pay

attention to the fact that the programming constraints reduce

the total number of available configurations and consequently

limit routing flexibility.

C. Impact of Crossbar Size on Verification Time

Finally, we discuss the impact of crossbar size on the verifi-

cation time. Figure 8 shows the verification time of SAT solver

when the crossbar size is varied from 2x2 to 2x7. We evaluate

two cases; 2V-1CAS crossbar with no programming constraint

where the output is satisfiable, and 2V-1CAS crossbar with row

constraint where the output is unsatisfiable. The verification

time was measured ten times for each condition, and the

average value of them is shown in Figure 8. We executed
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Fig. 8. Verification time of SAT solver when crossbar size is varied.
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Fig. 9. Number of (a) logical variables and (b) logical expressions when
crossbar size is varied.

the SAT solver on Xeon X5680 3330 MHz x2 with 96 GB

RAM.

The maximum verification time in this evaluation is 18 min-

utes, and it is not so long. However, we can see that the

verification time exponentially increases as the crossbar size

becomes larger. To investigate the cause of this, we evaluate

the number of logical variables and expressions when the

crossbar size is varied from 2x2 to 2x7. Figure 9 shows

the evaluation results. The number of logical variables is

proportional to the crossbar size. On the other hand, the

number of logical expressions exponentially increases as the

crossbar size becomes larger. When the crossbar size is 2x7,

the number of logical expressions is over 164 million. This

exponential increase in the number of expressions is supposed

to cause an exponential increase in the verification time.

The above analysis of the number of logical expressions

finds that the exponential increase in the number of expres-

sions originates from the logical expressions to determine the

potentials of signal lines explained in Section III-C. Remind

that we separately prepare the logical expression to determine

the potential for each FPGA configuration. When the number

of atom switches in a crossbar is n, the number of possible

configurations is 2n since each atom switch has two states,

on- and off-states. Here, n is proportional to the crossbar size.

Therefore, the number of logical expressions to determine the

potential increases exponentially.

From the above discussion, we conclude that the verification

time increases due to the exponential increase in the number of

logical expressions and it is not scalable for large crossbars.

Future works include the modification of SAT encoding to

reduce the increase in the number of expressions.

V. CONCLUSION

This paper verified the sneak path problem that interfered re-

configurations of via-switch FPGA. We encoded programming

operations of via-switch crossbar and occurrence conditions

of sneak path problem into SAT and verified them by an SAT

solver. We confirmed that the proposed SAT encoding-based

verification could detect the sneak path problem. Verification

results show that imposing proper programming constraint can

eliminate the sneak path problem. Future works include the

evaluation of sneak path problem detectability in details and

improving the SAT encoding to deal with larger crossbars.
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