
2518
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.12 DECEMBER 2014

PAPER Special Section on VLSI Design and CAD Algorithms

Reliability-Configurable Mixed-Grained Reconfigurable Array
Supporting C-Based Design and Its Irradiation Testing

Hiroaki KONOURA† ,††, Student Member, Dawood ALNAJJAR†,††, Nonmember, Yukio MITSUYAMA††† ,††a),
Hajime SHIMADA††††,††, Kazutoshi KOBAYASHI††††† ,††, Hiroyuki KANBARA††††††,††,

Hiroyuki OCHI∗,††, Members, Takashi IMAGAWA∗∗, Nonmember, Kazutoshi WAKABAYASHI∗∗∗, Fellow,
Masanori HASHIMOTO† ,††b), Takao ONOYE†,††c), Members, and Hidetoshi ONODERA∗∗,††, Fellow

SUMMARY This paper proposes a mixed-grained reconfigurable ar-
chitecture consisting of fine-grained and coarse-grained fabrics, each of
which can be configured for different levels of reliability depending on the
reliability requirement of target applications, e.g. mission-critical applica-
tions to consumer products. Thanks to the fine-grained fabrics, the archi-
tecture can accommodate a state machine, which is indispensable for ex-
ploiting C-based behavioral synthesis to trade latency with resource usage
through multi-step processing using dynamic reconfiguration. In imple-
menting the architecture, the strategy of dynamic reconfiguration, the as-
signment of configuration storage and the number of implementable states
are key factors that determine the achievable trade-off between used sili-
con area and latency. We thus split the configuration bits into two classes;
state-wise configuration bits and state-invariant configuration bits for min-
imizing area overhead of configuration bit storage. Through a case study,
we experimentally explore the appropriate number of implementable states.
A proof-of-concept VLSI chip was fabricated in 65 nm process. Measure-
ment results show that applications on the chip can be working in a harsh
radiation environment. Irradiation tests also show the correlation between
the number of sensitive bits and the mean time to failure. Furthermore,
the temporal error rate of an example application due to soft errors in the
datapath was measured and demonstrated for reliability-aware mapping.
key words: reconfigurable architecture, soft error, radiation test, behav-
ioral synthesis, state machine

Manuscript received March 17, 2014.
Manuscript revised June 30, 2014.
†The authors are with the Department of Information Systems

Engineering, Osaka University, Suita-shi, 565-0871 Japan.
††The authors are with CREST, JST, Kawaguchi-shi, 332-0012

Japan.
†††The author is with the School of Systems Engineering, Kochi

University of Technology, Kami-shi, 782-8502 Japan.
††††The author is with the Information Technology Center, Na-

goya University, Nagoya-shi, 464-8601 Japan.
†††††The author is with the Graduate School of Science and Tech-

nology, Kyoto Institute of Technology, Kyoto-shi, 606-8585 Japan.
††††††The author is with Advanced Scientific Technology & Man-
agement Research Institute of KYOTO, Kyoto-shi, 600-8813
Japan.

∗The author is with the Graduate School of Information Sci-
ence and Engineering, Ritsumeikan University, Kusatsu-shi, 525-
8577 Japan.
∗∗The authors are with the Department of Communications and

Computer Engineering, Kyoto University, Kyoto-shi, 606-8501
Japan.
∗∗∗The author is with NEC Corporation, Kawasaki-shi, 211-8666

Japan.
a) E-mail: mitsuyama.yukio@kochi-tech.ac.jp
b) E-mail: hasimoto@ist.osaka-u.ac.jp
c) E-mail: onoye@ist.osaka-u.ac.jp

DOI: 10.1587/transfun.E97.A.2518

1. Introduction

Coarse-grained reconfigurable architectures (CGRA) have
been studied to fill the performance gap between FPGA
and ASIC by reasonably limiting application domains and
programmability. Recently, the reliability of reconfigurable
devices is drawing attentions, since implementing mission-
critical applications with high reliability on reconfigurable
devices is highly demanded for saving NRE costs. Espe-
cially, soft errors are one of serious concerns threatening
reliability of mission-critical applications. Soft errors in-
clude single event upset (SEU) where a charge occurring in
memory elements causes a bit-flip and single event transient
(SET) where a charge occurring in a combinational logic
propagates to memory elements and causes a bit-flip. From
reliability point of view, CGRA is inherently superior in soft
error immunity to FPGA, since the amount of configuration
bits is by orders of magnitude smaller than that of FPGA.
[1]–[3] proposed several CGRAs with reliability consider-
ation. Previously, we developed a reliability-configurable
CGRA where the reliability level of each processing ele-
ment (PE) can be chosen flexibly depending on applications
and environments [4]. In [4], the trade-off between soft error
immunity and area is successfully demonstrated on a 65 nm
test chip under irradiation.

Thus far, while many CGRAs have been proposed
(e.g. [5]–[8]), their adoption for commercial use is limited,
especially when compared to FPGAs despite of their larger
power dissipation and area. CGRA is basically composed of
an array of ALUs handling multi-bit operands, and is suit-
able for data-path implementation. On the other hand, it is
not good at efficiently implementing one-bit operations that
are often found in flag computation, conditional branching
and state machine. Especially, the incompatibility with state
machine implementation is a significant problem prevent-
ing CGRA from being widely used, since RTL designers
and existing behavioral synthesis tools for ASIC and FPGA
synthesize data-path circuits that are controlled by state ma-
chines. Consequently, CGRA is not taking full benefit of the
IP reuse nor the standard ANSI C/C++ source codes avail-
able.

To overcome this issue, several CGRA architectures
that are compatible with state machine implementation are
proposed. For instance, [9] proposes DRP architecture

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

KONOURA et al.: RELIABILITY-CONFIGURABLE MIXED-GRAINED RECONFIGURABLE ARRAY SUPPORTING C-BASED DESIGN
2519

which consists of a state transition controller and multiple
PEs having 16 contexts and 8-bit/1-bit operators. This archi-
tecture enabled both one-bit operation and state machine im-
plementation. Another example is XPP device [10], which
has a configuration manager to enable the state transition in
each tile. However, none of architectures have attained the
compatibility with behavioral synthesis and reliability con-
siderations. To expand the application domains of CGRA,
an architecture having high compatibility with design au-
tomation tools and high flexibility in reliability to cover var-
ious applications is highly demanded.

In this paper, we propose a mixed-grain reconfigurable
architecture that supports both behavioral synthesis and flex-
ible reliability. The proposed architecture follows the con-
cept of flexible reliability configuration presented in [4],
which enables system designers to systematically trade off
area for improving the soft error immunity without having a
deep knowledge of reliability enhancement techniques. This
work newly introduces one-bit PEs to implement a state ma-
chine that broadcasts the state signal to the array and dy-
namically reconfigures instructions given to CGRA. Conse-
quently, designers can select one from various application
implementations, e.g. a small area implementation with the
large number of states or a low latency implementation with
the small number of states.

We develop the architecture mentioned above which
enables state-wise cycle-by-cycle dynamic reconfiguration,
in contrast to multi-cycle reconfiguration [11]. To achieve
this, we need to increase the capacity of local configuration
memory in each PE in proportion to the number of states.
In addition, to attain the immunity to soft errors, we need to
introduce redundancy and error elimination mechanism into
the configuration memory. For example, if triple modular
redundancy (TMR) is adopted, the three-fold memory ca-
pacity becomes necessary. These two factors could tremen-
dously increase the memory capacity for configuration bits,
which could degrade area efficiency of the architecture.

To cope with this issue, we first adopt a strategy
that the configuration bits for interconnection are not state-
dependent, and only instructions to PE change according
to the state signal. This strategy contributes to saving the
memory capacity for configuration bits. Another important
parameter to decide is the number of implementable states
(#ImplSt). For exploring a wider trade-off between area and
latency, the architecture that can implement the larger num-
ber of states is desirable. When #ImplSt is small, the obtain-
able trade-off between area and latency is limited. Mean-
while, when #ImplSt is excessively large, the area of con-
figuration memory becomes significantly large. Especially,
when a low latency implementation is selected from the
trade-off, the number of used states is usually small. In this
case, only a small portion of configuration memory is uti-
lized, and consequently the unused memory results in area
overhead. Furthermore, when #ImplSt is large, the state ma-
chine tends to be complex, and hence more one-bit PEs are
necessary. This means that #ImplSt also affects the ratio of
coarse- and fine-grained elements. Thus, #ImplSt must be

carefully determined when implementing the architecture.
To investigate the appropriate #ImplSt, this work quan-

titatively evaluates two relationships between the number of
states and resource usage and between #ImplSt and silicon
area of a PE, respectively. Combining these evaluations, the
achievable trade-offs between used silicon area and latency
are illustrated for various #ImplSt, which suggests an appro-
priate #ImplSt.

The proposed architecture was fabricated with a 65 nm
CMOS technology, and its reliability for soft error was clar-
ified in the following two ways. A live video demonstration
was performed showing data processing at different relia-
bility levels with the presence of radiation. The proposed
architecture can attain different soft error immunity levels
through application mapping even with the same VLSI chip.
Second, quantitative data of soft error rate was obtained
using alpha-particle irradiation experiments and an FPGA.
The obtained data is useful for reliability-aware mapping.

The rest of this paper is organized as follows. Section 2
reviews related works, and Sect. 3 presents the proposed ar-
chitecture. A quantitative evaluation on #ImplSt is shown
in Sect. 4. Section 5 explains the silicon implementation of
the architecture. Experimental results including irradiation
tests are shown in Sect. 6 and concluding remarks are given
in Sect. 7.

2. Related Work

This section reviews conventional works of CGRA for at-
taining the compatibility with behavioral synthesis. None
of these conventional works have supported reliability en-
hancement for reliability demanding applications.

DAPDNA architecture [13] contains digital applica-
tion processor (DAP) and distributed network architecture
(DNA). DNA is composed of reconfigurable ALU, delay,
and RAM elements having four configuration codes. DAP
core triggers the state transition of DNA, and DAP will re-
ceive an interrupt signal from DNA notifying reconfigura-
tion completion after several clock cycles. [14] developed
DAPDNA-FWII, which compiles and maps a C source code
into DAP and DNA.

XPP architecture [10] has one context in each PE and
reconfigures it by configuration manager (CM). In this ar-
chitecture, CM, which consists of a state machine and inter-
nal RAM for configuration caching, reconfigures processing
array elements (PAE) within a few clock cycles through their
individual configuration caches when triggered by event
packets from PAEs. [15] introduced XPP-VC high-level
compiler which maps C programs to XPP.

DRP architecture, which has multiple contexts in each
PE and implementing state machines by context switch, and
its behavior synthesis are presented in [9]. In this architec-
ture, PEs containing 8-bit/1-bit operators and 16 different
configuration codes, are reconfigured within one clock cy-
cle by the broadcasted state number from a state transition
controller (STC).

KAHRISMA architecture [16] is composed of coarse-

2520
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.12 DECEMBER 2014

and fine-grained encapsulated data-path elements (CG-
EDPEs and FG-EDPEs) which are dynamically reconfig-
urable. CG-EDPE includes a context memory, a local se-
quencer, and a direct memory access. These components
control the local state, i.e., dynamically reconfigure the op-
eration of a processing block. [16] also presents a software
framework which enables high-level compilation and map-
ping a C source code into CG- and FG-EDPEs.

3. Proposed Architecture

This section firstly explains the compatibility with behav-
ioral synthesis, and then describes the proposed architecture.

3.1 Compatibility with High Level Synthesis

Compatibility with behavioral synthesis requires architec-
tural supports that help provide a trade-off between latency
and resource usage (area). For this purpose, multi-step pro-
cessing through dynamic reconfiguration should be utilized.
The same blocks have to be used in different time slices to
perform different operations. Figure 1 shows a simple exam-
ple demonstrating how multi-step processing is performed.
The figure demonstrates how a C program can be imple-
mented in one cycle and in two cycles. In the one cycle
implementation of Fig. 1(a), two PEs are required (adder
and subtractor). In this case, the configuration of the PEs is
fixed, and the two PEs constantly perform the same opera-
tions until the device is reconfigured for another application.
This is an ordinary output of common synthesis tools.

Our architecture supports not only one-cycle imple-
mentation of Fig. 1(a) but also multi-cycle implementation.
In the two-cycle implementation of Fig. 1(b), one PE includ-
ing two multiplexers and a register, and a state machine are
necessary. Dynamic reconfiguration of the PE is repeated.
The state machine has two states, S0 and S1. During S0,
the addition operation is selected to add a and b, and during
S1, the c is subtracted from the output of the previous oper-
ation. Such a trade-off between latency and area obtained by
various implementations enables various types of desirable
specifications.

In order to achieve this trade-off, the following ele-
ments are required: one-bit PEs to implement state ma-
chines, coarse-grained PEs to perform various types of data

Fig. 1 Examples of implementations with different latency.

processing with dynamic reconfiguration depending on the
state signal, register files to save temporal data, and large
memories to store large bulk data. Here, although an embed-
ded CPU might be able to control the state of coarse-grained
PEs, we selected one-bit PEs for pursuing low-latency state
control. With these elements, behavioral synthesis allows
designers to explore the solution space and select an imple-
mentation that satisfies their requirements.

3.2 Architecture Design Overview

The proposed architecture is composed of coarse-grained
elements as ALU clusters, fine-grained elements as LUT
clusters, and memory blocks called as MEM clusters, where
the basic element is noted as cluster. When an application
is mapped on the proposed architecture, data-paths are as-
signed to ALU clusters. Meanwhile, state machines and
one-bit operations are assigned to LUT clusters. Each ALU
cluster behaves as different functional units depending on
the state. Due to this, on the other hand, ALU clusters them-
selves cannot hold register values which will be used after
a while. To store the temporal intermediate data across the
different states, register blocks called as REG clusters are
also included in the proposed architecture.

ALU, LUT and REG clusters have the similar inner
structure with three cells illustrated in Fig. 2, while execu-
tion modules (EM) in cells are different. EMs for ALU,
LUT and REG clusters are ALU, LUT and register file.
On the other hand, MEM cluster includes a single SRAM
macro, and hence the structure inside the cluster is different.
The details of each cluster are explained in the next subsec-
tion. Several LUT clusters are organized in a two dimen-
sional array forming a LUT block. ALU, REG and MEM

Fig. 2 Cluster and cluster interconnection. The structure inside cluster
shown this figure corresponds to ALU, LUT and REG clusters.

KONOURA et al.: RELIABILITY-CONFIGURABLE MIXED-GRAINED RECONFIGURABLE ARRAY SUPPORTING C-BASED DESIGN
2521

clusters and LUT blocks are placed in a two-dimensional
array.

In the architecture design, we selected the following
strategy. ALU functionality and ALU operand selection
are dynamically reconfigured according to the broadcasted
state signals, which will be detailed in the next section,
while the inter-cluster interconnection is unchanged. All
the inter-cluster routings to provide data to clusters are fixed
for all the states, and each ALU cluster selects a few data
as operands depending on the state from all the data deliv-
ered to the ALU cluster. The reason why this strategy was
selected is that the amount of configuration bits for inter-
cluster interconnection is quite large, and it is difficult to
multiply it by #ImplSt from area perspective.

The architecture has two global signals; context signal
and state signal. Both of these global signals are generated
by designated LUT clusters. The purpose of context signal
is to switch the mapped application or algorithm, and then
the inter-cluster interconnection is changed according to the
context. This context signal is not discussed further in this
paper.

Before explaining details of ALU, LUT, MEM and
REG clusters, the treatment of the state signal in each clus-
ter is briefly summarized. ALU cluster changes its func-
tionality and data-path/flag operands according to the broad-
casted state signal. Also, REG cluster selects input data and
changes write address depending on the state signal, since
the store of intermediate data depends on the state. On the
other hand, the functionalities of LUT and MEM clusters
are unchanged.

3.3 Details of Four Clusters

3.3.1 ALU Cluster

ALU cluster is derived from the reliability-flexible architec-
ture proposed in [4]; however, it is highly improved to sup-
port cycle-by-cycle dynamic reconfiguration. The cycle-by-
cycle dynamic reconfiguration is controlled by a state ma-
chine implemented with LUT clusters. ALU cluster receives
the state signal from the state machine, selects an instruction
from the local configuration memory depending on the cur-
rent state and executes the selected instruction, which is the
most significant difference from [4] in ALU cluster.

As shown in Fig. 2, an ALU cluster consists of a recon-
figurable cell unit (RCU) processing various types of opera-
tions, a redundancy control unit (RDU) for flexible reliabil-
ity, a comparing and voting unit (CVU), switches and wires.
An RCU is composed of a configuration memory switching
matrix (ConfSM) and three cells, each of which contains an
execution module (EM), register files for storing configura-
tion bits, and voters. In EM, arithmetic operation including
multiplication, logic operation, and shift operation are per-
formed.

The cluster interconnection has three tracks (Track 0 –
2), and each cell inside a cluster is placed on one of them.
Thus, each cell in a cluster can be connected to the cells

Fig. 3 Architecture of cell in ALU cluster.

in adjacent clusters on the same track. The interconnection
also has a diagonal track, connecting cells within one clus-
ter. Switches to control these interconnections are imple-
mented by multiplexers.

The cell architecture of ALU cluster is illustrated in
Fig. 3. In order to implement dynamic reconfiguration with
reduced area overhead, configuration bits are divided and
stored in three types of register files: instruction register file
(InstRF), interconnection register file (InterRF), and con-
stants register file (ConstRF). The bit widths of InstRF, In-
terRF and ConstRF are 32, 75, and 16 bits, respectively. As
mentioned earlier, instructions for ALU are locally stored in
the cluster and the number of instructions stored is #ImplSt,
where an instruction represents a set of ALU configuration
bits for a single state. On the other hand, the configuration
bits for inter-cluster connection stored in InterRF are fixed
for all the states in each context. In this paper, InterRF is
implemented so that it can store three contexts. ConstRF
is used to store up to four constants that are required in the
application, and one of four constants is selected by the 2-
bit signal from InstRF. This implementation is selected for
area reduction because at most only a few instructions need
constants in most applications.

To attain soft error immunity, InterRF and ConstRF are
protected with ECC. The selected code is single error cor-
rection/double error detection (SEC/DED) hamming code.
For every read of InterRF and ConstRF, the error corrected
bits are regularly restored in InterRF and ConstRF to prevent
error accumulation. In addition, three contexts of InterRF
and four constants of ConstRF are restored by re-writing
the data itself through another SEC/DED encoder/decoder
in rotation. On the other hand, InstRF is implemented with
bit-wise TMR, since the path from the state signal to the reg-
ister file output includes only a voter and its delay is small.
This small delay is important, since this delay is necessarily
included in the critical path. This is the reason why ECC,
which needs ECC decoder having large delay, was not se-
lected for InstRF.

ALU cluster supports three operation modes: triple

2522
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.12 DECEMBER 2014

Table 1 Redundancy and reliability to soft errors in three operation modes in ALU cluster.

Operation Redundancy SEU in SEU SET Utilization
mode InstRF EM InstRF in EM in EM #contexts #cells

TMR 3 3 D & R D & R D & R 3 3
SMS 3 1 D & R D ND 1 1
SMM 1 1 ND D ND 3 1

D & R : Detection and recovery, D : Detection, ND : Does not detect

modular redundancy (TMR), single modular with single
context (SMS), and single modular with multi-context
(SMM), as summarized in Table 1. These operation modes
offer different capabilities of dynamic reconfigurability (no.
of contexts) and throughput per cluster. TMR in which both
InstRF and data-paths are triplicated provides the highest
soft error immunity. Meanwhile, in SMS, only InstRF is
triplicated but the data-path is singular. In both TMR and
SMS, an SEU occurring in the InstRF will be repaired when
the next configuration clock is given, since the voted value is
re-written to the register file every configuration clock cycle.
Here, the configuration clock signal is given to the mem-
ory elements for configuration information separately from
the system clock. This configuration data is stored with bit-
wise TMR, and therefore, multiple SEUs in different bits
will also be corrected when the next configuration clock is
given. On the other hand, in SMM, the voters are disabled,
and three contexts are stored independently using three In-
stRFs, each of which is included in individual cells. With
this implementation, users can flexibly choose the operation
modes, depending on the importance of SEUs in InstRF and
SEU/SET in EM.

In this architecture, as pointed out earlier, InstRF con-
sisting of a larger number of words can accommodate a
larger state machine, which enables area-efficient imple-
mentation trading larger latency. However, as #ImplSt be-
comes larger, the silicon area of ALU cluster increases, and
the area overhead originating from the unused words of In-
stRF tends to be significant. This trade-off will be discussed
in Sect. 4.

3.3.2 LUT Cluster

An LUT cluster supports reliable and regular modes. The
LUT cluster architecture is shown in Fig. 4. The LUT cluster
contains three cells and each cell contains one configuration
memory (ConfMem), LUT data registers, a pipeline register,
wires and selectors. In reliable mode, the three ConfMems,
three LUT data registers, and three data-paths in three cells
are redundantly used. By this, SEUs in ConfMem and the
LUT data registers are corrected by re-writing with the vot-
ers in the VC and VL. In regular mode, no redundancy is
applied, and the given data are independently processed in
each cell. The operation modes in LUT cluster are sum-
marized in Table 2. The operation modes of LUT cluster
are controlled through a 1-bit triplicated value stored in the
RDU.

LUT cell contains a 4-input LUT that can be cascaded
with other cells to form a larger LUT. It can receive flags

Fig. 4 LUT cluster architecture.

such as zero flag, overflow, underflow, most four least sig-
nificant bits of the result, and carry generated in ALU cells,
and can perform conditional operations, flag multiplexing,
flag inversion, pipelining, and fixed outputs. Any single bit
of n-bit ALU output can be provided to LUT cells via multi-
cycle shifting. Thus, the architecture offers a significant
amount of temporal flexibility in providing data to be able to
take full advantage of the fine-grained fabric. With receiv-
ing necessary 1-bit data, LUT clusters can perform one-bit
operations and can form a state machine efficiently.

In the array, a set of LUT clusters, whose number de-
pends on #ImplSt, are designated to output and broadcast
the state signal. Similarly, another set of LUT clusters are
responsible to output the context signal. Besides, LUT clus-
ters are supposed to be organized in a two dimensional array
forming LUT blocks, which makes the area of LUT block
comparable to those of other clusters. LUT blocks, ALU,
register and MEM clusters are placed in a two-dimensional
array, as explained earlier.

3.3.3 MEM Cluster

MEM cluster is composed of one 1,024-word ×(n + k)-bit
two-port SRAM, where n represents the data-path width and
k is the number of redundant bits. Although the SRAM it-
self is protected with SEC/DED hamming codes, the words
which have not had a write access for a while are likely to
accumulate multiple SEUs within a word, which results in

KONOURA et al.: RELIABILITY-CONFIGURABLE MIXED-GRAINED RECONFIGURABLE ARRAY SUPPORTING C-BASED DESIGN
2523

Table 2 Redundancy and reliability to soft errors in two operation modes in LUT and REG clusters.

Operation Redundancy SEU SEU in LUT data register SET Utilization
mode ConfMem data-path in ConfMem & register file in data-path #contexts #cells

Reliable 3 3 D & R D & R D & R 1 3
Regular 1 1 ND ND ND 1 1

D & R : Detection and recovery, ND : Does not detect

Fig. 5 REG cluster architecture.

uncorrectable errors. To avoid such uncorrectable errors,
MEM cluster offers reliable mode in addition to regular
mode. In regular mode, two ports of SRAM are indepen-
dently utilized to read/write data. Meanwhile, in reliable
mode, one port is used to read/write data, and the other port
is designated for periodic overwriting through ECC decoder
and encoder. Note that regular mode could be robust enough
for applications that keep data for a short time, since SEU
accumulation less likely happens.

MEM cluster has only one cell due to the size of the
SRAM. However, it is compatible with the three-cell im-
plementation of ALU cluster, the three-track flag and data
interconnection, and the reliability modes of ALU cluster.
MEM cluster also contains three tracks, all connected to the
same cell. Input signals of SRAM such as address and en-
able are drawn with three tracks and voted in front of the
SRAM macro. The read data of SRAM is also distributed to
the three tracks. Herewith, single error points except for the
inside of SRAM macro are minimized.

3.3.4 REG Cluster

Architecture of REG cluster is shown in Fig. 5. REG cluster
has three cells composed of a ConfMem, a w-word register
file, wires and switches.

Similarly to LUT cluster, REG cluster supports reli-
able and regular modes. In reliable mode, three ConfMems,
three register files, and three data-paths in three cells are re-
dundant. By this, SEUs in ConfMem and register files are
corrected by re-writing through the voters in the VC and

VR. Also, SETs in data-path can be corrected by the voters
in the VD. In regular mode, no redundancy is applied, and
the given data are independently processed in each cell. The
reliability modes in REG cluster are summarized in Table 2.
The REG cluster operation mode is controlled through a 1-
bit triplicated value stored in the RDU.

The REG cluster is responsible for storing and ex-
changing temporal data across different states. For this pur-
pose, input data must be delivered to one of the registers
depending on the state. This data delivery is achieved by
w input multiplexers, and controlled by ConfMem, where
ConfMem can store #ImplSt configuration sets. The rela-
tionship between #ImplSt and the area of REG cluster is
evaluated in Sect. 4.

4. Architecture Evaluation

As explained earlier, when implementing the proposed ar-
chitecture, #ImplSt is a key parameter that determines the
silicon overhead and the achievable trade-off between la-
tency and used silicon area. This section experimentally
evaluates the appropriate #ImplSt through a case study. The
reliability of the proposed architecture will be evaluated
with silicon implementation in Sect. 6.

In this evaluation, a behavioral synthesis tool [17], [18]
slightly customized for the proposed architecture is used
to obtain various implementations with different latencies
and ALU usages from a C source code of 512-point radix-
8 FFT. Note that the bit width of ALU is supposed to be
16, and the operation frequency is set to 100 MHz. Each
cluster is implemented with Verilog HDL and synthesized
with a 65 nm cell library. The area of each cluster is esti-
mated from the reports of logic synthesis tool. The reliabil-
ity modes of ALU/LUT/REG clusters are configured with
TMR/reliable/reliable, respectively.

4.1 Number of Used Clusters vs. Number of States

The numbers of used ALU/LUT/REG clusters change de-
pending on the number of states. Figure 6 shows the rela-
tionship between the number of states and the number of
ALU clusters in use. We can see that the number of ALU
clusters in use decreases as the number of states increases,
which is a well-known relationship obtained by behavioral
synthesis. Second, Fig. 7 shows the relationship between the
number of states and the number of LUT clusters in use. As
the number of states increases, the state machine becomes
complex, and the number of LUT clusters increases.

Moreover, Table 3 lists the required number of 16-bit
registers and w-word REG clusters for inter-state data ex-

2524
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.12 DECEMBER 2014

Fig. 6 Relationship between # of states and # of ALU clusters.

Fig. 7 Relationship between # of states and # of LUT clusters.

Table 3 Registers for inter-state data exchange.

#states
#registers #REG clusters

for buffering w = 4 w = 8 w = 16

13 14 4 2 1
16 17 5 3 2
19 23 6 3 2
25 24 6 3 2
39 28 7 4 2

change. As the number of states increases, the number of
registers for inter-state data exchange increases because the
data exchange across the states occurs more often. When the
number of states is 39, the required number of four-word
REG clusters is seven, on the other hand, that of 16-word
REG clusters is two. The area of REG cluster, which de-
pends on the number of words and #ImplSt, is evaluated in
Sect. 4.3.

4.2 ALU Cluster Area vs. Number of Implementable
States

An increase in #ImplSt involves a significant increase in the
area of ALU cluster having triplicated InstRFs. Remind that
#ImplSt is equal to the number of words of InstRF in ALU
clusters. Figure 8 shows the relationship between #ImplSt
and the area of ALU cluster. As the number of states in-
creases, the area of InstRFs linearly increases and gradually
becomes dominant. When #ImplSt is 28, the area of ALU
cluster reaches twofold compared with that of ALU cluster

Fig. 8 Relationship between #ImplSt and area of ALU cluster.

Fig. 9 Relationship between #ImplSt and area of REG cluster.

whose #ImplSt is 1. Here, it should be noted that the relation
between #ImplSt and the area of ALU cluster is application-
independent.

4.3 Area of REG Cluster

As shown in Fig. 5, an increase in #ImplSt enlarges con-
figuration memories. Also, the number of words w is di-
rectly related to the sizes of register file and configuration
memory. Figure 9 shows the relationship between #ImplSt
and the area of REG cluster for various numbers of word,
where this relationship is application-independent. There
is a mostly linear relation between #ImplSt and the area of
REG cluster. In a case that 39 states are implementable,
the area of 16-word REG cluster (= 0.137 mm2) is 3.7 times
as large as that of a four-word REG cluster (= 0.038 mm2),
i.e., there is the proportional relation between the number of
words and the area of REG cluster. Here, remind that the
required number of REG clusters for application mapping is
inversely proportional to the number of words in REG clus-
ter as shown in Table 3. These results show the total area of
REG clusters is not sensitive to the number of words, and
we can select a reasonable number of words according to
the capacity of inter-cluster interconnection.

4.4 Appropriate Number of Implementable States

We then evaluate the achievable trade-offs between used sil-

KONOURA et al.: RELIABILITY-CONFIGURABLE MIXED-GRAINED RECONFIGURABLE ARRAY SUPPORTING C-BASED DESIGN
2525

Fig. 10 Relationship between used silicon area and latency.

icon area and latency for various #ImplSt. Figure 10 shows
the results. Please remind that our previous architecture [4]
cannot implement a state machine and hence such trade-offs
cannot be explored with behavioral synthesis. The used sili-
con area includes those of used ALU, LUT, MEM, and REG
clusters, and the dependency of ALU cluster area on #Im-
plSt (Fig. 8) is taken into consideration. Here, four MEM
clusters, one of which is 0.111 mm2, are included. We as-
sumed to use 16-word REG clusters. As can be seen from
Fig. 10, when #ImplSt is small such as 16, a small-area
implementation can be achieved; however, the achievable
trade-off between used silicon area and latency is quite lim-
ited. On the other hand, when #ImplSt is large such as
40, a small silicon area implementation becomes obtainable
trading for latency, whereas the used silicon area of the im-
plementation pursuing the minimum latency becomes large.
While the best #ImplSt depends on the requirements of area,
performance and design flexibility, in this test case, the
range from 24 to 32 is a reasonable number to take advan-
tage of behavioral synthesis with limited overhead. Thus,
the proposed mixed-grained architecture can obtain various
implementations on the same cluster array making use of
behavioral synthesis from a C source code.

5. Test Chip Implementation

We implemented the proposed array in a 65 nm process.
Figure 11 illustrates the mixed-grained array consisting 26
ALU clusters, 6 memory clusters and 4 LUT blocks with
the chip layout. Here, REG clusters are not included in
the test chip since our preliminary evaluation before the
test chip implementation shows that small image process-
ing applications that can be implemented on the test chip
demand more ALU clusters instead of REG clusters. A cus-
tomized version of Cyber Workbench [17], [18], which is
a commercially-available behavioral synthesis tool, synthe-
sizes an RTL implementation from a C program taking into
account reliability specification given by [19]. Finally, the
RTL implementation is mapped on the array through tech-
nology mapping and P&R.

Thanks to dynamic reconfiguration using states gener-
ated by an FSM, area-efficient mapping becomes possible.

Fig. 11 Designed reconfigurable array and design flow.

Here, in this implementation, #ImptSt was set to 16 due to
the limited silicon area, while the previous section suggested
that #ImptSt of more than 24 is desirable. Nevertheless,
for example, an edge detection filter can be implemented
with 25 ALU clusters, while 62 ALU clusters are necessary
without dynamic reconfiguration (i.e. in a single state). The
number of clusters is reduced by 60%. Note that the archi-
tecture without dynamic reconfiguration corresponds to our
previous architecture [4]. Thus, the proposed architecture
implemented on the test chip can exploit such latency-area
exploration in behavioral synthesis.

The array was fabricated in 65 nm 12ML CMOS pro-
cess. The die size is 4.2×4.2 mm2. Loading the config-
uration bits is performed through a scan-chain consisting
of 165,312 FFs. ALU, LUT and memory clusters include
120 k, 4 k and 99 k gates, respectively.

6. Measurement Results for Reliability Evaluation

This section presents measurement results of the fabricated
prototype chip. We first evaluated the maximum speed of
the state and context distribution using a PLL on the chip,
since the maximum frequency is limited by the distribution
of state and context signals. Results show that the maximum
frequency possible to propagate state signals is 240 MHz,
and it is 165 MHz for context signal. In the following sub-
sections, results of irradiation testing are described.

6.1 Demonstration

To validate the functionality and reliability of the archi-
tecture, a demonstration using two mappings of SMM and
SMS was performed (Fig. 12). The chip receives a live data
stream from a video camera, processes it, and sends it to a
monitor demonstrating the processed stream. The mapping
of black and white reversal filter was generated from a C
source code. Here, the black and white reversal filter is a
filter that performs tone reversal, and a subtraction is per-
formed for each pixel.

A snapshot of the results is shown in Fig. 13. Af-

2526
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.12 DECEMBER 2014

Fig. 12 Demonstration setup.

Fig. 13 Results of image processing under irradiation.

ter positioning an Am-241 alpha foil whose flux is 9
×109 cm−2h−1 over the chip [20], it was observed that SMS
mapping continued to output the processed video as ex-
pected. On the other hand, SMM mapping got destroyed
in 2 s due to SEUs in configuration registers and video pro-
cessing stopped within 10 s in all four trials. We also tested
TMR mapping and confirmed the expected continuous func-
tionality. The proposed architecture thus enables reliable
operation even under harsh irradiation through application
mapping.

6.2 Irradiation Experiment

To quantitatively evaluate the immunity to soft errors, we
carried out experiments of alpha particle irradiation. Fig-
ure 14 illustrates the test configuration. The ALU clusters
on the array are serially connected to compose a pipelined
chain. For simplicity, NOT operation is selected as the
ALU function. We also implemented the same function as
a golden circuit on an FPGA. A PC gives the same input
patterns to the array and the golden circuit. The outputs of
the array and the golden circuit are compared on the FPGA,
and the inconsistency between them is detected as an error.
Here, there are two types of the errors; a permanent error
and a temporal error. The permanent error happens when
the configuration information is corrupt due to SEUs in the
configuration memory and the circuit functionality becomes

Fig. 14 Irradiation test configuration.

wrong. On the other hand, a temporal error originates from
SEUs and SETs in the datapath. In the current configura-
tion, this temporal error does not accumulate in the datapath
and is eventually flushed out from the pipeline.

To distinguish the permanent errors and the temporal
errors, we implemented an error analyzer on the FPGA. If
the inconsistency at the outputs continues for five clock cy-
cles, we regard this situation as a permanent error. When
the inconsistency lasts for less than five cycles, we judge
that there is a temporal error. We count the numbers of per-
manent and temporal errors. In the case of the permanent
errors, we need to reload the configuration information to
eliminate the SEUs in the configuration memory, and Con-
fig. loader fills this role.

We first evaluated, using the scan chain, the number of
SEUs accumulated in the configuration memory when a per-
manent error is detected. In the configuration memory, there
are don’t care bits which do not affect the functionality, and
hence the number of accumulated SEUs could be larger than
1. Figure 15 shows the histogram. We can see that the num-
ber of accumulated SEUs less than 50 is most frequent, but
there are cases having a large number of SEUs accumulated
before a permanent error arises. To accurately estimate the
soft error rate of reconfigurable devices, we need to pay at-
tention to these don’t care bits.

We next evaluate the MTTF (mean time to failures) fo-
cusing on the permanent error, where the temporal errors
are not regarded as failures in this evaluation. A refreshing
clock of 15 MHz is given to eliminate SEUs from triplicated
memory (InstRF) and registers with ECC (InterRF). We
prepared five array configurations; all SMM, SMM/SMS,
all SMS, SMS/TMR and all TMR. In the configuration of
SMM/SMS (SMS/TMR), 50% of the ALU clusters are in
SMM (SMS) level and the others are in SMS (TMR) level.
Note that in all TMR, voters and inter-cluster connections
are triplicated and hence there is no single point of failure.

Table 4 lists the measured MTTF and the number of
permanent errors observed in about 300-s radiation. Table 4
also includes the number of sensitive bits, where a config-
uration memory element that impacts the primary output of

KONOURA et al.: RELIABILITY-CONFIGURABLE MIXED-GRAINED RECONFIGURABLE ARRAY SUPPORTING C-BASED DESIGN
2527

Fig. 15 Number of accumulated SEUs when a permanent error is
detected.

Table 4 MTTF and sensitive bits.

Mapping # of sensitive bits MTTF [s] # of permanent errors

All SMM 1,575 1.51 198
SMM/SMS 819 3.8 84

All SMS 0 >300 0
SMS/TMR 0 >300 0
All TMR 0 >300 0

a particular design is defined as a “sensitive bit”. Thus, the
don’t care bits are not included in the sensitive bits. In all
SMM configuration, the number of sensitive bits is 1,575,
and it is the largest. On the other hand, the MTTF is 1.51 s,
and it is the shortest. When SMM/SMS configuration is se-
lected, the number of sensitive bits is reduced to 819, and
consequently the MTTF is extended to 3.8 s. On the one
hand, all SMS, SMS/TMR and all TMR configurations do
not include any sensitive bits, and for these no permanent
errors were observed. These results clearly show that the
MTTF is strongly dependent on the number of sensitive bits,
and the system designer can trade area with robustness to
soft errors guided by the number of sensitive bits, which
means the concept of flexible reliability firstly proposed in
[4] can be exploited in the proposed architecture.

In both the proposed architecture and previous one [4],
the number of sensitive bits can be controlled by mapping,
i.e. the selection of TMR, SMM and SMS modes, and it can
be reduced to zero by selecting TMR or SMS mode for all
the ALU, LUT and REG clusters as presented above. In
addition, the datapath and state machine can be triplicated
in TMR mode. From this point, the soft error immunity is
at the same level. Strictly speaking, on the other hand, the
architecture proposed in this paper newly introduced MEM
register that used an off-the-shelf SRAM macro. We applied
ECC to this SRAM, but the SRAM macro might include
a sensitive point, and it may degrade the soft error immu-
nity. However, the internal circuit information of the SRAM
macro was not disclosed, and hence the immunity of the off-
the-shelf SRAM macro with ECC was not unclear. Mean-
while, at least unexpected reliability degradation in the pro-

posed architecture was not observed in the irradiation test
shown in Sect. 6.1.

We finally evaluate the temporal error rate. While all
SMS configuration is expected to have very few permanent
errors as explained, the datapath is not redundant and tem-
poral errors are supposed to happen. We counted the number
of temporal errors in all SMS configuration. During 19-min
irradiation, 1,109 temporal errors were observed and the rate
is 0.95 bit-flip per second. Assuming an LSI package whose
alpha emission rate is 10 cm−2h−1, this rate corresponds to
4.3 ×103 FIT in a nominal environment. If this FIT rate is
not acceptable, the system designer needs to use TMR level.
On the other hand, if this FIT rate is acceptable, SMS level is
a good choice for area efficiency. Thus, the proposed array
can be used for various environments and reliability specifi-
cations.

7. Conclusion

We proposed a mixed-grained reconfigurable architecture
supporting C-based behavioral synthesis and flexible relia-
bility. We experimentally evaluated trade-offs between used
silicon area and latency with various numbers of imple-
mentable states using 512-point radix-8 FFT as an applica-
tion example. In this evaluation, the proposed architecture
whose number of implementable states in the range from
24 to 32 can accommodate various implementations in la-
tency and area obtained by behavioral synthesis. We im-
plemented a 65 nm test chip of the proposed mixed-grained
reconfigurable array. We irradiated the fabricated test chip
with alpha foil and confirmed that the application mapped
for high reliability kept functioning while the application
mapped for ordinary reliability stopped due to permanent
errors in configuration memory. In addition, we quantita-
tively evaluated the soft error immunity of each reliability
level, and showed a concrete FIT number originating from
SEUs and SETs in the datapath. These evaluation results
give underlying characteristics of the array, which are indis-
pensable in reliability-aware mapping.

Acknowledgement

The VLSI chip in this study has been fabricated in the chip
fabrication program of VLSI Design and Education Cen-
ter (VDEC), the University of Tokyo in collaboration with
eShuttle Inc. and Fujitsu Semiconductor Ltd. The authors
thank Dr. Shinichi Noda for his contribution to Cyber cus-
tomization and experiments for architecture evaluation.

References

[1] S.M.A.H. Jafri, S.J. Piestrak, O. Sentieys, and S. Pillement, “Design
of a fault-tolerant coarse-grained reconfigurable architecture: A case
study,” Proc. ISQED, pp.845–852, March 2010.

[2] M.M. Azeem, S.J. Piestrak, O. Sentieys, and S. Pillement, “Error
recovery technique for coarse-grained reconfigurable architectures,”
Proc. DDECS, pp.441–446, April 2011.

[3] T. Schweizer, P. Schlicker, S. Eisenhardt, T. Kuhn, and W.

2528
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.12 DECEMBER 2014

Rosenstiel, “Low-cost TMR for fault-tolerance on coarse-grained
reconfigurable architectures,” Proc. ReConFig, pp.135–140, Nov.–
Dec. 2011.

[4] D. Alnajjar, H. Konoura, Y. Ko, Y. Mitsuyama, M. Hashimoto, and
T. Onoye, “Implementing flexible reliability in a coarse grained re-
configurable architecture,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol.21, no.12, pp.2165–2178, Dec. 2013.

[5] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R.R.
Taylor, “PipeRench: A reconfigurable architecture and compiler,”
IEEE Trans. Comput., vol.33, no.4, pp.70–77, April 2000.

[6] M. Myjak and J.G. Delgado-Frias, “A two-level reconfigurable ar-
chitecture for digital signal processing,” Microelectronic Engineer-
ing, vol.84, no.2, pp.244–252, Feb. 2007.

[7] C. Ebeling, D.C. Cronquist, and P. Franklin, “RaPiD —
Reconfigurable pipelined data-path,” Proc. FPL, pp.126–135, Sept.
1996.

[8] Y. Mitsuyama, K. Takahashi, R. Imai, M. Hashimoto, T. Onoye,
and I. Shirakawa, “Area-efficient reconfigurable architecture for me-
dia processing,” IEICE Trans. Fundamentals, vol.E91-A, no.12,
pp.3651–3662, Dec. 2008.

[9] T. Toi, N. Nakamura, Y. Kato, T. Awashima, K. Wakabayashi, and J.
Li, “High-level synthesis challenges and solutions for a dynamically
reconfigurable processor,” Proc. ICCAD, pp.702–708, Nov. 2006.

[10] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M.
Weinhardt, “PACT XPP — A self-reconfigurable data processing ar-
chitecture,” the Journal of Supercomputing, vol.26, no.2, pp.167–
184, Sept. 2003.

[11] L. Bauer, M. Shafique, S. Kramer, and J. Henkel, “RISPP: Rotating
instruction set processing platform,” Proc. DAC, pp.791–796, June
2007.

[12] D. Alnajjar, H. Konoura, Y. Mitsuyama, H. Shimada, K. Kobayashi,
H. Kanbara, H. Ochi, T. Imagawa, S. Noda, K. Wakabayashi, M.
Hashimoto, T. Onoye, and H. Onodera, “Reliability-configurable
mixed-grained reconfigurable array supporting C-to-array mapping
and its radiation testing,” Proc. A-SSCC, pp.313–316, Nov. 2013.

[13] T. Sugawara, K. Ide, and T. Sato, “Dynamically reconfigurable pro-
cessor implementation with IPFlex’s DAPDNA technology,” IEICE
Trans. Inf. Syst., vol.E87-D, no.8, pp.1997–2003, Aug. 2004.

[14] T. Sato, H. Watanabe, and K. Shiba, “Implementation of dynami-
cally reconfigurable processor DAPDNA-2,” Proc. VLSI-TSA-DAT,
pp.323–324, April 2005.

[15] J.M.P. Cardoso and M. Weinhardt, “From C programs to the
configure-execute model,” Proc. DATE, pp.576–581, March 2003.

[16] R. Koenig, L. Bauer, T. Stripf, M. Shafique, W. Ahmed,
J. Becker, and J. Henkel, “KAHRISMA: A novel hypermor-
phic reconfigurable-instruction-set multi-grained-array architec-
ture,”
Proc. DATE, pp.819–824, March 2010.

[17] K. Wakabayashi and T. Okamoto, “C-based SoC design flow and
EDA tools: An ASIC and system vendor perspective,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.19, no.12, pp.1507–
1522, Dec. 2000.

[18] CyberWorkbench, http://www.nec.com/en/global/prod/cwb/index.
html

[19] T. Imagawa, H. Tsutsui, H. Ochi, and T. Sato, “A cost-effective se-
lective TMR for heterogeneous coarse-grained reconfigurable archi-
tectures based on DFG-level vulnerability analysis,” Proc. DATE,
pp.701–706, 2013.

[20] JEDEC standard JESD89, “Measurement and reporting of alpha par-
ticles and terrestrial cosmic ray-induced soft-errors in semiconduc-
tor devices.”

Hiroaki Konoura received B.E. and M.E.
degrees in Information Systems Engineering
from Osaka University, Japan, in 2009 and
2011, respectively. He is currently a doctoral
student in the Department of Information Sys-
tems Engineering at Osaka University. His re-
search interest is development of high reliable
reconfigurable architecture. He is a student
member of IEEE.

Dawood Alnajjar received the B.E. degree
from the University of Jordan, Amman, Jordan
in 2006. He received the M.E. and Ph.D. de-
grees in Information Systems Engineering from
Osaka university, Osaka, Japan in 2010 and
2013, respectively. His interest includes recon-
figurable computing, computer architecture, and
reliable systems.

Yukio Mitsuyama received the B.E., M.E.,
and Ph.D. degrees in Information Systems Engi-
neering from Osaka University, Japan, in 1998,
2000, and 2010, respectively. He was an Assis-
tant Professor in Graduate School of Engineer-
ing, Osaka University. He is currently an As-
sociate Professor in the School of Engineering,
Kochi University of Technology. His research
interests include reconfigurable architecture and
its VLSI design. He is a member of IEEE and
IPSJ.

Hajime Shimada was born in 1976 and
received his B.E., M.E. and D.E. degrees from
Nagoya University, Japan in 1998, 2000 and
2004 respectively. He was an assistant profes-
sor in Kyoto University from 2005 to 2009. He
was an associate professor in NAIST from 2009
to 2013. He is now an associate professor in
Nagoya University, Japan since 2013. He is
currently focusing on computer architecture and
network related researches with low power con-
sumption and high dependability techniques. He

is a member of IEEE, IPSJ, and IEICE.

Kazutoshi Kobayashi received his B.E.,
M.E. and Ph.D. in Electronic Engineering from
Kyoto University, Japan in 1991, 1993, 1999, re-
spectively. Starting as an Assistant Professor in
1993, he was promoted to associate professor in
the Graduate School of Informatics, Kyoto Uni-
versity, and stayed in that position until 2009.
For two years during this time, he acted as as-
sociate professor of VLSI Design and Educa-
tion Center (VDEC) at the University of Tokyo.
Since 2009, he has been a professor at Kyoto

Institute of Technology. While in the past he focused on reconfigurable
architectures utilizing device variations, his current research interest is in
improving the reliability (Soft Errors and Bias Temperature Instability) of
current and future VLSIs. He was the recipient of the IEICE best paper
award in 2009.

KONOURA et al.: RELIABILITY-CONFIGURABLE MIXED-GRAINED RECONFIGURABLE ARRAY SUPPORTING C-BASED DESIGN
2529

Hiroyuki Kanbara received his B.E. and
M.E. degrees in electronic engineering from
Kyoto University, Kyoto, Japan in 1987 and
1989, respectively and Ph.D degree in Informat-
ics from Kyoto University in 2001. In 1989 he
joined ASTEM RI (Advanced Scientific Tech-
nology and Management Research Institute of
KYOTO). He is currently engaged in the re-
search of embedded system design methodology
and system prototyping with reconfigurable de-
vice.

Hiroyuki Ochi received the B.E., M.E., and
Ph.D. degrees from Kyoto University in 1989,
1991, and 1994, respectively, all in Engineer-
ing. From 1994 to 2004, he was an Associate
Professor with Hiroshima City University, and
from 2004 to 2013, he was an Associate Profes-
sor with Kyoto University. In 2013, he joined
Ritsumeikan University as a Professor. He is a
member of IPSJ, IEEE, and ACM.

Takashi Imagawa received his B.E. de-
gree in Electrical and Electronic Engineering,
his master degree in Communications and Com-
puter Engineering, from Kyoto University in
2008 and 2010. Presently, he is a doctor course
student at Department of Communications and
Computer Engineering, Kyoto University. He is
a student member of IPSJ, and IEEE.

Kazutoshi Wakabayashi received his B.E.
and M.E. degrees and Ph.D. from the Univer-
sity of Tokyo and he was a visiting researcher
at Stanford University during 1993 and 1994.
He joined NEC Corporation in Kawasaki Japan
in 1986 and he is currently a Senior Principal
Researcher of Central Research Labs. and se-
nior expert at Embedded System Solution Div.
at NEC Corporation. He has been engaged in
the research and development of VLSI CAD
systems. He served on executive committee or

organizing committee of some international conference including; ASP-
DAC’09 General Chair, CODES+ISSS’09 Co-Technical Program Chair,
EC of ICCAD and DAC. Also, he has served on the program committees
for several conferences including: DAC, ICCAD, DATE, ASP-DAC, ISSS,
SASIMI, etc. Also, he has served as a general chair, a secretary, and a Tech-
nical Program Committee member for a number of Japanese conferences.
IEICE and IPSJ. He received the Yamazaki-Teiichi Prize in 2004, and the
IPSJ Convention Award in 1988, Sakai Kinen Special Award in 2001, and
the NEC Distinguished Contribution Award in 1993 for his logic synthesis
system and in 1999 for his formal verification, and in 2006 for his High
Level Synthesis. His C-based Synthesis and Verification tool suite called
“CybeWorkBench” received a Grand prize of “LSI of the Year 2003” and
“LSI of the Year 2007”.

Masanori Hashimoto received the B.E.,
M.E. and Ph.D. degrees in Communications and
Computer Engineering from Kyoto University,
Kyoto, Japan, in 1997, 1999, and 2001, respec-
tively. Since 2004, he has been an Associate
Professor in Department of Information Sys-
tems Engineering, Graduate School of Informa-
tion Science and Technology, Osaka University.
His research interest includes computer-aided-
design for digital integrated circuits, and high-
speed circuit design. Dr. Hashimoto served on

the technical program committees for international conferences includ-
ing DAC, ICCAD, ITC, Symposium on VLSI Circuits, ASP-DAC, DATE,
ISPD and ICCD. He is a member of IEEE, ACM and IPSJ.

Takao Onoye received the B.E. and M.E.
degrees in Electronic Engineering, and Dr.Eng.
degree in Information Systems Engineering all
from Osaka University, Japan, in 1991, 1993,
and 1997, respectively. He is currently a profes-
sor in the Department of Information Systems
Engineering, Osaka University. His research in-
terests include media-centric low-power archi-
tecture and its SoC implementation. He is a
member of IEEE, IPSJ, and ITE-J.

Hidetoshi Onodera received the B.E., and
M.E., and Dr. Eng. degrees in Electronic En-
gineering, all from Kyoto University, Kyoto,
Japan. He joined the Department of Electron-
ics, Kyoto University, in 1983, and currently a
Professor in the Department of Communications
and Computer Engineering, Graduate School of
Informatics, Kyoto University. His research in-
terests include design technologies for Digital,
Analog, and RF LSIs, with particular emphasis
on low-power design, design for manufactura-

bility, and design for dependability. Dr. Onodera served as the Program
Chair and General Chair of ICCAD and ASP-DAC. He was the Chairman
of the IPSJ SIG-SLDM (System LSI Design Methodology), the IEICE
Technical Group on VLSI Design Technologies, the IEEE SSCS Kansai
Chapter, and the IEEE CASS Kansai Chapter. He is currently the Chair-
man of IEEE Kansai Section. He served as the Editor-in-Chief of IEICE
Transactions on Electronics and IPSJ Transactions on System LSI Design
methodology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

