
Stochastic Timing Error Rate Estimation

under Process and Temporal Variations

Shoichi Iizuka Yutaka Masuda Masanori Hashimoto Takao Onoye
Department of Information Systems Engineering, Osaka University

hasimoto@ist.osaka-u.ac.jp

Abstract—Reducing design and operational margin is a key
factor that makes fabricated chips competitive in terms of
speed and power consumption. On the other hand, a smaller
margin involves a higher risk that a timing error occurs in
field. This paper proposes a stochastic framework that estimates
timing error rate under static process variations and dynamic
environmental variations for circuits with and without run-time
adaptive speed control. The proposed framework extends the
state assignment of the continuous-time Markov process used
in the previous work so as to take into account within-die
random variation, and speeds up the database construction for
the transition rate matrix by combining logic simulation and
statistical static timing analysis. This paper also demonstrates that
the proposed framework can cope with transistor-by-transistor
stochastic aging processes. Experimental results show that the
within-die random variation deviates the MTTF with σ of 52%.
The CPU time for the transition rate matrix computation is
reduced to 1/30.

I. INTRODUCTION

Device miniaturization due to technology scaling has made
parametric performance variation more and more significant.
Lower supply voltage makes circuits sensitive to environmental
fluctuation, especially to supply voltage. Furthermore, aging
effects, such as NBTI (negative bias temperature instability),
HCI (hot carrier injection) and TDDB (time dependent dielec-
tric breakdown), cause unexpected timing failures in field. To
overcome manufacturing variability, environmental fluctuation
and aging, designers set design margin and production tests
give operational margin. When the given margin is large
enough, timing failures in filed can be avoided. On the other
hand, if the given margin is too large, the chip is often operated
at a supply voltage higher than necessary and consequently it
consumes larger power. Such excessive design and operational
margins involve power, area and cost overhead, and/or per-
formance loss, which deteriorates the competitiveness of the
chips.

Figure 1 illustrates the operational margin in the chip
lifetime. The operational margin at the beginning of the chip
lifetime is large, and the margin decreases as the chip ages.
If the delay increase due to aging exceeds the timing margin,
timing errors occur in the chip. In addition, it is known that
some aging effects vary for every transistor. For example,
the threshold voltage variation due to NBTI is randomly
distributed because the location and number of traps in the gate
oxide are determined by a stochastic process. Furthermore, the
speed of aging process depends on the workload (switching
activity), supply voltage and temperature. In industry, the
worst-case aging effects, i.e. the worst-case transistor, the
worst workload, the highest supply voltage, and the highest
temperature are assumed for estimating the impact of the
aging effects, and the design and operational margins are often
determined according to the worst-case aging effects. For some
chips, such large margins are really necessary. However, for

����

����	

��	���

������������

���������		

��������

������������������

	
�����������

��
����

����
���
���

Fig. 1. Margins of circuits with and without adaptive speed control in chip
lifetime.

most of the other chips, such large margins are unnecessary.

Recently, to self-adjust the operational margin, adaptive
performance control is studied [1–6]. Dynamic voltage and
frequency scaling and body biasing are popular ways to control
performance. With such adaptive speed control, we can ideally
set a constant operational margin for the entire chip lifetime,
as illustrated in Fig. 1. Especially, we might be able to
reduce the margin at the beginning of the chip lifetime. If the
large operational margin can be translated into supply voltage
reduction, the aging process, i.e. the performance degradation,
can be slowed down, and the chip lifetime extends. In addition,
even when the aging effects are larger than the prediction at
design time, the timing margin can be kept at the cost of higher
power consumption.

However, the adaptive speed control reduces the opera-
tional margin, and hence the possibility that an unexpected
timing error due to, for example, unexpected large supply
noise occurs becomes higher. In addition, the margin checking
performed in the chip is not perfect due to the limited test
costs in area and time. Therefore, there is a fundamental
problem that the possibility of timing error occurrence cannot
be completely reduced to zero, since, for example, a sudden
delay increase larger than expectation can induce a timing error
without error detection or before error prediction. Similarly,
offline delay testing may miss the error because delay testing
is carried out with a certain time interval. It should be noted
that the timing errors due to such a sudden delay increase arise
even in the chips without adaptive speed control, especially at
the end of the chip lifetime because the operational margin is
small. Researchers working for any types of adaptive speed
control claim that by tuning the operational margin through
some design parameter optimization the possibility of timing
error occurrence can be reduced to almost zero and the time
to failure can be extended to over years. For example, delay
testing should be carried out more frequently, earlier error
prediction should be enforced, and so on.

However, it is challenging to quantitatively estimate such
a long MTTF (mean time to failure) and extremely low
probability of error occurrence for guiding design optimization
in design time. A naive simulation is totally impractical since

Paper 15.1
978-1-4673-6578-9/15/$31.00 c©2015 IEEE

INTERNATIONAL TEST CONFERENCE 1

one year operation of a processor, for example, includes
3×1016 cycles, and to get 10-k samples, 3×1020 cycles must
be simulated. With a logic simulator processing 3×103 cycles
per second, it takes 3×109 years, and hence another approach
instead of naive simulation is indispensable.

To reduce such a long MTTF estimation time, [7] presented
a stochastic estimation framework aiming at analyzing MTTF
of adaptively performance-controlled circuits. This framework
models the adaptive speed control under dynamic delay vari-
ation as a continuous-time Markov process, and stochastically
estimates MTTF. Given a matrix of transition rates between
states, the MTTF can be calculated via matrix computations
and its calculation time is independent of how long MTTFs are
and how rarely the timing error happens, which is an excellent
property for evaluating a long-MTTF circuit operation. Thanks
to this development, the framework of [7] computes MTTF
1012 times faster than a logic simulator in a test case.

The continuous-time Markov process modeling enabled the
fast estimation of MTTF of adaptive speed controlled circuit.
However, there remain many factors of delay fluctuation that
are not taken into consideration, such as inter-die and within-
die process variation. Ignorance of the process variation means
that the estimated MTTF is only valid for a particular chip and
it is not valid for other chips with different inter-die and within-
die process variations. In addition, to cover various factors of
delay fluctuation, we need to increase the number of states
in the Markov model. However, in the previous work [7],
the computational time to prepare the transition rate matrix
is significant, and hence it is difficult to increase the number
of states.

This paper proposes a novel state definition for the stochas-
tic error rate estimation that is able to cope with the inter-
die and within-die process variations. The proposed state
definition includes the distributions of gate delay for within-die
variation at each state, and then the probability distributions
of path delay violation can be considered. In addition, we
devise a method of fast state transition rate calculation. The
proposed method speeds up the computation of state transition
rate by obtaining path delay information and path activation
probability separately. We also discuss how gate-by-gate ag-
ing processes, such as NBTI, can be accommodated in the
proposed framework for error rate estimation.

The rest of this paper is organized as follows. Section II
exemplifies two speed adaptation systems as representatives
to make the explanation of the proposed method easier; one
is based on on-line testing and the other is on off-line test-
ing. Section III outlines the continuous-time Markov process
modeling of adaptive speed control developed in the previous
work [7] and discusses the problems to overcome. Section IV
presents the proposed state definition and the fast transition
rate extraction method. Experimental results are shown in
Section V, and conclusions are given in Section VI.

II. ASSUMED ADAPTIVE SPEED CONTROL

This section explains two adaptive speed control systems
that we use for experiments in Section V as representative
ones. Note that the proposed stochastic error rate estimation
is not tailored for these two adaptive speed control systems,
and it is expected to be applicable to any implementations of
adaptive speed control. On the other hand, the explanation with

������

Delay buffer

Comparator

Warning signal��������	
����	�

�������	
���
�����

���
��������������

�����

������

�
��������

��
���
��

Timing error occurs at TEP-FF due to delay
buffer before main FF captures a wrong value.

��	
���

��������	
�

Fig. 2. Run-time Adaptive Speed Control with TEP-FF.

concrete examples of adaptive speed control could be helpful
for readers to understand the proposed method.

A. On-line Test Based Adaptation using TEP-FF
Figure 2 shows a circuit that adaptively controls the speed

and power dissipation using a warning signal generated by a
timing-error predictive (TEP) FF [4], and the timing error rate
of this run-time adaptive speed control is analyzed in this paper
as one of applications of the proposed estimation framework.
The TEP-FF consists of a normal flip-flop, a delay buffer and a
comparator (XOR gate). When the timing margin is gradually
decreasing, a timing error occurs at the TEP-FF before the
main FF captures a wrong value due to the delay buffer, which
enables us to know that the timing margin of the main FF is
not large enough. A warning signal is generated to predict the
timing errors, and it is monitored during a specified period.
Note that timing errors are predicted, not detected, which is a
distinct difference from Razor [3]. Once a warning signal is
observed, the circuit is controlled to speed up, in other words,
the circuit delay is reduced by voltage scaling and/or body
biasing. Note that clock frequency is fixed throughout this
paper. If no warning signals are observed during the monitoring
period, the circuit is slowed down for power reduction. This
proactive speed control overcomes the variation of the timing
margin which is different in every chip and varies depending
on operating condition and aging.

Even when the TEP-FF is well configured to generate the
warning signal, the error occurrence cannot be reduced to zero.
This is because when critical paths are not activated for a long
time in the circuit operation, the circuit might be slowed down
excessively. If a critical path is activated in this condition, a
timing error happens. To reduce the error occurrence, we can
tune the following design parameters; the number of TEP-FFs,
locations where TEP-FFs should be inserted, delay time of the
delay buffer in each TEP-FF, monitoring period and fineness
of the speed control [4, 8].

B. Off-line Test Based Adaptation
We next explain an adaptive speed control system that

repeatedly performs delay test in idle times of the circuit.
While the circuit is idle, test-patterns that were prepared
beforehand and stored in an internal or external memory are
loaded and it is checked if the circuit includes timing-violating
paths or not. When a timing-violating path is detected, the
minimum speed level that has no timing-violating paths is
selected for the operation in the following. Otherwise, the
speed level is decremented. For this delay test, scan-based
delay test and software-based self-test are possible candidates.

Here, there are two strategies for scan-test execution. One

Paper 15.1 INTERNATIONAL TEST CONFERENCE 2

strategy forces the circuit to be idle with a fixed time interval,
which can guarantee the time interval between the delay
tests. This strategy is helpful to make the timing error rate
predictable in addition to the error rate mitigation. A drawback
is the performance degradation due to the testing, and in some
real-time systems, this strategy could be difficult to adopt. The
other strategy is to perform off-line tests only in true idle
time. While the performance degradation does not arise, the
test interval is less predictable and consequently the error rate
tends to be higher. In this paper, we assume the first strategy
having the fixed time interval of delay testing.

In this off-line test based adaptation, test coverage of
the delay test is a key parameter to determine the rate of
timing error occurrence. For appropriate speed adaptation, test
coverage should be high not to miss timing errors. However, to
make test-patterns that perform high test coverage is difficult
and its overhead, test-pattern size and test time, gets large. To
reduce the error occurrence while coping with the overhead,
we need to carefully prepare the test.

III. CONTINUOUS-TIME MARKOV
PROCESS MODELING OF ADAPTIVE SPEED CONTROL

This section explains the conventional MTTF estimation
method which models temporal delay fluctuation and adaptive
speed control as a continuous-time Markov process [7]. We
will extend this method for taking into account the within-die
random components of aging and manufacturing variation in
Section IV.

A. Overview and State Assignment
The conventional method [7] models adaptive speed control

under dynamic delay variation as a continuous-time Markov
process. Markov process is a stochastic process having a
Markov property that the next state is determined by only the
current state and is independent of the previous states. Espe-
cially, continuous-time Markov process is a special Markov
process whose time parameter is continuous [9][10].

The circuit delay temporally fluctuates due to unintentional
temperature change, power supply noise and aging. When a
path whose timing constraint is violated due to temporal delay
fluctuation is activated, a timing error occurs. In case of adap-
tive speed control, by sensing such temporal delay fluctuation
with online/offline delay testing, the circuit performance is
intentionally tuned by supply voltage scaling and/or body bi-
asing. The previous work [7] defines states in Markov process
such that each state is associated with a pair of unintentional
delay variation and levels of intentional speed control. We
often prepare several discrete values of supply voltage scaling
and body biasing for intentional speed control. On the other
hand, the unintentional delay variation is continuous in nature,
but for the model simplicity, we discretize the unintentional
delay variation into several representative values. We call these
states as normal states. In addition, we add one more failure
state meaning that a timing error happened in the past. Note
that this state is different from the states of sequential circuit.

Figure 3 illustrates an example of state assignment and a
series of state transitions falling into the failure state. In this
example, the circuit starts to operate at speed control level of 0
with 0ps delay fluctuation. Then, both the speed control level
and delay fluctuation are varying dynamically. At a certain
time, a timing error happens at speed control level of 0 with

�����

���	
��

�����

����

����	��	�������

�� � � �

�� � �

��

�

� �� �� ��

 �� �� ��

!

�
"

#�������

$"%�
&��"�	�	��

$" ����
�"�	�	�

Fig. 3. An Example of State Assignment and Transition.

30ps delay fluctuation, and the state falls into the failure state.
For circuits without adaptive speed control, the number of
speed control level is one and this state definition becomes
one-dimensional.

In a continuous-time Markov process, transition rate of
going from state i to state j, qi,j , which will be formally
defined in the next subsection, is the key parameter that
characterizes the process behavior. Given a matrix of the
transition rates, we can obtain closed-form expressions of state
probability as a function of time t. This means that once the
matrix of transition rates is given, the MTTF computation
can be carried out with a constant time, and the computation
time is independent of the timing error rate and MTTF of
the circuit under evaluation. Note that the above computation
is applicable to any types of adaptive speed control, since
the state assignment explained above is independent of the
implementation of adaptive speed control.

B. Deriving Closed-Form State Probability Expressions from
Transition Rate Matrix
This section derives closed-form state probability expres-

sions. The state transition probability pi,j(s, t) is defined as a
probability that a system being in state i at time s will stay in
state j at time t.

pi,j(s, t) = P (X(t) = j|X(s) = i). (1)

In case of a stationary Markov process, pi,j(s, t) can be simply
expressed as pi,j(t).

The transition rate of leaving state i, qi, is defined as

qi = lim
h→0+

1− pi,i(h)

h
= −dpi,i(0)

dt
, (2)

where as h → 0+, pi,i(h) → 1. When the number of state is
finite, qi < ∞ holds. The transition rate of going from state i
to state j (i �= j) is defined as

qi,j = lim
h→0+

pi,j(h)

h
=

dpi,j(0)

dt
, (3)

where qi,j < ∞ always holds. Q-matrix, which consists of
−qi and qi,j , is expressed by

Q =

⎡
⎢⎢⎣

−q1 q1,2 · · · q1,Nstate

q2,1 −q2 · · · q2,Nstate

...
...

. . .
...

qNstate,1 qNstate,2 · · · −qNstate

⎤
⎥⎥⎦ , (4)

where Nstate is the number of states and
∑
j �=i

qi,j(t) = −qi

holds.

Paper 15.1 INTERNATIONAL TEST CONFERENCE 3

Once Q-matrix is given, the state transition probability as
a function of time t can be analytically derived by solving a
Kolmogorov forward differential equation below [9].

dpij(t)

dt
= −qjpij(t) +

∑
ν �=j

piνqνj . (5)

Let us introduce a way to solve this differential equation using
matrix computation. Letting λi denote the i-th eigenvector
of Q-matrix and ui denote its corresponding eigenvector, we
define the matrices below.

U = [u1 u2 · · · uNstate], (6)

Λ(t) =

⎛
⎜⎜⎜⎜⎝

eλ1t 0 · · · 0

0 eλ2t
. . .

...
...

. . .
. . . 0

0 · · · 0 eλNstate t

⎞
⎟⎟⎟⎟⎠ . (7)

Using U and Λ(t), the matrix of state transition probability
is expressed by

P(t)=

⎡
⎢⎢⎣

p1,1(t) · · · p1,Nstate
(t)

p2,1(t) · · · p2,Nstate(t)
...

. . .
...

pNstate,1(t) · · · pNstate,Nstate(t)

⎤
⎥⎥⎦=UΛ(t)U−1. (8)

By specifying the initial state (init), the state probability being
at state i at time t, pinit,i(t) can be computed using the analytic
expression in Eq. (8).

Once we obtain P(t), MTTF can be calculated.

MTTF =

∫ ∞

0

t · dpinit,fail(t)
dt

dt, (9)

where pinit,fail(t) is the state transition probability from the
initial state to failure state. The other indexes of reliability,
percentile etc. can be obtained in the same way. In addition,
since we know the probabilities of being at each state, other
performance metrics, such as power dissipation, can be com-
puted using information of average power dissipation at each
state.

C. Extracting Transition Rate with Database
The previous subsection tells us that once the transition

rate of going from state i to state j, qi,j , becomes available,
we can obtain the exact closed-form probability expression of
timing failure as a function of time. This section explains how
the transition rate is computed in [7].

In the Markov model under consideration, the state transi-
tions correspond to the events of failure occurrence, change of
speed control level, or temporal delay fluctuation. Therefore,
the rates of these event occurrences are the transition rates that
we need to prepare for estimating MTTF. For the temporal
delay fluctuation, we need a stochastic model that reproduces
the temporal delay fluctuation under consideration, for example
NBTI, dynamic power supply noise, etc, and here it is assumed
to be given. On the other hand, the rates of failure occurrence
and speed level transition depend on the running program
and input data, where we call the pair of the program and
input data as workload. To extract the transition rate qi,j ,
[7] constructs a database. The database includes the results

of logic simulation of various circuit operations at available
speed levels in the range of possible delay fluctuation. Using
this similarity database, we know the occurrence of events
that correspond to the transition from state i to state j, such
as speed level transition, during a workload execution. If the
execution frequency of each workload and a model of dynamic
delay fluctuation are given, we can calculate qi,j by referring
the database.

A possible implementation of the database, which is
adopted in [7], has the current speed level, the current delay
fluctuation and the workload as keys, and the database quickly
outputs occurrence of timing error, results of error prediction,
results of path delay tests, and so on. For the workload, the
exact information is often non-available. In this case, the infor-
mation of the similar workload in the database substitutes. The
information to be stored in the database can be extracted by
performing logic simulations. The number of logic simulation
executions is the product of the number of states and the
number of supposed workloads. This database is constructed
for each circuit and technology.

D. Problems
The continuous-time Markov process modeling explained

in this section so far enabled us to estimate the MTTF of an
adaptively speed controlled circuit in a reasonable time. In a
test case, the conventional method computed MTTF 1012 times
faster than a logic simulator, and the CPU time was reduced
to 37 seconds, where the CPU time to construct the database
is not included. However, there are some issues to be resolved
for putting this stochastic estimation method to practical use.

The first problem is that the MTTF estimation of the
conventional method is performed for a particular chip, i.e.
all the analysis is based on the timing characteristics of
the chip. The database is constructed by performing logic
simulation with the SDF (standard delay format) file of the
chip. Any manufacturing variability cannot be considered. On
the other hand, as everybody knows, even the chips which
are fabricated from the same GDS data have different timing
characteristics. Circuit designers want to verify that the timing
error occurrence is rare enough for all the chips that have
passed the production test. However, the conventional method
cannot be used for this verification purpose.

Manufacturing variability consists of inter-die and within-
die variations, and the gate delay is affected by both of them.
For the inter-die variation that is identically applicable to all
the devices on a chip, we might be able to extend the state
definition shown in Fig. 3 by adding a new dimension for
each parameter of the inter-die variation at the cost of the
increase in the database construction time, where this database
construction time will be discussed in the next paragraph.
However, the within-die random variation cannot be repre-
sented by extending the state definition, because the device
parameter variation is different in every transistor and the
state dimension needs to increase by the number of transistors
on a chip. It is obvious that such a state extension is not
practical since the number of states increases exponentially
as the number of transistor increases. The matrix computation
in Section III-B is difficult to perform, and more importantly
it is prohibitively expensive to prepare the database for such a
huge state space. We need to have a new state definition that
can accommodate within-die random variation.

Paper 15.1 INTERNATIONAL TEST CONFERENCE 4

Another problem is that there are many physical sources
that cause temporal delay fluctuation, such as temperature
change, power supply noise, various aging processes, and so
on. Even if each source can be represented with a single
parameter, we need to increase the dimension of the state
definition in Fig. 3 by the number of physical sources. Let us
exemplify the impact of this dimension increase on the number
of states. Now, we suppose Nsource parameters of physical
sources causing temporal delay fluctuation. If each parameter
takes Nvalue values after quantization for discrete Markov
modeling, the number of states becomes NNsource

value , and this
increases exponentially according to Nsource. For example,
let us suppose that temperature, supply voltage noise and
age are selected as the parameters corresponding to physical
sources of temporal delay fluctuation. In addition, we have one
more dimension representing the speed control level. When
each parameter has 10 values, the number of states becomes
104+1=10,001, whereas the number of states was 101 in the
conventional two-dimensional state definition. To accommo-
date various physical sources of temporal delay fluctuation,
we need to speed up the construction of the database. Even
for the two-dimensional state definition, it took 2.6 days to
construct the database for 271 states using eight processors
[7]. Drastic CPU time reduction is necessary.

IV. PROPOSED STATE DEFINITION AND FAST DATABASE
CONSTRUCTION

This section explains the proposed MTTF estimation
method which can take into account the within-die random
variation and speed up the database construction.

A. State Definition
The proposed method keeps the basic concept that the state

transitions occur when the circuit delay varies by temporal
delay fluctuation and the speed level changes. Therefore, the
advantage of the previous work, which is the very fast MTTF
estimation and the CPU time is independent of the length of
MTTF, is preserved in the proposed method. The dimension
of the state definition in Fig. 3 is increased by the number of
parameters that are necessary to express the physical sources
of dynamic delay fluctuation. In addition, the state definition
is extended for the inter-die manufacturing variation. The
problem of CPU time increase involved with this dimension
increase will be solved in Section IV-B.

On the other hand, the within-die random variation is taken
into account in the database construction. In the previous
work [7], the transition rate is computed for a particular chip,
while the proposed method calculates the transition rate for a
circuit in which each gate delay varies according to probability
distributions. Figure 4 illustrates the gate delay expressions in
the previous work [7] and the proposed method. In [7], the
left figure of Fig. 4, the gate delay value is deterministic as
shown in the left. On the other hand, the gate delay value is
stochastic in the proposed method and the gate delay value
may take any value following the probability distribution as
shown in the right figure, which is similar to SSTA (statistical
static timing analysis). The important point here is that the
probability distribution of the gate delay is different at each
state. In other words, each state gives its own stochastic
gate delay distributions. With this modification, the within-
die random variation can be considered without increasing the

���������	
��

���������
��

����������
��

�

�����

�����

�����

�����

�����

�����

������� ������ �������

�

���������

Fig. 4. Gate delay expressions of conventional [7] and proposed methods.

number of states. LettingNgate denote the number of gates and
Nvalue denote the number of discretized available delay values,
the number of necessary states for the naive state expansion

would be N
Ngate

value and this number is tremendous even for
10k-gate circuit (Ngate = 10, 000). On the other hand, the
proposed method does not need the state expansion. Thanks to
the proposed state definition using probability distribution, the
number of necessary states for within-die variation is reduced

by 1/N
Ngate

value

In this new state definition, the path delays are also
represented by probability distributions. In the previous work
[7], the information stored in each entry of the database is the
binary information, i.e. whether the path causes timing viola-
tion or not. On the other hand, in the proposed method, this
information in the database becomes the probability of timing
error occurrence which is computed exploiting the probability
distribution of the path delay variation. The transition rate is
computed from this timing violation information, which will
be explained in the following subsections.

At the beginning of this subsection, we extended the
dimension of the state to accommodate the physical sources of
dynamic delay fluctuation and the inter-die process variation.
On the other hand, the inter-die process variation is static, i.e.
it is fixed after fabrication. This static property needs to be
considered in MTTF estimation. Figure 5 illustrates how this
static property is considered. Here, each plane corresponds to
the state space in which one parameter of inter-die process
variation, in this example inter-die Vth variation, is fixed. Si,j,k
denotes a state, and i, j, k correspond to speed control level,
age and Vth variation. As mentioned above, the parameter
of inter-die manufacturing variation is fixed after fabrication,
and therefore the state transition should occur only within
each plane. This can be easily annotated to the transition rate
matrix by setting the transition rates for such inter-plane state
transitions zero. In addition, the probability distribution of the
inter-die Vth variation can be considered by giving the initial
state probabilities according to the probability distribution of
the inter-die Vth variation. For example, let us assume the
chip operation starts from the state of speed level of two and
age of zero, i.e. S2,0,0, S2,0,1, S2,0,2. In this case, the initial
state probabilities of S2,0,0, S2,0,1, S2,0,2 directly correspond
to the Vth distribution, where the sum of these three initial
state probabilities is one, and the initial state probabilities of
the other states are zero. Thus, static inter-die process variation
can be considered.

B. Database Construction
In the previous subsection, we extended the state definition

for coping with process variations. This section explains how
the database is constructed for the new state definition.

We need to store the probability of timing error occurrence
in the database. A timing error occurs in case that the following
two conditions simultaneously satisfied; (1) the delay of a path

Paper 15.1 INTERNATIONAL TEST CONFERENCE 5

����������� ����������� �����������

	
� 	
� 	
�

��������

�����������

����������	
�
��	������������

������������	����������		����
��
��

������������������

�������� ������������

��������	
�������
�������
��	������	���������	�

�	�
�����
�
�����
����
��	�������������������

�
�����

�
�����

�
�����

�
����� �

����� �
�����

�
�����

�
�����

�
�����

�
�����

Fig. 5. State definition and transitions for inter-die variations.

����

����	
����

� ���

��������	

�	��������	

�������������	

���������	�
������	�

	�����������	���

���������	�
����

��	����	���	���

��	
���
�����

������
��

�����	
�����	

���������	�

Fig. 6. Computing error occurrence rate for database construction.

violates the timing constraint, and (2) the path is activated. In
the previous work [7], logic simulation is carried out to know
whether a timing error occurs or not, i.e. these two conditions
are evaluated simultaneously. In this case, we need to execute
logic simulation every time the timing characteristics change.
Due to manufacturing variability, every chip has different
timing characteristics, and hence logic simulation must be
performed in a Monte Carlo manner, which is prohibitively
expensive.

On the other hand, in this work, we compute the probability
of path delay violation and the probability of path activation
for each path separately, and then calculate the probability
of timing error occurrence, which is the joint probability of
the probabilities of path delay violation and path activation,
as illustrated in Fig. 6. The proposed method obtains the
probabilities of path delay violation and the path activation
as follows.

The probability distribution of path delay variation can
be computed by path-based statistical static timing analysis
(SSTA). We give the distributions of gate delay at the state
under consideration, and perform path-based SSTA. There are
a number of proposals of path-based SSTA (a survey is found
in [13]), and we need to choose one of them according to
the shape of gate delay distribution, accuracy and CPU time.
This SSTA is performed for all the states. Once the path delay
distribution is available, we can compute the probability of
path delay violation, which is the probability that the timing
constraint of the path of interest is violated.

The path activation probability is extracted from the logic
simulation result since the path activation depends on the
workload. However, the logic simulator does not give the
information of path activation directly. Logic simulator outputs
the locations and timings of signal transitions, and we can
know when and where (i.e. at which net) signal transitions

occur. However, this signal transition information is not as-
sociated with the path on which the signal is propagating.
For every transition at the input terminal of each flip-flop, we
need to know which path delivers this transition. To associate
the transition with the activated path, we use STA result.
The proposed method checks the correspondence between the
timing of signal transition obtained by the logic simulation and
the path delay reported by STA.

This correspondence checking process is performed as
follows. We perform the STA of the target circuit and make
the list of path information, such as endpoint (input terminal of
flip flop), transition direction (rise or fall) at endpoint and path
delay. The number of paths in a circuit is too large, and hence
we select top Npath paths for the list. Next, logic simulation
of each workload is performed. Then, we extract the transition
timing and direction at FF inputs from the dump file of logic
simulation. The information extracted from STA and logic
simulation can be expressed as triplets of [endpoint, delay,
direction (rise or fall)], where we call this triplet as path triplet.
By checking the correspondence between the path triplet from
logic simulation and the path triplet from STA using Algorithm
1, the activation probability of path i can be obtained. Plogic

in Algorithm1 denotes the set of the path triplets extracted
from logic simulation and PSTA is the set of the path triplets
extracted from STA result. PSTA SUB is a subset of PSTA,
and PSTA SUB corresponds to the top Npath paths. For each
path triplet from logic simulation triplet logicj , Algorithm 1
first finds the identical path triplet from STA triplet STAi

and recognizes that the signal transition of triplet logicj
propagated through the i-th path. Then, the number of path
activation of the i-th path, ni, is incremented. After all the
path triplets from logic simulation are processed, we compute
the path activation probability of the i-th path pactive,i as
ni/cycles, where cycle is the number of clock cycles to
complete the workload. If multiple paths have the same delay
value, this path identification algorithm cannot find one-to-
one correspondence. In this case, by repeatedly performing
this algorithm under another delay condition, one-to-one cor-
respondence can be obtained.

In this subsection, we explained how to compute the prob-
ability of timing error occurrence. Similarly, the probability of
timing error prediction/detection can be computed. The details
are omitted due to the space limitation. In the case of the result
of path delay tests, the probability of the path delay passage

Algorithm 1 Computation of path activation probability
pactive
1: for all triplet STAi ∈ PSTA SUB do
2: ni = 0
3: end for
4: for all triplet logicj ∈ Plogic do
5: for all triplet STAi ∈ PSTA SUB do
6: if triplet STAi == triplet logicj then
7: ni ++
8: end if
9: end for
10: end for
11: for all triplet STAi ∈ PSTA SUB do
12: pactive,i ← ni/cycles
13: end for

Paper 15.1 INTERNATIONAL TEST CONFERENCE 6

Algorithm 2 Computation of state transition rate for one
workload (on-line test based adaptation using TEP-FF).

1: for all i ∈ States do
2: qi,delay++ ← dynamic delay fluctuation rate
3: qi,delay−− ← dynamic delay fluctuation rate
4: for all p ∈ PSTA SUB do
5: qi,fail ← qi,fail + V iolationRate(p) ×

ActivationRate(p)
6: qi,SpeedLevel+1 ← qi,SpeedLevel+1 +

(V iolation rate(p)× V iolationRate(pTEPFF))×
ActivationRate(p)

7: end for
8: qi,SpeedLevel−1 ← 1/MonitorTime
9: end for

can be calculated only with SSTA. Thus, we can construct the
database.

C. Computation of State Transition Rate
This subsection explains how to construct Q-matrix using

the database.

State transitions occur in three cases; (1) a timing error
arises, (2) the speed level changes and (3) the temporal delay
fluctuation occurs. We thus need to compute the probabilities
for these three cases. The computation of Q-matrix consists of
two steps. The first step computes preliminary state transition
rates for each workload executed at a state. On the other hand,
the probability of each workload being executed in the actual
circuit behavior is different depending on, for example, the
processor usage. The second step calculates the overall state
transition rates taking into account the processor usage and the
dynamic delay fluctuation.

We first explain the computation of Q-matrix for on-line
test based adaptation using TEP-FF explained in Section II.
The computation of Q-matrix of one workload is shown in
Algorithm 2. States represents the set of all states in the state
space. The functions V iolationRate and ActivationRate
return the timing violation rate and path activation rate of the
path of interest referring to the database. pTEPFF represents
the path whose endpoint has TEP-FF. In lines 2 and 3,
the rates of dynamic delay fluctuation are substituted for
qi,delay++andqi,delay−−. Next, we compute the rate of error
occurrence of each path, which is the product of the timing
violation rate and the path activation probability, and we sum
up the rate of error occurrence for all the paths. Line 6
computes the probability that the main FF does not cause
the timing error and the TEP-FF causes the timing error and
the path is activated. This corresponds to the probability of
the error prediction, qi,SpeedLevel+1. The probability of speed
control level decrease, qi,SpeedLevel−1 is given by the inverse
of monitor time of speed adaptation. With Algorithm 1, we
can compute necessary transition rates for one workload.

Then, the weighted average of state transition rates is
calculated at step 2. In order to consider biased (non-equal)
workload execution, the probability of each workload execu-
tion is given as the weight. Then, we simply calculate the
weighted average of each Q-matrix elements using this weight.

State transition rates for off-line test based adap-
tation can be computed with Algorithm 3. The tran-

Algorithm 3 Computation of state transition rate for 1 program
(off-line test based adaptation).

1: for all i ∈ States do
2: qi,delay++ ← dynamic delay fluctuation rate
3: qi,delay−− ← dynamic delay fluctuation rate
4: for all p ∈ PSTA SUB do
5: qi,fail ← qi,fail + V iolationRate(p) ×

ActivationRate(p)
6: qi,SpeedLevel+1 ← qi,SpeedLevel+1 +

V iolationRate(p)× TestCoverage(p)/TestInterval
7: qi,SpeedLevel−1 ← qi,SpeedLevel−1 + (1 −

TestCoverage(p))/ TestInterval
8: end for
9: end for

��� ���� ���� ����
p1 p2 p3

1-p1 1-p2 1-p3

Fig. 7. An example of stochastic aging model for each transistor.

sition rates of delay fluctuation and the failure rate,
qi,delay++andqi,delay−−, qi,fail, can be computed in the same
way. The difference to the on-line test is the trigger of
speed level transition. In off-line test based adaptation, speed
level changes by the result of off-line test. The speed level
changes to only adjacent states for simplicity in this paper. The
function, TestCoverage in this algorithm returns whether the
path of interest is testable or not. In line 6, the probability that
the off-line test detects the timing violation is computed for
each path. In line 7, the probability that the off-line test dose
not detect the timing violation is computed for each path. The
calculation of the weighted average is the same with that of
on-line test.

D. Gate-by-Gate Aging Consideration
It is known that aging process is stochastic in nature, and

hence each gate has different aging processes. For example,
in case of NBTI, the locations and the number of traps in the
gate oxide are statistically distributed. In addition, the aging
speed depends on the switching activity of the gate. In order
to accurately consider the aging process, we need to consider
both the long-term tendency and the stochastic property.

We assume that a stochastic aging model for each transistor
is given. A simple example is shown in Fig. 7. In this
example, the threshold voltage degrades monotonically. Using
such stochastic models, we can generate a number of aging
processes for each transistor by generating random numbers.
Letting Naging process denote the number of generated aging
processes, we have Naging process threshold voltage values
at each age. Therefore, we can compute the mean and the
standard deviation of the threshold voltage for each transistor
at each age. In other words, the stochastic property is available.

To express the long-term tendency, we add one parameter
of age to the state definition of Markov process. Figure 8
illustrates the state transition that expresses the age increment.
Note that the state definition in Fig. 8 is the same with that
in Fig. 5. The states on the left plane correspond to age 0,
and the gate delay degradation follows the stochastic property

Paper 15.1 INTERNATIONAL TEST CONFERENCE 7

�����"����� �����"����� �����"�����

'�	�
(���

��
��	��

)*�

�
�����

�
�����

�
��	��

�
��	�� �

��	�
 �
��	��

�
��	��

�
�����

�
����

�
��	�

'�	�
(���

��
��	��

'�	�
(���

��
��	��

)*�"�)*�"�)*�"�

���	
�+�	���"�

�*�"�"��"*����,

���	
�+�	���"�

�*�"�"��"*����,

���	
�+�	���"�

�*�"�"��"*����,

Fig. 8. State transitions for aging.

at age 0. The middle and right planes correspond to age 1
and age 2, respectively. In the Markov process modeling, the
transitions to older ages occur stochastically. By appropriately
determining the transition rates pi,j to older ages, the mean
time to increment an age in the Markov model can match
with the time between the ages, tj − ti, which are assumed in
deriving the stochastic property. The state transition rate pi,j
is given by

pi,j = 1− exp(
−log2

tj − ti
). (10)

V. EXPERIMENTS

This section shows experimental results. First, we explain
the implementation of SSTA necessary for the proposed es-
timation method. Next, we demonstrate that the proposed
estimation method can obtain the state transition rate 30 times
faster than the conventional method [7]. In addition, the impact
of within-die process variation on MTTF is exemplified. Then,
we show some analysis examples for future design optimiza-
tion.

A. SSTA Implementation
As we explained in Section IV-B, the probability distribu-

tions of path delay variation can be obtained by SSTA. In this
paper, we adopted Monte Carlo SSTA as the implementation
of SSTA for experiments. Monte Carlo SSTA collects statistics
by repeating STA with different gate delays. Figure 9 shows
the flowchart of the implemented Monte Carlo SSTA. First, we
prepared NSTA virtual chips, where NSTA is the number of
trials of Monte Carlo simulation. Each chip includes different
within-die random process variations, more concretely differ-
ent SDF (standard delay format) files. Next, we perform STA
for NSTA chips. For each execution of STA, we can obtain
the path delay value for each path. Then, we can collect the
statistics of the path delay.

The above SSTA needs to be executed for each state, since
each state has different inter-die variations and ages and then
the timing characteristics are different. It should be noted that
Monte Carlo SSTA is just an implementation of path-based
SSTA, and other SSTA methods can be also used. In addition,
Monte Carlo SSTA can be accelerated by smart sampling [12].

�����

�������������������	���	��

��������
���������

������ ��	���

���������	��

NSTA���

���������	��	
�����

NSTA ��� ��
����

���

���

��

�����NSTA �	�
�����	���
�NSTA�Nstate �	������������	����

�	�	�
������

����������

Fig. 9. Flowchart of the implemented Monte Carlo SSTA.

B. Experimental Setup
In this work, the adaptive speed control is applied to

OR1200 OpenRISC Processor. OR1200 is a 32-bit RISC
microprocessor and implemented with five pipeline stages.
The processor was designed by synthesizing RTL hardware
description was synthesized by a commercial logic synthesizer
with a 45nm Nangate standard cell library. The number of
standard cells is 24,000. The maximum clock frequency at
1.1V and 25◦C is 217MHz, which corresponds to the critical
path delay of 4.6ns.

The number of STA of Monte Carlo SSTA NSTA is 100
in this experiment using a commercial STA tool, where the
necessary NSTA and/or smart sampling needs to be explored
in the future work. We selected the top 1,000 paths to be
considered, i.e. NSTA is 1,000. We selected three benchmark
programs (CRC32 SHA1 and Dijkstra) from MIBenchmark
[11] and 30 sets of input data for each program. Consequently,
90 (=3× 30) workloads were prepared.

The three factors, speed control by voltage scaling, dy-
namic supply voltage fluctuation, and within-die random pro-
cess variation, are considered in this experiment. The states of
Markov process are defined by speed control level and supply
voltage fluctuation. The aging is considered in Section V-E.
Twelve speed levels, i.e. ten supply voltages (1.2V, 1.15V,
1.1V, 1.05V, 1.0V, 0.95V, 0.9V, 0.85V, 0.8V, 0.75V, 0.70V and
0.65) were prepared. The supply voltage fluctuates between -
50mV and 50mV by 10mV with eleven steps. Here, a stochas-
tic fluctuation model expressed as a Markov chain in Fig. 10 is
used. The transition rate of supply voltage fluctuation was set
to 0.001 (p = 0.001). The number of states in this experiment
is 12 (speed levels) × 11 (voltage fluctuation) + 1 (failure)
= 132. The within-die random variations given to the virtual
chip fabrication in the SSTA are σ = 30mV for threshold
voltages of NMOS and PMOS, and σ = 2nm for gate length.
The delay characteristics of cells at each supply voltage are
obtained using SPICE simulations and linear interpolation.

C. CPU Time Evaluation for Database Construction
First, we evaluate the speed-up of the proposed database

construction over the conventional one with ordinary logic

Paper 15.1 INTERNATIONAL TEST CONFERENCE 8

��� ����� ������������������� ����

p p p p

p p p p

1-2p 1-2p 1-2p 1-2p 1-2p

Fig. 10. A stochastic model of dynamic supply noise.

TABLE I. COMPARISON ON CPU TIME FOR DATABASE

CONSTRUCTION.
Conventional [7] Proposed

Runs of logic sim. 132 × 90 = 11, 880 90

CPU time per run [s] 120 90

Runs of SSTA 0 132

CPU time per run [s] - 300

Total [h] 396 13.25

simulation. The adaptive speed control system based on TEP-
FF is analyzed in this subsection.

The proposed method reduced the number of simulations
(STA, SSTA, logic simulation) from Nstate × Nworkload

to Nstate + Nworkload. In this experiment, Nstate is 132,
Nworkload is 90. Table I shows the CPU time of each simu-
lation and total CPU time. These simulations were carried out
on a computer with CentOS5, Intel Xeon X5680 processor and
96GB memory. We can see that the proposed method reduced
the number of logic simulations from 11,800 to 90. On the
other hand the proposed method needs to perform SSTA, and
the number of SSTA runs is 132. As a result, the simulation
time for database construction is reduced from 396 hours to
13.25 hours, and its reduction ratio is 1/30. This speed-up will
be more significant if Nstate and/or Nworkload becomes larger.
The proposed method reduced the CPU time even while it
explicitly considers the within-die random process variation
whereas the conventional method cannot consider the random
variation. Besides, the impact of within-die process variation
will be evaluated in Section V-D. This speed-up facilitates
increasing the number of states for taking into account more
delay fluctuation sources.

D. Impact of Within-die Variation
Next, this section shows the impact of within-die process

variation on MTTF. To evaluate the impact of within-die
process variations, we estimated the MTTF of 100 chips
which had different within-die variation. The procedure of
MTTF estimation for each chip is the same as the proposed
MTTF estimation method except that the number of virtually
fabricated chip is one. Figure 11 shows the average and the
standard deviation of the MTTF. The X-axis of Fig. 11 is
the number of buffers inserted in TEP-FFs. As the number
of buffer becomes larger, the MTTF becomes longer since
the error prediction occurs earlier. More importantly, we can
see that all the standard deviations are larger than 9% of the
MTTF and the standard deviation of the 6 buffer case is larger
than 52%. This indicates that the within-die random variation
may change the MTTF several times when thinking of ±3σ.
Such MTTF variation cannot be estimated in the conventional
method [7]. The proposed method can improve the estimation
accuracy.

E. Analysis for Aging
To demonstrate that the proposed method can consider

gate-by-gate aging processes, we exemplified an analysis. We
used a simple aging model that is expressed by a Markov

Fig. 11. Effect of within-die random variation on MTTF. X-axis is the number
of buffers in the TEP-FFs. Error bars represent ±3σ.

model. The number of states is 8, and each state corresponds
to 0/1/2/3/4/5/6/7 ps increase in the gate delay from the
fresh chip. The state transition rates to the next state of
delay increase are [10−1, 10−2, ..., 10−7,0], and other state
transitions are not allowed, i.e. the state transition rates are
0.

In this experiment, a parameter of age was added, as
explained in Section IV-D. This parameter corresponds to the
elapsed time, and it is discretized into five states, where the
five states correspond to the elapsed times of 0, 2, 101, 1001,
10001 s, respectively.

The upper figure of Fig. 12 shows the MTTFs of the circuit
with and without adaptive speed control under the aging. The
supply voltage of the circuit without adaptive speed control
is fixed to 0.7V. The number of buffers in the TEP-FF is
three. We can see that the average supply voltage of the
circuit with adaptive speed control increases as the time elapses
and the aging effect proceeds. The bottom figure of Fig. 12
shows the accumulated failure probability. At the beginning,
the supply voltage of 0.7V gives enough timing margin, and
hence the increase in the accumulated failure probability is
smaller in the case without adaptive speed control. However,
as the time elapses, the timing margin of the circuit without
adaptive speed control becomes smaller, and the accumulated
failure probability increases faster. On the other hand, with
the adaptive speed control, the timing margin is kept almost
constant, and hence the increasing rate of the accumulated
failure probability, i.e. the failure rate, is almost constant.
For the real products, the failure rate needs to be reduced
further via design optimization, but the important point here
is that such an analysis can be performed with the proposed
estimation method.

F. Analysis Examples
Finally, we give two MTTF estimation results using on-

line and off-line adaptation. Figure 13 plots the MTTF when
the number of inserted TEP-FFs is changed from 10 to 1000.
The number of buffers in the TEP-FFs is five. We can see
the MTTF improved linearly to the number of TEP-FFs below
300, and above 300 the MTTF saturated. We can estimate how
many TEP-FFs are necessary to meet the error rate constraint.
Also guided by the proposed estimation method, the inserted
locations can be optimized, which is included in our future
works.

We next show the experiments of off-line adaptation.
To evaluate the impact of test coverage, we varied the test
coverage artificially and estimated the MTTF. Here, the test
coverage TC is defined so that TC % paths in the NSTA

Paper 15.1 INTERNATIONAL TEST CONFERENCE 9

w/ speed adapta�on

w/o speed adapta�on

w/o speed adapta�on

w/ speed adapta�on

0.69

0.70

0.71

0.72

0.73

Supply voltage [V]

Time [cycles]
1.0 2.0 3.0 4.0 5.00.50 1.5 2.5 3.5 4.5

× 1011

Time [cycles]
1.0 2.0 3.0 4.0 5.00.50 1.5 2.5 3.5 4.5

× 1011

0.02
0.02

0.04

0.06

0.08

0.10
Accumulated

failure probability

Fig. 12. MTTF and accumulated failure probability under an aging process.

 1e+06

 1e+07

 1e+08

 10 100 1000

M
TT

F[
cy

cl
es

]

of TEP-FFs
Fig. 13. MTTF versus the # of inserted TEP-FFs.

Fig. 14. MTTF versus test coverage TC of off-line adaptation. Error bars
represent ±3σ.

paths are testable. In this experiment, TC is varied from
20% to 90% with a step of 10%, and for each TC we
generated 30 sets of testable paths randomly. For each set
of testable paths, we evaluated the MTTF. Figure 14 shows
the mean and 3σ of the MTTF. We can see the mean of
MTTF improves as the test coverage TC increases, but there
is a considerable MTTF variation depending on the set of
testable paths. This observation indicates that the test pattern
preparation is influential on the MTTF and we will be able
to optimize the test patterns to maximize the MTTF using the
proposed estimation method.

VI. CONCLUSION

In this work, we proposed a stochastic MTTF estimation
framework under dynamic and process variations. While keep-
ing the advantages of the modeling of adaptive speed control as
a continuous-time Markov process, the proposed method can
reduce the CPU time for computing the transition rate matrix.
In addition, the proposed statistical state definition enables
to consider both inter-die and within-die delay fluctuation.
Thanks to the statistical state definition and fast transition
rate computation, the CPU time for the database construction
decreased to 1/30 while the proposed method newly considered
within-die random variation. This enablement of long MTTF
evaluation under static process variation and temporal fluctu-
ation contributes to quantitatively deriving appropriate design
and operational margins and helps design and validate adaptive
speed control system with field delay testing.

ACKNOWLEDGEMENTS

This work is supported by STARC.

REFERENCES

[1] M. Agarwal, B. C. Paul, Z. Ming, and S. Mitra, “Circuit Failure
Prediction and Its Application to Transistor Aging,” in Proc.
VTS, pp.277–286, 2007.

[2] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent Autonomous
Chip Self-Test Using Stored Test Patterns,” in Proc. DATE,
pp.885–890, 2008.

[3] S. Das, et.al., “A self-tuning DVS processor using delay-error
detection and correction,” IEEE JSSC, vol.41, pp.792–804, Apr.
2006.

[4] H. Fuketa, M. Hashimoto, Y. Mitsuyama, and T. Onoye, “Adap-
tive Performance Compensation with In-Situ Timing Error
Predictive Sensors for Subthreshold Circuits,” IEEE TVLSI, vol.
20, no. 2, pp. 333–343, Feb. 2012.

[5] K. A. Bowman, et.al., J. W. Tschanz, S. L. Lu, P. A. Aseron,
M. M. Khellah, A. Raychowdhury, B. M. Geuskens, C. Toku-
naga, C. B. Wilkerson, T. Karnik, and V. K. De, “A 45 nm Re-
silient Microprocessor Core for Dynamic Variation Tolerance,”
IEEE JSSC, Vol. 46 , No. 1, pp.194 –208, Jan. 2011.

[6] D. Blaauw, et.al., “Razor II: In Situ Error Detection and Correc-
tion for PVT and SER Tolerance,” in ISSCC Dig., pp.107–114,
2013.

[7] S. Iizuka, M. Mizuno, D. Kuroda, M. Hashimoto and T. Onoye,
“Stochastic error rate estimation for adaptive speed control with
field delay testing,” in Proc. ICCAD, pp. 107–114, 2013.

[8] H. Fuketa, M. Hashimoto, Y. Mitsuyama, and T. Onoye, “Trade-
Off Analysis between Timing Error Rate and Power Dissipation
for Adaptive Speed Control with Timing Error Prediction,”
IEICE Trans. Fundamentals, vol. E92-A, no. 12, pp. 3094–
3102, Dec. 2009.

[9] A. Papoulis and S. U. Pillai, “Probability, Random Variables
and Stochastic Process, Fourth Edition,” McGraw-Hill Higher
Education, 2002.

[10] J. R. Norris, “Markov Chains,” Cambridge University Press,
1997.

[11] M. R. Guthaus, et.al., “Mibench: A free, commercially repre-
sentative embedded benchmark suite,” in Proc. IEEE Workshop
on Workload Characterization, 2001.

[12] V. Veetil, K. Chopra, D. Blaauw, D. Sylvester, “Fast Statistical
Static Timing Analysis Using Smart Monte Carlo Techniques,”
IEEE Trans. CAD, Vol. 30, No. 6, pp. 852865, June 2011.

[13] D. Blaauw, K. Chopra, A. Srivastava, L. Scheffer, “Statistical
Timing Analysis: From Basic Principles to State of the Art,”
IEEE Trans. CAD, Vol. 27, No. 4, pp. 589607, April 2008.

Paper 15.1 INTERNATIONAL TEST CONFERENCE 10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

