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SUMMARY As VLSI process node continue to shrink, chemical me-
chanical planarization (CMP) process for copper interconnect has become
an essential technique for enabling many-layer interconnection. Recently,
Edge-over-Erosion error (EoE-error), which originates from overpolishing
and could cause yield loss, is observed in various CMP processes, while
its mechanism is still unclear. To predict these errors, we propose an EoE-
error prediction method that exploits machine learning algorithms. The
proposed method consists of (1) error analysis stage, (2) layout parameter
extraction stage, (3) model construction stage and (4) prediction stage. In
the error analysis and parameter extraction stages, we analyze test chips
and identify layout parameters which have an impact on EoE phenomenon.
In the model construction stage, we construct a prediction model using the
proposed multi-level machine learning method, and do predictions for de-
signed layouts in the prediction stage. Experimental results show that the
proposed method attained 2.7∼19.2% accuracy improvement of EoE-error
prediction and 0.8∼10.1% improvement of non-EoE-error prediction com-
pared with general machine learning methods. The proposed method makes
it possible to prevent unexpected yield loss by recognizing EoE-errors be-
fore manufacturing.
key words: Edge-over-Erosion,CMP, manufacturability, machine learning

1. Introduction

Copper (Cu) interconnect is widely applied at sub-90 nm
process technologies, because of its lower resistance as
compared to aluminum. Instead of dry-etch process used
in aluminum process, Cu interconnect structure is con-
structed by damascene process. In this process, interconnect
trenches and via holes are etched after interlayer dielectric
(ILD) deposition. Then a thin barrier metal layer, which
facilitates Cu film generation, is deposited as a seed layer.
Next, Cu is deposited to fill up the trenches and holes on
the whole wafer surface by Electro-Chemical Plating (ECP)
process. Finally, Cu outside the trenches and holes is re-
moved to generate interconnect patterns.

Chemical Mechanical Planarization (CMP) is a tech-
nique to remove redundant Cu and to planarize the surface
of wafers. However, CMP process causes undesirable wafer
surface ununiformity [1], [2]. This Cu and ILD thickness
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Fig. 1 Cross sectional view of interconnect layer.

variations strongly depend on thickness variations in ECP
process, chip layout pattern, and polishing rate of each ma-
terial [3], [4]. Figure 1 shows the cross sectional view of
thickness variations. Dishing is the height difference be-
tween Cu and neighbor ILD region, and erosion is the differ-
ence in ILD height between pre- and post-CMP processes.
Thickness variations produce chip performance degradation
due to an increase in wire resistance and capacitance, and
may cause open/short errors. Furthermore, thickness vari-
ations are propagated to upper layers, and the accumulated
variations could cause an excess of depth-of-focus in pho-
tolithography and short errors in the worst case [4], [5]. This
thickness variation is getting severer according to device
miniaturization, which imposes more precise planarization
on CMP process. In recent technologies, thickness varia-
tions due to CMP process are major cause of yield loss [6]–
[9].

Recently Edge-over-Erosion error (EoE-error) is fre-
quently observed [10] in addition to dishing and erosion.
Figure 1 also illustrates the cross section of an EoE-error.
This error occurs at selective CMP step. At this step, mul-
tiple materials are polished simultaneously, where the re-
moval rate of Cu is much higher than that of barrier metal.
At the location where an EoE-error occurs, the unexpected
overpolishing error can be more than ten times larger than
an estimate which is predicted from material-dependent re-
moval rates. EoE-errors cause open errors, and furthermore
may cause short errors at its upper layer. Although several
works investigated the root cause of EoE phenomenon [10],
[11], little is known about the mechanism of this problem.

To avoid EoE induced open and short errors, we need to
mitigate EoE-errors. However, it is too costly to modify chip
layout to mitigate EoE-errors after manufacturing and test-
ing. Another approach for EoE mitigation is to tune some
CMP process parameters, such as slurry, polishing pad, ro-
tation speed, pressure, etc. [11], but it involves a comprehen-
sive and consequently expensive tuning because CMP pro-
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cess is very sensitive to various parameters and their inter-
dependency. CMP simulation is an effective method to pre-
dict thickness variations before manufacturing and nowa-
days has become an essential step to optimize wafer surface
uniformity in chip design flow [12], [13]. However, no tools
take into account EoE-error problem explicitly. Therefore,
it is highly demanded to develop a prediction method that
systematically estimates EoE-errors in design time to avoid
unexpected yield loss.

Motivated by this, we developed a systematic EoE pre-
diction method aiming at mitigating EoE-errors in design
time. Contributions of this work include the followings:

• This is the first work that presents an EoE-error predic-
tion method. Because of the high sensitivity of EoE phe-
nomenon to CMP process condition, there is a certain
amount of noise peculiar to individual chips, and hence
an overfitting problem easily happens with normal ma-
chine learning algorithms when pursuing high accuracy.
We thus explored and applied multi-level machine learn-
ing algorithm suitable for EoE-error prediction.
• We present a procedure that extracts model parameters

which should be included as variables in machine learn-
ing for EoE model construction. By analyzing test chips,
we find the layout parameters which really have an impact
on the ambiguous EoE phenomenon, and screen out non-
influential parameters which degrade accuracy as noise
sources.
• We assessed the accuracy of the proposed method with

industrial chip data.

The rest of the paper is organized as follows: In Sect. 2
we provide the overview of the proposed method consist-
ing of four stages; error analysis stage, layout parameter
extraction stage, model construction stage and prediction
stage. Then we introduce error analysis and parameter ex-
traction stages in Sect. 3 and model construction and pre-
diction stages in Sect. 4. Section 5 presents the results and
analysis of the proposed method. Finally, Sect. 6 concludes
this paper.

2. Concept and Overview

In this section, we explain the concept and overview of the
proposed method.

2.1 Concept of EoE-Error Prediction Method

As mentioned in the previous section, the mechanism of
EoE occurrence is complicated and is not understood well
enough to build a physical EoE model. Thus, instead of
constructing a physical EoE model, the proposed method
employs machine learning techniques to predict EoE-error
locations with measurement data of real chips. Here, ma-
chine learning technique is a general method for statistical
data analysis and a powerful tool for finding regularities in
the dataset.

The proposed method first selects an appropriate set of

Fig. 2 Overview of proposed EoE-error prediction method.

layout parameters to model EoE-error by analyzing mea-
surement data of the test chip designed for this EoE mod-
eling purpose, because at the beginning there is little infor-
mation about phenomenon in the process technology of in-
terest. Then the proposed method constructs a model which
has these layout parameters as variables using another mea-
surement data of a calibration chip which is designed for a
real product and includes various layout patterns.

2.2 Overview of EoE-Error Prediction Method

Figure 2 shows the flow of EoE-error prediction method.
This method consists of four stages: error analysis stage,
parameter extraction stage, construction stage and predic-
tion stage. We first analyze the EoE-error measurement data
of the test chips to clarify which layout parameter should
be included as variables in the prediction model. Next, lay-
out parameters selected in the previous error analysis are ex-
tracted from the calibration chips. Then, model construction
process is carried out with machine learning methods and
a prediction model is constructed. Finally, the constructed
model is applied to new designs and we predict EoE-errors
before manufacturing.

To find parameters which affect EoE-errors, a detailed
analysis is executed with the surface measurement data of
the test chip. Figure 3 shows the details of the test chip. We
define two terms in Fig. 3 as follows:

• Module: A module is filled with a set of regular wires.
Each module has parameters: wire width, metal density,
and module size. Metal density is defined as the ratio of
Cu wires area to the module area. Within the module, the
wire width and space are uniform. A module is filled with
Cu only when metal density is 100% and filled with di-
electric only when metal density is 0%. The area outside
modules is filled with dummy metals.
• Array: An array consists of modules. Each array has its

own target parameter to investigate the EoE dependency
on the parameter. In each array, the modules have differ-
ent values of the target parameter, while other parameters
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Fig. 3 Test chip structure.

are set to the same value in all the modules.

For example, each module in array A has the same
module size, the same wire width, and different metal den-
sities. In array B, module size is various but other parame-
ters are the same. Analyzing the post-CMP surface of such
patterns enables us to roughly recognize parameters which
affect EoE-errors.

Then, layout parameters of interest, e.g. metal density
and line width, are extracted from the original chip data and
converted to new database. Hereafter, layout parameters
mean these parameters. Generally, the physical chip data
is recorded in GDSII (Graphic Data System 2) form at or
OASIS (Open Artwork System Interchange Standard) for-
mat. These databases have a large file size (more than tens
of gigabytes) since they have the entire chip information,
and it costs much to get layout parameters directly from the
original database. To reduce the size of database and calcu-
lation cost, a whole chip is discretized into small tiles and
related parameters are extracted and recorded for each tile.

In the model construction stage, we use an industrial
chip as a calibration chip and build the EoE prediction
model that has the layout parameters selected in error anal-
ysis stage as variables. In contrast with the test chip men-
tioned above, a wide range of layout parameter values and
more complex combinations of multiple layout parameters
are included in a real design. Therefore the training with
an industrial chip is suitable for evaluating the effect of each
parameter quantitatively. Besides, the EoE-error area is gen-
erally very small (< 1% of whole chip area). The number
of EoE-error tiles, which are tiles that include EoE-error,
is much smaller than that of non-EoE-error tiles in a chip.
When we build a prediction model, the training dataset from
industrial chips becomes imbalanced, i.e. the numbers of
EoE-error and non-EoE-error tiles in the training dataset be-
come imbalanced, which causes poor performance of ma-
chine learning algorithms. Instead, in order to construct a
precise model, the training dataset which includes EoE-error
and non-EoE-error tiles with an appropriate ratio (e.g. 50%)
must be prepared by non-uniform sampling and given to ma-
chine learning algorithms.

After constructing the EoE prediction model with ma-
chine learning algorithms, we predict EoE-errors of new

chips in prediction stage. Note that this prediction model
can be applied to the chips which will be manufactured un-
der the same process condition. If the process condition is
changed, model construction for the new condition needs to
be executed.

3. Error Analysis and Parameter Extraction Stages

This section explains the error analysis and parameter ex-
traction stages in which we extract layout parameters with
analyzing the post-CMP surface data of the test chip.

The test chip includes modules with various values of
line width, density, and module sizes. The space between
modules is filled with dummy metal patterns. For the pur-
pose of data size reduction, the whole chip is divided into
small tiles, as mentioned before. The prediction model is
built as a function of average parameters of adjacent tiles
instead of individual metal segments. The tile size has an
impact on trade-off relation between computational cost and
estimation accuracy, and a tile size of 10–40 μm is often
used in ECP and CMP process simulation for sub-100 nm
processes [14], [15]. In this work, the tile size was set to
10 × 10 μm thinking much of the accuracy. Considering the
impact on wire parameter variation and Cu residue of upper
layer, we define the EoE-error as the place at which a height
of erosion is larger than 40% of wire height.

Figures 4 and 5 show the cross section of some mod-
ules in the test chip after CMP. In all cases erosion is
observed at the high metal density side of the boundary
between module and inter-module area, where the inter-
module area is filled with dummy metals. More importantly,
in the cases of (a) of both figures, EoE-errors are observed.
The height of EoE-error is as tall as wire height and then
open error occurs. With analyzing these data carefully, the
following layout parameters seem to have a relation to EoE-
errors.

(1) Metal density
We first examine Figs. 4(a) and (b). EoE-errors are ob-
served at the place where the metal density is higher
than its adjacent area. When the difference in metal den-
sity between adjacent areas is not sufficient, EoE-errors
are not observed (Fig. 4(b)).
On the other hand, not only the difference between adja-
cent areas, but the absolute value of metal density plays
an important role. In Fig. 4(c), the metal density differ-
ence is larger than that of case (a), but no EoE-errors are
observed. For these reason, we use metal density of the
tile and max/min metal density of adjacent tiles.

(2) Effective density
In spite that metal density is 0% in the module area in
both cases of Fig. 5, EoE-errors are observed only in
case (a). This difference suggests that the metal den-
sity variation within a small region is filtered out and
high frequency components of metal density in space
need to be eliminated for EoE-error prediction. For
this purpose, we introduce a parameter called “effec-
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Fig. 4 Relationship between EoE and module density.

Fig. 5 Relationship between EoE and module size.

Fig. 6 Definition of effective length.

tive length”. Figure 6 shows the definition of effective
length. The effective length is the distance in which
a feature influences planarization in polishing process.
This parameter is also called “planarization length” or
“interaction length”, and an appropriate value of effec-
tive length is determined by CMP process modeling
methodology in each process condition [2], [5], [15],
[16]. Using this effective length, we define effective
density of each tile such that effective density is the av-
erage metal density within the range of effective length
from the tile of interest (Fig. 7).
With further observations from the test chip, it turns out
that EoE-errors occur at the place where the metal den-

Fig. 7 Region for effective density computation.

Fig. 8 Density deviation vs. EoE-error occurrence in a 65 nm process.

sity is higher than the effective density. We define a
parameter of density deviation Dd as follows:

Dd =
De − D

D
(1)

where D is metal density and De is effective density.
Here, metal density D is defined as the average metal
density within the tile of interest. Figure 8 illustrates
the relationship between Dd and erosion depth (EoE oc-
currence) at the edge of various modules in a 65 nm
technology node. This result shows that Dd is a good
indicator for EoE-error.

(3) Line width
Wider metal lines are likely to become a cause of EoE-
errors. The EoE-error of narrow lines ranges over mul-
tiple materials, while that of wider lines is mainly due
to the disappearance of Cu metal (Fig. 9). Generally, the
polishing rate of barrier metal is much smaller than that
of other materials, and hence we have to consider the
line width.
We then make a database including following param-
eters for each discretized tile: metal density, max/min
metal density of adjacent tiles, effective density, density
deviation, and line width. This database will be used in
the next model construction stage.

For this 65 nm technology node, we select these 6 lay-
out parameters to model EoE-errors. For another technology
node, such as advanced technology, the layout parameters
that have impact on EoE-errors may change. On the other
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Fig. 9 Detailed shapes of EoE cross section.

hand, it is expected that error analysis stage identifies influ-
ential layout parameters on EoE-errors at a particular tech-
nology of interest, since a test chip fabricated in the technol-
ogy, which includes various layout patterns and covers wide
range of parameters, is newly analyzed. Once the influential
parameters are identified, we construct a prediction model
that have the influential parameters as input variables and
use the model for EoE-error prediction.

It should be noted that these parameters are affected by
process variation. Especially etching and lithography pro-
cesses have a great influence on line width variation [17],
[18]. Additional process might be required to eliminate the
impact of process variation if the impact is not negligible.

4. Model Construction and Prediction Stage

In model construction stage, we build a prediction model
that has the layout parameters selected in Sect. 3 as variables
with binary classification method using machine learning al-
gorithms. In each tile of the chip, a prediction model with
layout parameters of each tile mentioned in Sect. 3 can pre-
dict whether EoE-error occurs or not.

Before explaining details of the prediction model con-
struction, an accuracy metric of the prediction, which is
considered in this paper, is introduced. As mentioned be-
fore, the dataset of industrial chips is imbalanced. In imbal-
anced dataset, the model performance cannot be expressed
in terms of the average accuracy.

Table 1 shows the confusion matrix. Each column of
the matrix represents the instances of prediction class, and
each row represents the instances of an actual class. For ex-
ample, when 1% samples are EoE-error and others are non-
EoE-error, 99% accuracy is achieved by the model that all
samples are judged as non-EoE-error ((a+d)/(a+b+c+d)).
In this case, we cannot identify the samples that are likely
cause EoE-error with such a model even while the accuracy
is 99%. Considering this fact, we use geometric mean (g-
mean) as a metric to evaluate the accuracy of the prediction
model. G-mean g is defined as:

g =
√

Perr × Pok

Perr =
a

a + b
, Pok =

d
c + d

(2)

where Perr is the rate of correctly predicted EoE-errors from
all EoE-error samples, Pok is that of non-EoE-error samples,
a, b, c, and d is the number of instances in Table 1. Because

Table 1 Confusion matrix.

accuracy is calculated on the majority class and minority
class separately, g-mean is suitable for evaluating the accu-
racy of imbalanced data classification problems [19]. In the
previous case, g-mean value is 0 because Pok value is 100%
and Perr value is 0%.

4.1 Machine Learning Algorithms

This subsection briefly summarizes machine learning ker-
nels we employed in this work.

4.1.1 RPART (Recursive Partitioning)

RPART [20] is a classification method using a 2-stage pro-
cedure, and provides resulting models represented by binary
trees. This technique splits the samples using one input vari-
able, i.e. a layout parameter in this paper, with a threshold
value which makes the gain of splitting index maximum.
This routine is applied to each separated group recursively
until the subset size reaches to the minimum threshold or
until no improvement can be obtained. In this work, we
used Gini index as the splitting index. Gini index is given as
follows:

I(g) = 1 −
2∑

i=1

p2
i (3)

where pi is the fraction of samples belonging to class i (er-
ror or not) at a given node. This index reaches 0 when all
the samples belong to a single class. Larger Gini index im-
provement indicates better sample splitting.

4.1.2 RF (Random Forest)

RF method [21] is an ensemble learning method for classi-
fication aiming to improve prediction ability and stability of
RPART. RF method consists of a number of decision trees
and performs classification by majority vote of all the trees.
This method is processed with the following steps:

Step 1 N sets of bootstrapped samples are extracted from
the original data.

Step 2 For each set, a tree is built by RPART method with
m variables randomly selected out of M variables,
where the variables correspond to layout parameters
in this paper.

Step 3 In prediction process, a new sample is classified by
individual trees, and the majority result is selected as
the classification result.
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4.1.3 SVM (Support Vector Machine)

Suppose that each tile m can be described as a vector of n
layout parameters x = ( f1, . . . , fn). SVM [22] constructs hy-
perplanes that optimally classify the data with these training
vectors. Hyperplanes are set so as to attain the largest sepa-
ration margin, where separation margin is the distance to the
nearest training data. The vectors which form the boundary
are called as support vectors.

On the other hand, there are a number of data sets
which cannot be well separated linearly. For such data sets,
kernel trick [23] provides improved separability. The kernel
trick maps the original samples into a higher dimensional
space, and it provides a method to nonlinearly separate the
data set. Besides, there are several popular kernels, and this
work used RBF (radial basis function) kernel. RBF kernel
is defined as follows:

K(x, x j) = exp
(
−σ
∥∥∥x − x j

∥∥∥2
)

(4)

where x and x j are feature vectors, and σ is a free parameter.
Soft margin method [24] is also applied to our SVM

prediction model. When error vectors are not separable due
to EoE-error complexity and/or noise, slack variable ξ is in-
troduced to allow mislabeled samples by paying violation
penalty. The optimization problem is:

min
a,b,ξ

1
2
‖a‖2 + C

m∑
i=1

ξi

Subject to ξi ≥ 1 − yi (a · xi + b)

ξi ≥ 0 (i = 1, 2, . . . ,m) (5)

where a and b are parameters of hyperplane, yi is a sign
function of (a · xi + b), and C is a parameter of soft margin
to control the weight of penalty.

4.2 Multi-Level Machine Learning Algorithm

When pursuing accurate prediction of EoE-errors with the
above algorithms, models tend to be more and more com-
plex. In other word, the size of decision trees becomes large
in RPART method and the number of support vectors in-
creases in SVM method.

Figure 10 shows the complexity of SVM model in 2-
dimensional graph. Figure 10(a) shows a simple model
composed of two support vectors. All vectors above the
dotted line are regarded as EoE-errors. A complex model is
shown in Fig. 10(b), where the number of support vectors is
increased. The error region is smaller than that of Fig. 10(a)
and the number of mislabeled samples is decreased.

While a complex model improves the value of Eq. (2),
an increase in model complexity may cause an overfitting
problem. Overfitting degrades the generality of the model,
which results in a bad performance in predicting new data
in spite that the prediction for known data is accurate.

To achieve high accuracy without degrading general-
ity, we introduce a multi-level machine learning algorithm

Fig. 10 Model complexity of SVM method.

(MML). In this method, we apply multiple trainings to the
data in sequence. MML consists of screening and brushup
steps. The aim of screening step is to reduce a number of
non-EoE-error samples and outliers. This step is helpful for
complexity reduction of the model which will be built at the
next brushup step. In other words, this step reduces error
classification patterns and outlier samples to be considered
at brushup step to avoid overfitting problem. At brushup
step, prediction model is constructed with samples labeled
as an EoE-error in screening step. Details of each step will
be explained in the following.

4.2.1 Screening Step

At screening step, we apply the first training and predict
EoE-errors. The samples labeled as an EoE-error at this step
go to next step and the others are regarded as non-EoE-error
samples. Because the purpose of this step is the screening of
non-EoE-error samples, high Perr value in Eq. (2) is required
in the model constructed at this step.

4.2.2 Brushup Step

The samples labeled as an EoE-error at screening step in-
clude many false errors, which is the non-EoE-error sam-
ples misjudged as EoE-error, since improving Pok is scarcely
considered at screening step. This brushup step aims to re-
duce false errors for attaining high g-mean value in Eq. (2).
Besides, each learning method has individual features (en-
semble/single classifier, linear/non-linear classification, for
example), and samples which are poorly classified by one
method may be accurately predicted by another method.
This multi-step classification is thus expected to attain
higher accuracy, since advantages of both methods can be
exploited while concealing disadvantages.

We attempted various combinations (strictly speaking
various permutations since the order also affects the accu-
racy) of learning methods and numbers of learning steps.
Experimental setup was the same with that in Sect. 5, and
chip C1 data was used here. The detail will be explained
later. We first tested 2-level permutations that include
RF, where RF attained the highest accuracy among single-
level prediction methods explained in Sect. 4.1, and found
that those permutations degraded the accuracy compared to
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Fig. 11 Comparison of Accuracy rate of (a) combinations of learning
method and (b) number of multi-level.

single-level RF. We thus excluded the permutations that in-
cluded RF. We then evaluated the combinations of RPART
and SVM. Figure 11(a) shows the accuracy rate of Eq. (2),
and we can see that the permutation of RPART as the first
stage and SVM as the second stage improved the accuracy,
where the accuracy rates of single-stage RPART and SVM
were 90.5% and 92.2%. We also tested RPART+RPART
and SVM+SVM, but these could not improve the accuracy.

This result indicates that a better classification result
can be expected when RPART method is applied to screen-
ing step and SVM method is applied to brushup step. We
think there are two reasons for this result. 1) RPART is a
simple method and this feature matches the aim of screen-
ing. 2) RPART is based on decision tree algorithm. SVM
method may compensate weak points of this algorithm in
EoE-error classification problem. Moreover, we attempted
2, 3, and 4-level learning steps. RPART was applied to
the 1st step and SVM was applied to the other steps. Fig-
ure 11(b) shows the result. This result shows that the ac-
curacy metric of Eq. (2) starts to degrade when the number
of learning steps is 3 and more. We thus concluded that
RPART and SVM methods should be used at screening and
brushup steps respectively, and two-step classification with
screening and brushup steps was reasonable.

4.3 Model Construction and Prediction Flow

Figure 12 shows the detailed flow of model construction and
prediction stages in Fig. 2. In model construction stage, we
build two prediction models with an industrial chip (calib-
chip). The overall EoE-error prediction model of MML al-
gorithm consists of Models 1 and 2 constructed in screening
stage and brushup stage, respectively.

First, we construct input database that includes lay-
out parameters and the EoE-error information for each dis-
cretized tile.

Next, EoE-error and non-EoE-error tiles are sampled
from the database as a subset1, which is used as the training
dataset for Model 1 construction. As previously mentioned,
EoE-error/non-EoE-error class distribution in the database
is imbalanced. Sampling is a common practice to improve
classifier performance and numerous methods are proposed

Fig. 12 Detailed flow of construction and prediction stages with multi-
level machine learning method.

[19], [25]–[28]. According to a comparison of various sam-
pling methods [29], random under sampling (RUS) method
is one of the best sampling techniques for the purpose of
the learning from imbalanced data. In RUS method, sam-
ples of the majority class are randomly discarded and the
training dataset becomes balanced. We apply RUS method
to non-EoE-error samples and make subset1 which includes
all EoE-error samples and reduced non-EoE-error samples,
and construction of Model 1 is carried out with this training
dataset.

In the proposed MML method, samples labeled as
non-EoE-error at screening step with Model 1 are dis-
carded before brushup step and EoE-error/non-EoE-error ra-
tio changes. Thus, Model 2 construction is carried out with
new training dataset subset2. This dataset is constructed
from samples labeled as an EoE-error with Model 1. Be-
cause EoE-error/non-EoE-error distribution of the data pass-
ing through Model 1 is still imbalanced, we apply RUS
method to non-EoE-error samples again to make subset2
which includes all EoE-error samples and reduced non-EoE-
error samples. Then the prediction model of brushup step
(Model 2) is constructed with subset2.

In prediction stage, EoE-errors of new chips are pre-
dicted with Model 1 and Model 2 in sequence.

5. Experimental Results

Here we present experimental results to validate the pro-
posed method. We obtained EoE-error data from three in-
dustrial chips. Note that the silicon measurement to identify
EoE-error coordinates requires huge cost, which motivated
us to develop EoE-error prediction model. We used one chip
to construct the prediction models and other two chips to
validate the efficiency to unknown data.

Table 2 lists the details of calibration data (C1) and data
for validation (V1, V2) with 65 nm technology node. The
tile size of each data was set to 10 × 10 μm. The number of
EoE-error tiles was measured from actual chips whose CMP
process had been completed. We extracted layout param-
eters explained in Sect. 3, and obtained model parameters
with industrial chip C1. Chip V1 and V2 cover wide ranges
of the tile-by-tile layout parameter values and have different
distribution shapes of the parameters.

We implemented RPART, RF, SVM, and the proposed
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Table 2 Details of calibration/validation chips.

Table 3 Prediction performance comparison.

MML methods in R language [30]. In each method,
training dataset consists of all EoE-error samples and
proper amount of non-EoE-error samples selected with RUS
method. In addition to model parameters, the balance
of non-EoE-error/EoE-error class heavily affects prediction
performance. Therefore we calibrate model parameters
and non-EoE-error/ EoE-error sample ratio of the training
dataset in each method. At construction step, we use default
values of N = 500, M = 6, and m = 2 in RF method of R
library [30]. C and σ in SVM method are set as calibration
parameters.

Table 3 shows the performance of each method for cal-
ibration chip C1. SC and BU represent the screening and
brushup steps, respectively. The meanings of Perr, Pok, and
g-mean are the same with Eq. (2). “Ratio” denotes the ratio
of non-EoE-error samples to EoE-error samples in training
dataset which achieved the best value of g in C1. Sample
ratio affects the relationship between EoE-error and non-
EoE-error sample’s misclassification cost. Figure 13 shows
the value of Perr, Pok, and g-mean with various sampling
ratio of SVM method (C = 10). When sample ratio value
becomes large, the misclassification cost of EoE-error sam-
ple decreases and that of non-EoE-error sample increases,
which results in decrease of Perr and increase of Pok.

RF method shows good performance in the calibra-
tion chip. RF is the only method that did not miss the ac-
tual EoE-errors. MML method also attained high g-mean
value. At screening step of MML, RPART method is applied
and it uses smaller sample ratio (0.2) than that of single-
level RPART method (0.5). In MML method, samples la-
beled as non-EoE-error at screening step are discarded be-
fore brushup step. High Perr and low Pok value at screening
step caused by lower sample ratio means that only outlier
EoE-error samples and obvious non-EoE-error samples are

Fig. 13 Perr , Perr , and g-mean with various sampling ratio in SVM.

removed from dataset. Detailed classification is processed
in brushup step. According to this step, the complexity of
classification is reduced and the g-mean value after brushup
step which is processed with SVM method is higher than
that of single-level RPART and SVM method. According to
the result of calibration, Dd was the most influential param-
eter to EoE-errors in this 65 nm technology node.

Table 3 also shows the performance of each method for
the validation chips. While it achieved the highest perfor-
mance for calibration chip C1, RF method shows the worst
performance in both V1 and V2. This is due to the lowest
Pok value even though Perr value is higher than other single-
level methods. It is considered that overfitting problem oc-
curs in RF method.

In chip V1, similar g-mean values are observed in all
the method. In contrast, compared to chip V1, the perfor-
mance of single-level methods degraded in chip V2 although
the proposed MML method kept up its accuracy. A possible
reason why the performance in chip V1 was better than that
in V2 is that chip V1 had some similarities with calibra-
tion chip C1, such as the average density. Compared with
other methods, MML shows the best performance in both
Perr and Pok. MML improved Perr by 2.7∼19.2% and Pok

by 0.8∼10.1%. In MML method, we apply multiple simple
models aiming to achieve high accuracy without sacrificing
generality. This concept prevents overfitting problems in
construction process and contributes to sustaining the clas-
sification performance to new chip data.

Even while Perr attained high percentages of 87.1%
and 88.6% in chips V1 and V2, the number of non-EoE-
error samples labeled as an EoE-error is more than ten times
as large as the numbers of EoE-error samples labeled cor-
rectly, since the rate of EoE-error/non-EoE-error samples
is imbalanced as listed in Table 2. However, the proposed
method is still useful in design phase with the following
three reasons.

Firstly, it is too costly in both mask cost and time to
modify layout after fabrication and measurement than to
modify layout in pre-manufacturing phase. This proposed
method is the first solution to predict EoE-errors before
manufacturing.

Secondly, potential EoE-errors are likely to exist in
mislabeled non-EoE-error samples. We here define poten-
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Fig. 14 Details of EoE-errors in chip V1a.

tial EoE-error as a non-EoE-error sample which is EoE-error
in other chip because of inter-chip variations. According to
various process variations due to, for example, CMP, ECP
and wafer location, EoE-error location and EoE-error num-
bers are different between chips. To clarify this, we mea-
sured EoE-error of chip V1a, which was fabricated on the
same wafer of chip V1 and has exactly the same layout with
chip V1. Figure 14 shows the details of EoE-errors of chip
V1a. The total EoE-error number is 4105 and the numbers
of EoE-errors observed at the same locations with chip V1
is 1287. Other 2818 EoE-errors are potential EoE-errors of
chip V1. They are treated as non-EoE-error samples in chip
V1, but 1926 samples are labeled as EoE-error in prediction
of chip V1. Further evaluation on potential EoE-errors in
prediction model is a future work.

Finally, EoE-error reduction cost in design phase is
not expensive. In general, dummy metal optimization tech-
nique is used to planarize wafer surface and several meth-
ods are proposed [3], [9], [13], where dummy metal modi-
fication does not affect the logic function of the circuit and
wire topology. Guided by the proposed prediction model,
dummy metal patterns can be modified so that tiles labeled
EoE-error are altered to tiles labeled non-EoE-error.

6. Conclusion

In this paper we proposed the first EoE-error prediction
method with powerful learning algorithms. It consists of er-
ror analysis stage, layout parameter extraction stage, model
construction stage and prediction stage. In error analy-
sis and layout parameter extraction stages, we define and
extract layout parameters having an impact on EoE phe-
nomenon with analysis of the test chip. In model con-
struction and prediction stages, we use multi-level machine
learning method which can predict EoE-error locations ac-
curately. This method makes it possible to prevent yield loss
with recognizing EoE-error before manufacturing.
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