
1468
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.7 JULY 2014

PAPER Special Section on Design Methodologies for System on a Chip

Comparative Evaluation of Lifetime Enhancement with Fault
Avoidance on Dynamically Reconfigurable Devices

Hiroaki KONOURA† ,††a), Takashi IMAGAWA††† ,††b), Student Members, Yukio MITSUYAMA†††† ,††c),
Masanori HASHIMOTO† ,††d), and Takao ONOYE†,††e), Members

SUMMARY Fault tolerant methods using dynamically reconfigurable
devices have been studied to overcome wear-out failures. However, quan-
titative comparisons have not been sufficiently assessed on device life-
time enhancement with these methods, whereas they have mainly been
evaluated individually from various viewpoints such as additional hard-
ware overheads, performance, and downtime for fault recovery. This pa-
per presents quantitative lifetime evaluations performed by simulating the
fault-avoidance procedures of five representative methods under the same
conditions in wear-out scenarios, applications, and device architecture. The
simulation results indicated that improvements of up to 70% mean-time-to-
failure (MTTF) in comparison with ideal fault avoidance could be achieved
by using methods of fault avoidance with ‘row direction shift’ and ‘dy-
namic partial reconfiguration’. ‘Column shift’, on the other hand, attained
a high degree of stability with moderate improvements in MTTF. The ex-
perimental results also revealed that spare basic elements (BEs) should be
prevented from aging so that improvements in MTTF would not be ad-
versely affected. Moreover, we found that the selection of initial mappings
guided by wire utilization could increase the lifetimes of partial reconfigu-
ration based fault avoidance.
key words: fault avoidance, lifetime enhancement, mean-time-to-failure
(MTTF), partial reconfiguration

1. Introduction

Aggressive CMOS technology scaling is threatening the re-
liability of devices and early-life, normal-life, and wear-out
failures are all increasing. Burn-in and testing have been
extensively studied to screen faulty chips [1] in early-life
failures. Normal-life failures are mostly caused by temporal
effects, such as soft errors and power supply noise, and error
mitigation and recovery have extensively been considered
[2]. However, wear-out failures lead to permanent errors
in fields and generally cannot be resolved without special
mechanisms. Wear-out failures originate from aging effects
such as bias temperature instability (BTI) and time depen-

Manuscript received September 12, 2013.
Manuscript revised January 9, 2014.
†The authors are with the Department of Information Systems

Engineering, Osaka University, Suita-shi, 565-0871 Japan.
††The authors are with JST, CREST, Tokyo, 102-0075 Japan.
†††The author is with the Department of Communications and

Computer Engineering, Kyoto University, Kyoto-shi, 606-8501
Japan.
††††The author is with the School of Systems Engineering, Kochi

University of Technology, Kami-shi, 782-8502 Japan.
a) E-mail: konoura.hiroaki@ist.osaka-u.ac.jp
b) E-mail: imagawa@easter.kuee.kyoto-u.ac.jp
c) E-mail: mitsuyama.yukio@kochi-tech.ac.jp
d) E-mail: hasimoto@ist.osaka-u.ac.jp
e) E-mail: onoye@ist.osaka-u.ac.jp

DOI: 10.1587/transfun.E97.A.1468

dent dielectric breakdown (TDDB), and these result in de-
grading the lifetimes of devices and may require frequent
device replacement. Fault-tolerance techniques, which sus-
tain chip functionality even when there are some faulty mod-
ules, are required to increase device lifetimes by coping with
increasing numbers of wear-out failures.

Research on fault tolerance has a long history, and fault
tolerant techniques have been widely researched at differ-
ent levels. For instance, static random-access memories
(SRAMs) are often equipped with redundant rows to act as
replacements [3]. Gradually, graceful performance degra-
dation instead of sudden failures in devices has also been
explored [4] at the architecture level. However, one of the
most reliable approaches to fault tolerance is to exploit re-
dundancy and replace faulty modules with spares. These
are especially extremely compatible with reconfigurable de-
vices because unused basic elements (BEs) are available and
can be used for the replacements.

Here, let us explain the degree of lifetime enhance-
ment. Figure 1 plots the mean-time-to-failure (MTTF) as a
function of the number of avoidable faulty BEs on a device.
Note that the experimental setup for this evaluation was the
same as that in Sect. 5.1 and will be explained later. MTTF
with one-time avoidance of a single faulty BE is doubled
compared to MTTF with no avoidance. However, when 10
BEs can be avoided, MTTF increases five fold and when
100 faulty BEs can be avoided, it increases twenty fold.
This has two implications for designers in that 1) moder-
ate lifetime enhancements, such as up to two times, can be
attained by one-time fault avoidance, 2) aggressive lifetime
enhancement, such as more than 10 times, requires succes-
sive fault avoidance in faulty BEs. Designers who adopt
fault-avoidance methods need to explore and select the best
one that satisfies the required level of lifetime enhancement
depending on target applications and the environment.

Fig. 1 Relationship between MTTF and number of avoidable faulty BEs
(FFT).

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

KONOURA et al.: COMPARATIVE EVALUATION OF LIFETIME ENHANCEMENT WITH FAULT AVOIDANCE
1469

Several methods to replace faulty BEs on reconfig-
urable devices have been proposed to achieve such life-
time enhancements. Doumar et al. [5] proposed a hardware-
oriented method of fault recovery on field-programmable
gate arrays (FPGAs). Bypassing faulty BEs with this
method is guided by rules, and global wires and switches
inherently equipped in FPGAs are utilized for bypassing
faults. A substitute BE inheriting the function of a faulty BE
is uniquely determined corresponding to its spatial location,
and thus, the possible number of avoidable faulty BEs is
simply estimated by using available bypassing mechanisms
and remaining wire resources. Such methods can be rein-
forced to accommodate more faults by adding extra wires
and switches; however, these hardware overheads tend to be
significant. To make matters worse, they might cause in-
creases in potential breakdowns. In fact, Koal and Vierhaus
[6], who evaluated the reliability of a reconfigurable pro-
cessor with fault recovery, indicated that a large hardware
overhead for fault recovery adversely affected the enhanced
lifetime attained by recovery. Dynamical partial reconfig-
uration on coarse-grained reconfigurable architectures has
been studied [7] as an alternative method of solving this
problem. When a faulty BE is identified with this method by
periodically reconfiguring and running test patterns, a new
mapping, which isolates the faulty BE by assigning its op-
eration to unused BEs exploring available freedom both in
space and time, is dynamically calculated by an embedded
CPU. This method exploits the reconfigurability of devices
and does not require any additional switches or wires that
could be a new source of faults. However, multiple faulty
BEs have not been evaluated and the potentially enhanced
lifetime with this method is yet unknown.

Parris et al. [8] surveyed and summarized such fault-
tolerance techniques in terms of both overheads, such as
physical resources and reduced throughput, and sustainabil-
ity, such as recovery granularity and fault capacity. Here,
fault capacity means that the number of fault-free resource
units necessary to sustain system functionality against a sin-
gle additional fault. Similarly, Doumar and Ito [9] clas-
sified fault tolerant methods and calculated the yields of
configurable logic blocks with some defects. These sur-
veys are very helpful to understand the features of rep-
resentative fault-tolerance methods. However, achievable
life-time enhancement with hardware-oriented methods and
reconfiguration-oriented methods under sequential or mul-
tiple faults has not been quantitatively evaluated and com-
pared. Further beneficial guidelines for designers are re-
quired to enable them to select appropriate fault-avoidance
methods that will provide sufficient lifetime enhancements
required for target applications and environments.

Here, the terms fault avoidance and fault tolerance are
often used in similar contexts, but Laprie [10] differentiates
them as “preventing fault occurrence” for the former and
“providing service in spite of faults having occurred or oc-
curring” for the latter. Although we focused on preventing
fault occurrences with proactive fault detection and use the
term fault avoidance rather than fault tolerance in this paper,

the observations in this work are still expected to be helpful
for fault tolerance.

In this study, five fault-avoidance methods spanning
hardware-oriented to reconfiguration-oriented approaches
were selected as being representative and they were applied
to coarse-grained reconfigurable devices. Preliminary re-
sults from evaluating these five methods have been reported
[11]. MTTF increases due to these five fault-avoidance tech-
niques were compared and discussed through evaluations
with small applications of a six-tap finite impulse response
(FIR) filter and two-point discrete Fourier transform (DFT)
mapped on a 6 × 6 array.

On the other hand, we mapped more than ten times
larger applications to acquire more comprehensive observa-
tions in this study. The placement and routing algorithm
needs to be improved to obtain large-scale initial mappings
so that target applications with different scales can be eval-
uated and new observations can be obtained to deal with
larger applications. For instance, we found that efficiency in
spare usage derived from previous evaluations with a single
application was underestimated, and newly obtained results
indicated that the maximum difference in efficiency in spare
usage between the five fault-avoidance methods reached a
hundred fold. Moreover, other results such as the shapes of
time-to-failure (TTF) distributions and the 10th percentile
of the TTF are presented to explain the features of each
fault-avoidance method in this work. Another contribution
of this work is to clarify the importance of initial mappings
for fault-avoidance methods using partial reconfigurations
and to indicate that lifetime enhancements are dependent on
the utilization of wire tracks.

This paper consists of six sections. Section 2 de-
scribes the environment for lifetime evaluations assumed in
this work. The five fault-avoidance methods are classified
and introduced in Sect. 3, followed by a procedure for par-
tial placement and routing in Sect. 4, which is required to
evaluate fault-avoidance methods that are based on recon-
figurations. Section 5 explains the experimental setup and
presents simulation results for device lifetimes, and the fea-
tures of these five methods are summarized in the last sub-
section. Finally, Sect. 6 concludes the paper.

2. Environment for Evaluation of Lifetimes

This section first reviews techniques of fault detection to
achieve predictive fault avoidance. We then present the
basic reconfigurable architecture and environment used for
evaluating the lifetimes in this study.

2.1 Techniques of Fault Detection

Major permanent faults emerging on the user side can
roughly be classified into two groups; logic faults and delay
faults. Logic faults such as stuck-at faults and bridge faults
are caused by physical damage to wires and CMOS gates,
which occur due to electro migration (EM) [12], electro-
static discharge (ESD) [13], and TDDB, for example. De-

1470
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.7 JULY 2014

lay faults such as path delay faults and transition faults are
caused by aging effects in CMOS gates such as BTI, hot
carrier injection (HCI), and early-stage (soft-breakdown)
TDDB [14]–[16]. Techniques of fault detection are nec-
essary to achieve long lifetimes of devices by eliminating
these faults.

Redundant circuits such as triple modular redundancy
(TMR) [17] can be used to detect logic faults in addition to
fault tolerance. Even if some redundant modules become
faulty in these circuits, the majority of their outputs is pre-
sumed to be correct, and faulty modules are detected and
isolated by reconfiguring them. Another popular approach is
doing periodical self-tests, and this is attracting more atten-
tion due to its lower cost than that of the redundancy-based
approach. Inoue et al. [18] proposed a self-test method that
enabled all the functions of BEs to be periodically config-
ured and tested by changing test frames on coarse-grained
dynamically reconfigurable processors (DRPs).

On the other hand, it is more complex to detect delay
faults than logic faults, because it is essential to apply two
test vectors to activate gates and paths of interest. Moreover,
even after delay faults on some paths have been detected,
components that significantly degrade on the paths cannot
be easily identified. Kameda et al. [19] proposed a scheme
to predict potential path delay faults in the near future on
coarse-grained reconfigurable devices. Problematic compo-
nents were identified through iterative BE replacements and
path delay testing.

We supposed that such fault detection mechanisms
were embedded in the target architecture in this research and
assumed that faults could be predicted before they were ex-
posed as errors, while fault detection mechanisms are still
being researched. This paper therefore uses the term fault
avoidance, as mentioned in Sect. 1.

2.2 Basic Reconfigurable Architecture for Fault Avoid-
ance

Figure 2 outlines the target architecture used for this study,
which is based on the coarse-grained dynamically reconfig-
urable architecture introduced by Alnajjar et al. [20]. Identi-
cal BEs in this architecture are aligned repeatedly in a two-
dimensional array. Each BE is connected to adjacent BEs in
four directions with two wires. Interconnections are config-
ured with eight switches, and these switches and its config-
uration information are included in the BEs. Each BE con-
tains a functional unit (FU) having an arithmetic logic unit
(ALU) and shifter. FU receives one or two inputs (A and/or
B) from {N0, N1, E0, E1, S0, S1, W0, W1}, and performs
both arithmetic and logic operations for them. Output direc-
tion of the FU is also selected by configuration information
in the BE. Each BE is assumed to have a self-testing mech-
anism and faulty BEs can be identified before their lifetimes
end.

Fig. 2 Basic reconfigurable architecture.

Fig. 3 Procedure to evaluate device lifetimes.

2.3 Procedure to Evaluate Lifetimes

We evaluated the time-to-failure (TTF) for all devices by
simulating the fault-avoidance procedure for a wear-out sce-
nario. We randomly generated sets of wear-out scenarios
in a Monte Carlo manner and applied them to the devices
in the simulations. Then, a statistical distribution of TTF
was obtained. This evaluation was repeated for each fault-
avoidance method.

Figure 3 is a flow diagram of the procedure we used
to evaluate lifetimes in this study. First, initial parameters,
such as the number of BEs, a netlist of target circuits, and
fault-avoidance methods for evaluation, are given. The de-
tails on these fault-avoidance methods will be described in
Sect. 3. We prepared initial mapping tailored to the speci-
fied fault-avoidance method. We next randomly generated
a wear-out scenario according to a fault distribution and as-
signed the lifetimes of used BEs, which determined the tem-

KONOURA et al.: COMPARATIVE EVALUATION OF LIFETIME ENHANCEMENT WITH FAULT AVOIDANCE
1471

poral sequence of BE faults. The wear-out scenarios we
applied in this work will be briefly explained in Sect. 5.1.
BE replacement with the specified fault-avoidance method
was simulated after that. When fault avoidance could not be
completed, the lifetimes of device ended, and both the num-
ber of eliminated faulty BEs and TTF were recorded. This
fault-avoidance simulation for a wear-out scenario was one
trial and was repeated to obtain statistics.

3. Fault-Avoidance Methods for Wear-Out Scenarios

This section outlines and explains the classification of five
fault-avoidance methods we evaluated.

3.1 Classification of Fault-Avoidance Methods

We classified fault-avoidance methods on reconfigurable de-
vices in Table 1. First, the fault-avoidance methods were
divided into ‘static allocation’ and ‘dynamic allocation’ in
terms of spare BE allocation. The spare BEs to eliminate
a faulty BE are specified beforehand in ‘static allocation’
group. Namely, pairs between a faulty BE and spare BEs are
fixed. Then, the number of avoidable faults can be roughly
predicted and the device lifetime can be stably extended. On
the other hand, a new mapping to eliminate the faulty BE is
computed on the fly in the ‘dynamic allocation’ group. The
number of avoidable faults and consequent lifetime exten-
sions are less predictive, since they depend on many factors
such as the initial mappings, the remapping algorithm, and
the allowed downtime for preparing new configuration in-
formation.

Second, we examined fault-avoidance methods from
the view point of the amount of hardware overhead. The
hardware overhead generally tends to be large in such meth-
ods where successive fault-avoidance is carried out using
dedicated hardware for bypassing faults. In contrast, that is
small in such methods where fault avoidance is performed
exploiting inherent reconfigurability with the help of em-
bedded CPUs and memories.

The following subsections explain the five fault-
avoidance methods we evaluated, which are classified in Ta-
ble 1 and Fig. 4. These are (a) column shift, (b) row direc-
tion shift, (c) neighbor shift, (d) pre-compiled partial recon-
figuration, and (e) dynamic partial reconfiguration.

Although usable resources such as wires and switches
in methods (a) through (c) to both avoid various faults and
replace them with spare BEs are originally limited, we as-
sume that ideal fault avoidance is undertaken ignoring hard-

Table 1 Classification of fault-avoidance methods.

Spare BE Hardware Typical
allocation overhead methods

Static allocation
Considerable

(a) Column shift
(b) Row direction shift
(c) Neighbor shift

Small
(d) Pre-compiled partial reconf.

Dynamic allocation (e) Dynamic partial reconf.

ware limitations compared with methods (d) and (e) unless
specially noted, since a discussion on differences originat-

Fig. 4 Five fault-avoidance methods.

1472
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.7 JULY 2014

ing from detailed implementations is beyond the scope of
this paper.

3.2 Column Shift

[21], [22] presented an approach that used column (row)
redundancy on a reconfigurable device. We implemented
(a) the column shift in Fig. 4(a), by referring to this ap-
proach. First, an initial mapping is generated so that the
right columns are kept as spare BEs. When a BE becomes
faulty, each column on the right of the faulty BE is shifted
to the right by one column.

The possible number of fault avoidances in this ap-
proach is often limited due to the fact that one spare column
is entirely consumed by one faulty BE. Additional wires
and switches are necessary as a hardware support to bypass
faulty BEs horizontally.

3.3 Row Direction Shift

[23], [24] proposed a scheme where a faulty BE was elim-
inated using a spare on the same row. Row direction shift
was implemented according to Fig. 4(b) by referring to their
scheme.

An initial mapping is generated so that the BEs at right
were retained as spare BEs, which is similar to (a) column
shift. A faulty BE is eliminated by shifting the BEs on the
right of the faulty BE to the right. Unlike (a) column shift,
the elimination of the faulty BE is completed within a single
row. Although their data flow is limited to one direction
(from north to south) [23], this limitation is relaxed and all
directions are allowed in our study.

A considerable number of additional wires and
switches are necessary to bypass faulty BEs and to compen-
sate for the vertical mismatch originating from BE shifting
in order to achieve this fault avoidance and detour signal in-
terconnections.

3.4 Neighbor Shift

Doumar et al. [5] pointed out that the downtime to elimi-
nate faulty BEs is an important metric, and the amount of
BE shifting should be kept low. Neighbor shift was imple-
mented according to Fig. 4(c) to achieve this purpose. Spare
BEs are uniformly distributed in the BE array in this method.
One of the neighboring spare BEs around a faulty BE is se-
lected for avoidance.

Once a spare BE is consumed in this method, other
surrounding BEs have less possibility of being replaced in
the future. Multiple faults in neighboring BEs cannot be
avoided where each spare is shared by several BEs. Further,
preliminarily distributed spare BEs are obstacles and de-
grade routability on devices. Additional wires and switches
are necessary to detour signals through hardware support.

3.5 Pre-Compiled Partial Reconfiguration

[25], [26] proposed a method of fault recovery by select-

ing a proper configuration from ones prepared beforehand
and reloading it. This idea of a pre-compiled partial recon-
figuration was implemented according to Fig. 4(d). Partial
placement and routing (P&R) are simulated in advance by
assuming that one of BEs became faulty, and the result is
stored as pre-compiled partial configuration information for
remapping was stored. When a faulty BE is detected, appro-
priate pre-compiled configuration information is applied to
avoid the fault.

In this method, as multiple sets of configuration infor-
mation to avoid not only a first faulty BE but also an n-th
faulty BE based on the mapping after n times avoidance are
pre-compiled and stored in memory, longer MTTF can be
expected. On the other hand, the appropriate sets to load for
avoiding a new faulty BE depends on the history of faulty
BEs avoided so far, more precisely the sequence of faulty
BEs avoided. The number of permutation of faulty BEs
explodes exponentially as the number of avoided BEs in-
creases, and it is difficult to store the pre-compiled config-
uration sets for every permutation. We thus supposed that
this method stored the configuration information at least one
faulty BE can be avoided.

This method requires fewer wires and switches than
methods (a) through (c) because ordinary reconfigurabil-
ity is used for fault avoidance. Instead, extra memory for
storing spare configuration information is required. The de-
tails on partial P&R for reconfiguration will be explained in
Sect. 4.

3.6 Dynamic Partial Reconfiguration

[7], [27]–[29] presented a self-repair approach with dynamic
reconfiguration on FPGAs. This (e) dynamic partial recon-
figuration is applied to the target reconfigurable architecture
in Fig. 4(e). An initial mapping is generated without a delib-
erate allocation of spare BEs. When a BE becomes faulty,
partial reconfiguration is performed on the fly using a pro-
cessor. The device was down until a new configuration is
generated and loaded.

Most of advantages and disadvantages are the same as
those with method (d). The main difference is the require-
ment of a processor for dynamic partial reconfiguration in-
stead of extra memory. The major drawback is the down-
time that occurred when both calculating dynamic P&R and
reconfiguring.

4. Implementation of Placement and Routing

Partial P&R and spare/fault-aware P&R need to be imple-
mented to evaluate device lifetime with methods (c), (d) and
(e). We extended the popular P&R algorithms of VPR [30]
and PathFinder [31] to enable partial P&R and spare/fault-
aware P&R in this study. These extensions are explained in
the following.

KONOURA et al.: COMPARATIVE EVALUATION OF LIFETIME ENHANCEMENT WITH FAULT AVOIDANCE
1473

Fig. 5 Example of region selection for partial P&R.

4.1 Procedure for Partial Placement and Routing

We need to specify the region for partial P&R in performing
it. A smaller region is preferable, because the downtime
involved with reconfiguration is shorter and less memory for
storage is required. The procedure adopted in this evaluation
involves two steps.

1. Find the minimum rectangle including BEs that are ad-
jacent to and connected to the faulty one.

2. If the rectangle includes at least one unused BE, partial
P&R are carried out in this rectangle. Otherwise, the
rectangle is expanded toward a direction in which more
neighboring unused BEs are included. BEs only used
for wires are regarded as unused BEs.

Figure 5 shows an example of region selection. Sup-
posing BE(1, 2) becomes faulty, BE(2, 2) and BE(1, 3) are
adjacent to and connected to the faulty BE, and thus should
be included in the 2 × 2 rectangle. Here, as BE(2, 2) using
only wires is included, this 2 × 2 rectangle surrounded by a
broken line is then the region for partial P&R.

Once the region is selected, fault-aware P&R, which
will be explained in the next subsection, is carried out in the
region. When fault-aware P&R are successful, it is com-
pleted. Otherwise, the rectangle is expanded in a direction
that includes more unused BEs and fault-aware P&R are re-
run. This expansion and fault-aware P&R are repeated until
partial P&R succeed.

4.2 Spare/Fault-Aware Placement and Routing

Spare-aware P&R are necessary in method (c), since BEs
allocated for spare in advance cannot be used for mapping.
The partial P&R in methods (d) and (e) require fault-aware
P&R not to use faulty BEs. This means that spare-aware and
fault-aware P&Rs are identical. The following explains the
extension of VPR to spare/fault awareness. Here, both FU
and wires in a spare/faulty BE are assumed to be unusable.

The objective function for placement in VPR, which
corresponds to prospective wire length, is expressed as [30]

Cost =
Nnets∑
n=1

q(n)

[
bbx(n)

Cav,x(n)
+

bby(n)

Cav,y(n)

]
, (1)

where Nnets is the total number of nets, q(n) means the

Fig. 6 Example of spare/fault-aware computation of objective function.

weight of net n, depending on the number of terminals, and
bbx(n) and bby(n) are the width and height of the bounding
box for net n. Here, Cav,x(n) means the average routing ca-
pacity of horizontal wires and Cav,y(n) means that of vertical
wires.

Figure 6 has an example that explains how the calcula-
tion of the objective function changes with some faulty BEs.
When faulty BEs are located as shown in the figure, BE(C)
cannot be connected to BE(A), BE(B), BE(D), and BE(E)
with the shortest path. A detour is necessary in this case and
bby(n) increases from two to three. Moreover, spare BEs de-
grade routing capacity. Due to the location of spare BEs in
this example, the number of usable horizontal wires is de-
creased from 32 to 24 and that of vertical wires is decreased
from 30 to 20. Consequently, the horizontal and vertical av-
erage capacities decrease from C to C ∗24/32 for the former
and C ∗ 20/30 for the latter.

The above modification works well for small applica-
tions. However, routable placements cannot be obtained for
larger applications, because wire congestion has not been
considered in Eq. (1). In fact, for large applications such as
1,024-point FFT, initial routing was mostly aborted due to
BEs being so compactly placed that wire resources were in-
sufficient. We added terms to solve these problems that were
relevant to wire congestion to Eq. (1) by referring to Lou et
al. [32];

Cost= (1+ov · w)·
Nnets∑
n=1

q(n)

[
bbx(n)

Cav,x(n)
+

bby(n)

Cav,y(n)

]
, (2)

where ov is the summation of wire utilization overflows
from available wire resources. To be concrete, each basic
element has two horizontal tracks and two vertical tracks
as shown in Fig. 2. The overflow of the i-th basic element
ovi is expressed as max(0,NHi − 2) + max(0,NVi − 2), and
ov is Σiovi, where NHi (NVi) is the number of horizontally
(vertically) routed wires in the i-th basic element. Note that
in the placement phase, each net has not been routed, and
then NHi and NVi are probabilistically estimated referring
to [32]. Parameter w means the weight of wire congestion.
By adding ov ·w to the cost function, placement results with
higher congestion (i.e. larger ov · w) are less likely selected,
and we can expect to have a better placement result which is
easy to route in the following routing phase. Let us demon-

1474
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.7 JULY 2014

Table 2 Improved success rate in initial generation of layout due to ad-
ditional terms in Eq. (2) (FFT).

w 0 1 10 100 1,000
Success rate 2.2% 70.1% 96.2% 98.1% 95.9%

strate the contribution of the modified objective function.
Table 2 lists the success rate for generating routable initial
mappings where it is clear that larger w (≥10) helps generate
initial mappings successfully with an over 95% possibility.
The w was experimentally set to 100 throughout this work.

The PathFinder algorithm [31] based on maze routing
was improved for spare/fault-aware routing so that wires
passing through spare/faulty BEs could not be used.

5. Experimental Results

This section presents experimental results obtained from
evaluating lifetimes and compares the five fault-avoidance
methods. Section 5.1 first describes the experimental setup.
Section 5.2 explains our evaluation and comparison of
statistics such as MTTF, the standard deviation of the TTF
distribution, and the 10th percentile of TTF, which we used
to figure out the features of these methods. Section 5.3
points out that preventing BEs from aging is important to
achieve MTTF enhancements. In addition, Sect. 5.4 asso-
ciates achievable MTTFs in ‘neighbor shift’, ‘pre-compiled
partial reconfiguration’, and ‘dynamic partial reconfigura-
tion’ with their initial mappings through case studies. Fi-
nally, Sect. 5.5 summarizes the features of the five fault-
avoidance methods.

5.1 Experimental Setup

The lifetimes of BEs were supposed to follow a Weibull
distribution, which is widely used for evaluating device
reliability (e.g. [33]). The scale parameter, λ, was set to
1.0 × 10−6 [/h], and the shape parameter, m, was set to
two assuming aging process. Figure 7 shows an example
of the lifetime distribution of 10,000 BEs resulting from
the Weibull distribution, where the number of faulty BEs
reaches a peak at t = 8.0 × 105 [h] and then gradually de-
creases.

We assumed in this evaluation that spare BEs would
not age owing to selective power gating or other mecha-
nisms except for those in Sect. 5.3. The additional wires,
switches, and I/O interface for each fault-avoidance method
were built-in. Also, connections between a BE array and
outside components were not considered to simplify the
evaluation. There were 100 TTF evaluations for each fault-
avoidance method.

Table 3 summarizes target applications that have dif-
ferent scales. Here, mapping from a data flow graph and
netlist generation were carried out by Imagawa et al. [34]. A
square BE array, whose utilization was nearly 50%, was pre-
pared for each application. Let us take the 14-tap FIR filter
in Fig. 8 as an example to explain the way in which we pre-
pared the initial mappings using Fig. 9. First, P&R were per-

Fig. 7 Lifetime distribution of 10,000 BEs resulting from Weibull
distribution.

Table 3 Scale of target applications.

Target application
of # of rows and cols. BE

used BEs of BE array utilization

Nega-posi 12 5 × 5 48.0%
x differ 20 6 × 6 55.6%
14-tap FIR filter 40 9 × 9 49.4%
Gaussian filter 73 12 × 12 50.7%
FFT (1,024-p, radix-2) 111 15 × 15 49.3%

Fig. 8 14-tap FIR filter.

Fig. 9 Initial mappings of 14-tap FIR filter with methods (a) through (c).

formed within the left side of the BE array for methods (a)
and (b), and the rightward columns were retained as spare
BEs to avoid faulty BEs as much as possible. Nine spare
BEs were regularly located at the center of each 3×3 region
for method (c) to ensure that at least one faulty BE could be
reliably avoided. Evaluation was carried out for method (d)
with an initial mapping that could avoid any first faulty BE
regardless of its location and could carry out such avoid-
ance with the least information on mapping modifications

KONOURA et al.: COMPARATIVE EVALUATION OF LIFETIME ENHANCEMENT WITH FAULT AVOIDANCE
1475

to store. Finally, different initial mappings were generated
for every trial in Fig. 3 for method (e). A scenario for BEs
to wear out was also randomly generated for each trial.

In this paper, the run-time of partial P&R in method (e)
is not explicitly considered in MTTF evaluation, since this
work assumes that a faulty BE is predicted in advance before
faults start to emerge in that BE, as explained in Sect. 2.1.
When the time interval between fault prediction and fault
emergence is longer than the run-time of dynamic P&R, the
fault-avoidance succeeds. In this paper, we supposed that
the time interval was always longer than the run-time of
P&R. On the other hand, the CPU time needed for dynamic
P&R heavily depends on the performance of CPU available
and how much computation time can be allotted for dynamic
P&R. In addition, the time interval depends on test methods
and aging processes. Thus, evaluating MTTF degradation
due to the run-time of partial P&R is not straightforward,
and hence this is not considered.

5.2 Enhanced Lifetimes with Fault Avoidance

This section discusses the characteristics of the five fault-
avoidance methods by comparing statistics of lifetime en-
hancements.

5.2.1 MTTF Enhancement

Figure 10 shows the MTTFs of target applications attained
with the five fault-avoidance methods. We can see that they
achieved different MTTFs. Compared with no avoidance,
method (b) most decidedly extended MTTFs to a range of
4.0 to 5.7 times. It owed such long extensions to a large
number of additional switches and wires to bypass faulty
BEs. To clarify this, Fig. 11 shows MTTFs when the num-
ber of avoidable BEs in each row is limited, whereas Fig. 10
assumes that it is unlimited. As the number of avoidable
BEs in each row is incremented involving increased hard-
ware overhead, both the number of avoided faulty BEs and
MTTFs increase linearly. If the number of avoidable faulty
BEs in each row is limited to one, the MTTF becomes
3.14 × 105 h, which is less than that of method (a) and com-
parable to that of method (c). On the other hand, method (e)
also extends the MTTFs of ‘nega-posi’, ‘x differ’, and ‘14-
tap FIR filter’ significantly to over 7.74 × 105 h exploiting
the reconfigurability of devices.

Next, a metric called the MTTF enhancement ratio,
which is defined as the MTTF increase with each method
divided by the MTTF increase with ideal avoidance by uti-
lizing all spare BEs, was computed in Fig. 12 to further
compare MTTF enhancements. The MTTF enhancement
ratio expressed as a percentage becomes 100% when all
the spares are used for fault avoidance, i.e. the number
of avoided faulty BEs is equal to the number of spares.
The MTTF enhancement ratio decreases as the efficiency of
spare usage for MTTF improvements degrades. The MTTF
enhancement ratio in methods (a) and (b) was stable and less
dependent on target applications because the ratios of avail-

Fig. 10 MTTFs of target applications with five fault-avoidance methods
(Error bars represent standard deviations).

Fig. 11 MTTF and avoided faulty BEs of method (b) in which number
of avoidable BEs in each row is limited (14-tap FIR filter).

∗MTTF enhancement ratio = ΔMTTFmethod(n)/ΔMTTFideal

Fig. 12 MTTF enhancement ratio for target applications with five fault-
avoidance methods (Error bars represent standard deviations).

able spare BEs to the total BEs were the same. On the other
hand, the MTTF enhancement ratio in methods (d) and (e)
varied depending on applications. To understand these vari-
ations, we examined wire utilization that were directly re-
lated to the difficulty of implementing P&R. Figures 13–15
plot the relationships between MTTF and the worst wire uti-
lization ratio in whole, 5 × 5, and 3 × 3 regions of the initial
mapping, respectively. Here, the average for the worst-wire
utilization ratio over 100 trials was used, and each dot cor-
responds to each application. The correlation coefficients
between the wire utilization ratio and MTTF in Figs. 13–15
correspond to −0.752, −0.980, and −0.984. These results in-
dicate that the wire utilization ratio, particularly in the most
congested small region, is well correlated with MTTF for
the fault-avoidance methods using partial reconfiguration.
Further analysis of the dependence of MTTF enhancement

1476
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.7 JULY 2014

Fig. 13 Relationship between wire utilization ratio and MTTF in
method (e).

Fig. 14 Relationship between wire utilization ratio in most congested 5×
5 region and MTTF in method (e).

Fig. 15 Relationship between wire utilization ratio in most congested 3×
3 region and MTTF in method (e).

Fig. 16 Relationship between MTTFs and ratio of avoided faulty BEs to
used BEs found with five fault-avoidance methods.

on the initial mapping will be discussed in Sect. 5.4.
Figure 16 plots the relationship between the ratio of

the number of avoided faulty BEs divided by the number of
used BEs and the MTTFs of the five fault-avoidance meth-
ods, which intends to simplify the discussion on the number
of avoided faulty BEs required to achieve the target MTTF
taking into account the scales of applications. This figure in-
dicates that the ratio uniquely corresponds to MTTF. In ad-
dition, the improvement in MTTF gradually saturates as the
ratio increases. An interesting observation is that the MTTF
at 60% is close to that of a single BE (8.78×105 hours). This

Fig. 17 Relationship between number of spare BEs and average number
of avoided faulty BEs (α is slope of each regression line).

means that by using spare BEs, we can extend the MTTF of
an application to that of an BE. However, further extensions
are not easy to obtain, since the number of necessary spare
BEs rapidly increases. Thus, the number of fault avoidances
needs to be scaled up according to the number of used BEs
to maintain longer MTTFs for large-scale applications.

5.2.2 Efficiency in Spare Usage

The discussion in the previous section clarified that the
MTTF was well characterized by the ratio of avoided faulty
BEs to used BEs regardless of fault-avoidance methods. The
difference in the MTTFs results from the efficiency in spare
BE usage and hence we here compare fault-avoidance meth-
ods from this point of view. Figure 17 plots the relationship
between the number of spare BEs and the average number
of avoided faulty BEs with the five fault-avoidance meth-
ods, where each dot corresponds to each application. Note
that all BEs not assigned to operations in methods (d) and
(e) are available for fault avoidance and regarded as spare
BEs. We defined the efficiency in spare usage as the slope
(α) of regression lines. Larger α means that spare BEs are
well exploited to avoid faults.

Method (b) attains the largest α (= 62.4%) when the αs
of the five fault-avoidance methods are compared. On the
other hand, the α of method (d) is the smallest (= 0.6%);
in other words, there are many unused spare BEs still re-
maining. In method (d), once a BE becomes faulty, corre-
sponding information on the partial reconfiguration, which
was preliminarily generated and stored in memory, is loaded
and faults are avoided. Let us assume a second faulty BE.
If the region of partial reconfiguration for the second faulty
BE does not overlap that of the first, the second fault avoid-
ance succeeds. However, if there is an overlapping region, it
fails. This is why method (d) attained such low efficiency in
spare usage. The difference in efficiency of spare usage be-
comes more than a hundred-fold by comparing method (d)
and method (b).

KONOURA et al.: COMPARATIVE EVALUATION OF LIFETIME ENHANCEMENT WITH FAULT AVOIDANCE
1477

Fig. 18 TTF distributions for 14-tap FIR filter with five fault-avoidance methods.

5.2.3 TTF Distribution

Our evaluation of MTTF enhancements with the five fault-
avoidance methods was discussed in the previous subsec-
tion. Designers, on the other hand, generally pay attention
not only to MTTFs but also to TTF distributions. Figure 18
shows TTF distributions of the 14-tap FIR filter with the
five fault-avoidance methods that were used to investigate
the predictability of MTTF. Here, σ means the standard de-
viation of the distribution. Skewness is a statistic indicating
the asymmetry of the distribution. A positive skew means
that the tail on the right of the distribution is longer than that
on the left, and a negative skew means the opposite.

The σs of the TTF distributions in methods (b) and (e),
are much larger than that without fault avoidance, and the
TTF distributions are widely spread compared with the oth-
ers. There are two reasons for this. The first is the number of
avoided faulty BEs has spread more than the others. More
concretely, the σs of the number of avoided faulty BEs with
methods (b) and (e) correspond to 5.31 and 6.29, whereas
the σs of that with methods (a), (c), and (d) are 0, 1.72, and
0.73. The second reason is that the interval between succes-
sive faults was changing and it became longer as the number
of avoided BEs increased due to the Weibull distribution in
Fig. 7, which made the TTFs become more diverse. On the
other hand, compared with no fault avoidance, σ and skew
remain almost unchanged for method (a), which indicates
the shape of the TTF distribution is roughly maintained. The
enhanced lifetime attained with method (a) is stable and pre-
dictable.

Table 4 lists the statistics for the TTF distributions of
the 14-tap FIR filter. The medians and 10th percentiles of
TTFs correspond to lifetimes that 50% and 90% of chips
can attain. The 10th percentiles of TTFs with methods (a)
through (e) are at least three times larger than those with no
fault avoidance, and this improvement in 10th percentiles is
larger than those for MTTFs and medians, which is an ad-

Table 4 Statistics for TTF distributions (14-tap FIR filter).

Fault-avoidance MTTF Median 10th percentile
methods [105h] [105h] [105h]

No fault avoidance 1.35 1.29 0.43
method (a) 4.01 3.88 2.95
method (b) 8.54 8.48 6.05
method (c) 3.40 3.51 1.84
method (d) 2.42 2.34 1.28
method (e) 7.75 7.51 5.01

Table 5 Different scales of BE array (14-tap FIR filter).

of rows & columns of BE array BE utilization

8 × 8 62.5%
9 × 9 49.4%

12 × 12 27.8%

vantageous property for applications that demand reliabil-
ity. Thus, fault avoidance effectively improves not only the
average lifetime but also gains smaller percentiles for the
lifetimes.

5.2.4 BE Utilization Ratio and MTTF Scalability

The BE utilization ratio, which is also associated with the
wire utilization ratio, is one of major factors determining
the difficulty of P&R. We then evaluated MTTF scalabil-
ity in terms of the BE utilization ratio; in other words, how
MTTFs could be improved as the number of spare BEs in-
creased.

Table 5 lists the setup in the array size for the 14-tap
FIR filter. Here, the initial mappings for ‘BE 8× 8’ and ‘BE
12 × 12’ were generated in the same way as that explained
in Sect. 5.1. As for method (c), we first assumed that a BE
at the center was designated as a spare for each 3 × 3 BEs
similarly to the previous experiments, even when the array
size was changed. This assumption considered a situation
that the array having the same functionality yet a different
size was used.

1478
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.7 JULY 2014

Fig. 19 MTTFs of 14-tap FIR filter with different scales of BE arrays
(Error bars represent standard deviations).

Fig. 20 Additional initial mappings of 14-tap FIR filter for method (c).

Fig. 21 MTTFs of 14-tap FIR filter with different scales of BE arrays for
method (c).

Figure 19 shows the MTTFs. The MTTFs in methods
(a) and (b) became longer as the array became larger, i.e.
as BE utilization ratio decreases. An increase in columns
fully consisting of spare BEs contributed to longer MTTFs
in method (a), and method (b) steadily converted any addi-
tional spare BEs into improved MTTFs. On the other hand,
while a similar tendency was observed in method (e), the
improved MTTF from ‘BE 9 × 9’ to ‘BE 12 × 12’ was quite
small and MTTF scalability with method (e) was worse than
those with methods (a) and (b). The efficiency in spare usage
degraded in method (e) as more spare BEs became available.
Method (d) basically prepares a set of mapping modifica-
tions for every single faulty BE, and in some cases multiple
modifications can fortunately be applied. However, this did
not occur too often. To make matters worse, regions of map-
ping modifications were occasionally very large, which pre-
vented method (d) from avoiding multiple faulty BEs even
when the array was large. Moreover, MTTF enhancement in
method (c) with respect to increase in array size was quite
limited compared to methods (a) and (b). It was due to that
spare BEs were just regularly allocated at the center of each
3×3 region and other unused BEs could not be used for fault
avoidance in method (c).

For method (c), on the other hand, another situation in

Fig. 22 Relationship of 14-tap FIR filters between number of spare BEs
and MTTFs with and without spare aging. (Markers filled by black are
without spare aging, and ones filled by white are with spare aging.)

which more than one-ninth BEs are designated as spares can
be reasonably considered while the additional hardware for
fault avoidance increases. Thus, we permitted the overlap-
ping of 3 × 3 regions while keeping the same assumption
that the center of 3 × 3 regions is the spare and can substi-
tute one of adjacent eight BEs. If a BE is adjacent to two
spare BEs and becomes faulty, either of the two can be used
as the substitute. Under this situation, we performed further
evaluation of MTTFs in method (c) with additional initial
mappings in Fig. 20. The ratio of the spare BEs was scaled
by changing the portion of the overlapping. Figure 21 shows
the MTTFs. The MTTF of ‘BE 9 × 9’ with 12 spare BEs is
1.09 times as large as that of ‘BE 9 × 9’ with nine spare
BEs. Similarly, the MTTF of ‘BE 12 × 12’ with 36 spare
BEs is 1.27 times as large as that of ‘BE 9×9’ with 16 spare
BEs. These results demonstrate that method (c) can scale
the MTTF by allocating more spares with increase in hard-
ware overhead. However, the MTTF of ‘BE 12 × 12’ with
36 spare BEs attained only 71.2% (= 5.31/7.46) of that of
‘BE 12 × 12’ in method (a). This can be explained as fol-
lows. When a BE becomes faulty in method (a), not only
the faulty BE but also other aged but not faulty BEs belong-
ing to the same column are swapped with fresh spare BEs.
The swapped BEs are less likely to become faulty in the near
future, which helps improve the MTTF.

5.3 Aging Effect on Spare BEs

The evaluations presented thus far assumed that spare BEs
would not age. In actual circuits, on the other hand, BEs
not assigned to any operations can still suffer from the aging
effect. We evaluated how the aging of spare BEs affected
lifetime enhancement.

Figure 22 plots the relationships of 14-tap FIR filters
between the number of spare BEs and MTTFs with and

KONOURA et al.: COMPARATIVE EVALUATION OF LIFETIME ENHANCEMENT WITH FAULT AVOIDANCE
1479

without spare aging. Here, spare aging means that the life-
times of spare BEs are also supposed to follow Weibull
distributions as well as the lifetimes of used BEs. The
figure has an upper limits where available spare BEs can
necessarily be used for fault avoidance, i.e. the number of
avoided faulty BEs is equal to the number of spare BEs.
Figure 22 indicates that MTTFs significantly decrease due
to spare aging. The MTTF for method (b) decreases to
72.8% (= 6.22/8.54). Similarly, the MTTF for method (e)
decreases to 74.0% (= 4.20/5.67). Thus, when spare BEs
also degrade, the advantage of fault avoidance to enhance
lifetimes considerably decreases. Therefore, mechanisms to
keep spare BEs fresh, such as power cutoffs, are required
to make the best possible use of fault-avoidance methods.
On the other hand, some aging effects, such as total doze
effect in space environment, may not be eliminated from
spare BEs. More specific evaluation in terms of operating
environment and aging processes is one of the future works.

5.4 Initial Mapping for Fault Avoidance

Initial mappings affect the number of avoidable faulty BEs
for methods (c) to (e). MTTF was evaluated for different
mappings. The initial mappings for method (c) in which
the numbers of used BEs around each spare BE are aver-
aged out lengthen lifetimes. The two different mappings in
Fig. 23 were prepared for evaluation to demonstrate this ten-
dency. Map A was automatically generated as explained in
Sect. 5.1, and map B was manually generated such that there
were four or five used BEs around spare BE. Table 6 listing
the MTTFs with initial mappings of Fig. 23 indicates that
the MTTF of map B is slightly but certainly larger than that
of map A as we expected. Thus, the enhanced lifetime of
method (c) depends on the initial mapping.

The initial mappings for methods (d) and (e) that have
a high degree of compatibility with partial reconfiguration
are expected to better contribute to extending lifetimes. The

Fig. 23 Initial mappings of FFT for method (c).

Table 6 MTTFs of FFT with initial mappings shown in Fig. 23.

MTTF [105 h]
Map A Map B

No fault avoidance 0.85
(c) Neighbor shift 2.46 2.55

initial mappings for methods (d) and (e) are generated by
P&R explained in Sect. 4 in a comparative experiment, ac-
cording to the rule that all BEs assigned to functional op-
erations were regularly placed as on a checker-board. Fig-
ure 24 shows different initial mappings from the ten gener-
ated for evaluation. The density of all 3 × 3 regions in these
mappings is almost the same. Figure 25 describes the en-
hanced MTTF for ten initial mappings. The maximum gaps
of the enhanced MTTF reach 4.0% (map #1 vs. map #8) for
method (d) and 10.1% (map #6 vs. map #7) for method (e).
Moreover, the discussion in Sect. 5.2.1 suggests that these
gaps originated from the differences in wire utilization.

Figures 26 and 27 plot the relationships between the
wire utilization of each initial mapping and the number of
avoided faulty BEs with methods (d) and (e). Only fewer
faulty BEs were avoided in map #1 and map #6 due to higher
wire utilization, and in contrast, more faulty BEs were suc-
cessfully avoided in map #8 and map #7 due to lower wire
utilization. We concluded that even when spares were sim-
ilarly spread out, MTTFs could differ depending on the ini-
tial P&R, especially wire utilization. From another point of

Fig. 24 Initial mappings of FFT for methods (d) and (e).

Fig. 25 MTTF enhancement ratio of FFT for initial mappings in Fig. 24.

1480
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.7 JULY 2014

view, there is room to maximize the enhanced lifetimes even
with the same number of spare BEs by obtaining a better
initial mapping. We intend to drive such a problem formula-
tion as an optimization problem and include its algorithmic
solution in our future work.

5.5 Summary & Discussion

Table 7 summarizes the performance of the five fault-
avoidance methods. First, method (b) in a comparison of
MTTFs attained the largest MTTF improvement of (3.5
times–10.8 times), and method (e) followed as the second
highest (4.0 times–5.7 times). An MTTF enhancement ratio
close to 70% was obtained for methods (b) and (e) in com-
parison with optimal fault avoidance. Method (b) achieved
the highest value for the number of avoided faulty BEs per
spare BE (62.4%), demonstrating the most efficient spare

Fig. 26 Relationship between wire utilization and number of avoided
faulty BEs with method (d) (FFT).

Fig. 27 Relationship between wire utilization and number of avoided
faulty BEs with method (e) (FFT).

Table 7 Summary of evaluations of fault-avoidance methods with five target applications. (Bold font
means better performance in each row.)

(a) (b) (c) (d) (e)
Column shift Row direction shift Neighbor shift Pre-compiled partial

reconf.
Dynamic partial re-
conf.

MTTF 2.1–3.9× 3.5–10.8× 2.0–3.0× 1.7–1.9× 4.0–5.7×
MTTF enhancement ratio* 20–29% 57–70% 14–32% 7–18% 32–76%
Efficiency in spare usage 5.3% 62.4% 15.9% 0.6% 7.4%
Standard deviation of TTFs 1.1–1.4× 1.5–2.6× 1.3–1.6× 1.1–1.3× 1.6–3.2×
10th percentile of TTFs 4.2–8.7× 8.3–25.4× 2.9–5.4× 2.4–3.5× 9.4–11.7×
Dependence of applications low low low medium high
Scalability medium high low low medium

Description

Lifetime enhance-
ment is stable, but
efficiency in spare
usage is low

Quite a high life-
time is obtained by
large extra hard-
ware overhead

At least one faulty
BE is guaranteed
to be avoided with
a minimum # of
spare BEs

of avoidable faulty
BEs is too small
to enhance lifetime
substantially

Efficiency of life-
time enhancement
depends on map-
pings and P&R re-
sults

∗MTTF enhancement ratio = ΔMTTFmethod(n)/ΔMTTFideal

usage. Methods (a) and (d) provided predictive lifetimes
with smaller TTF variations in respect to standard devia-
tion. Methods (b) and (e) achieved higher 10th percentiles
of TTF in common with MTTF. We also confirmed through
evaluation of five target applications that at least 2.4 times
enhancement of 10th percentiles of TTF could undoubtedly
be obtained with all the methods. The MTTF enhancements
with methods (d) and (e) using partial reconfiguration were
more dependent on the scale of applications than those of
methods (a) through (c). Method (b) had the highest ca-
pability of controlling MTTFs by changing the number of
spare BEs in terms of MTTF scalability, followed by meth-
ods (a) and (e).

The characteristics of the five fault-avoidance meth-
ods can be summarized as follows. The main advantage of
method (a) is its stable and reasonable enhancement of MT-
TFs with less dependence on applications. One of the main
drawbacks of method (a) is that its efficiency with spare us-
age was low. Method (b) attained the highest MTTF en-
hancements at the cost of larger hardware overhead. Al-
though both enhancements and scalability of MTTFs are
low for method (c), at least one fault avoidance with a min-
imum number of spare BEs was guaranteed. Method (d)
was not good at sequential fault avoidance and therefore
its enhancement of lifetimes was the smallest. Method (e)
achieved higher MTTF enhancements that were comparable
with those of method (b) in some applications. The number
of avoided faulty BEs in methods (d) and (e) was notably
dependent on mappings and P&R results, which suggests
MTTFs could be enhanced by improving initial and partial
P&R.

In this paper, methods (d) and (e) are classified in terms
of available resources, i.e. memory and CPU. Then, method
(d) has a difficulty to avoid multiple faults, and method (e)
needs long down time to preform partial P&R. However,
assuming both memory and CPU are available, these two
drawbacks can be eliminated. In this case, a possible method
of fault avoidance is performed as follows.

1. Prepare configuration information to avoid every BE

KONOURA et al.: COMPARATIVE EVALUATION OF LIFETIME ENHANCEMENT WITH FAULT AVOIDANCE
1481

and store the information in memory beforehand,
which is the same with method (d).

2. Apply the prepared configuration information for the
faulty BE, which is also the same with method (d).

3. Update configuration information to avoid every BE by
using CPU and store the information in memory before
the next fault occurs.

4. Repeat the steps of #3 to #4.

In method (e), dynamic P&R is performed after a fault BE is
found. On the other hand, in this procedure, dynamic P&R
is performed proactively at step 3, and its result is stored in
memory. Note that all the information is not necessary to
update, and dynamic P&R usually needs to be performed
to avoid prospective faulty BEs in proximity to the previous
faulty BE.

With this procedure, the downtime is the same with that
of method (d), since the configuration information is loaded
from the memory. In addition, dynamic P&R is performed
for the mapping that has already avoided faulty BEs, and
hence multiple faults can be avoided more probably, which
is similar to method (e). This fault avoidance method is
worth for further evaluation.

Thus far, we summarized and discussed lifetime en-
hancement achieved by fault-avoidance methods. The eval-
uation of life-time extension in this work is helpful to iden-
tify a few promising fault-avoidance methods in terms of
required life-time extension, since the importance of life-
time depends on applications and environment. On the other
hand, performance, such as delay, area and power dissipa-
tion, is another important factor to select the most appro-
priate fault-avoidance method. However, these performance
metrics cannot be precisely evaluated without implement-
ing the architecture, and their evaluation is time-consuming.
An efficient way is to identify and select a few promising
fault-avoidance methods referring the results in this paper
and evaluate their performance with more concrete architec-
ture implementations supposing specific target applications
and operating environment.

6. Conclusion

Quantitative lifetime evaluations with representative five
fault-avoidance methods on dynamically reconfigurable de-
vices were undertaken. Our evaluation results indicated that
lifetime enhancement ratio, expressed as a percentage, of
devices was improved by up to 70% with ‘row direction
shift’ and ‘dynamic partial reconfiguration’. On the other
hand, ‘column shift’ was suitable to obtain a certain level
of MTTF enhancement. We also found that to make the
maximum use of fault-avoidance methods, spare BEs should
be prevented from aging. Moreover, we clarify that fault-
avoidance methods using partial reconfiguration have the
potential to enhance MTTFs by generating mappings that
have higher compatibility with partial P&R.

Acknowledgment

The authors would like to thank the project members of JST
CREST of NEC Corp., the Kyoto University, Kyoto Institute
of Technology, Nara Institute of Science and Technology,
and ASTEM RI for the discussions we had with them.

References

[1] S.A. Sundberg, “High-throughput and ultra-high-throughput screen-
ing: Solution-and cell-based approaches,” Current Opinion in
Biotechnology, vol.11, no.1, pp.47–53, 2000.

[2] D. Ernst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-
power pipeline based on circuit-level timing speculation,” Proc. MI-
CRO, pp.7–18, 2003.

[3] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure
probability and statistical design of SRAM array for yield enhance-
ment in nanoscaled CMOS,” IEEE Trans. Comput.-Aided Des. In-
tegr. Circuits Syst., vol.24, no.12, pp.1859–1880, 2005.

[4] O. Khan and S. Kundu, “A self-adaptive system architecture to ad-
dress transistor aging,” Proc. DATE, pp.81–86, 2009.

[5] A. Doumar, S. Kaneko, and H. Ito, “Defect and fault tolerance FP-
GAs by shifting the configuration data,” Proc. DFT, pp.377–385,
1999.

[6] T. Koal and H.T. Vierhaus, “Optimal spare utilization for reliability
and mean lifetime improvement of logic built-in self-repair,” Proc.
DDECS, pp.219–224, 2011.

[7] S. Eisenhardt, A. Küster, T. Schweizer, T. Kuhn, and W. Rosenstiel,
“Spatial and temporal data path remapping for fault-tolerant coarse-
grained reconfigurable architectures,” Proc. DFT, pp.382–388, 2011.

[8] M. Parris, C.A. Sharma, and R.F. DeMara, “Progress in autonomous
fault recovery of field programmable gate arrays,” ACM Computing
Surveys, vol.43, no.4, pp.31:1–31:30, 2010.

[9] A. Doumar and H. Ito, “Detecting, diagnosing, and tolerating faults
in SRAM-based field programmable gate arrays: A survey,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol.11, no.3, pp.386–
405, 2003.

[10] J.C. Laprie, “Dependable computing and fault-tolerance: Concepts
and terminology,” Proc. FTCS, pp.2–11, 1985.

[11] H. Konoura, Y. Mitsuyama, M. Hashimoto, and T. Onoye, “Impli-
cations of reliability enhancement achieved by fault avoidance on
dynamically reconfigurable architectures,” Proc. FPL, pp.189–194,
2011.

[12] J.M. Soden, R.K. Treece, M.R. Taylor, and C.F. Hawkins, “CMOS
IC stuck-open fault electrical effects and design considerations,”
Proc. ITC, pp.423–430, 1989.

[13] J.E. Vinson and J.J. Liou, “Electrostatic discharge in semiconductor
devices: An overview,” Proc. IEEE, vol.86, no.2, pp.399–420, 1998.

[14] B.C. Paul, K. Kang, H. Kufluoglu, M.A. Alam, and K. Roy, “Im-
pact of NBTI on the temporal performance degradation of digital cir-
cuits,” IEEE Electron Device Lett., vol.26, no.8, pp.560–562, 2005.

[15] K.L. Chen, S.A. Saller, I.A. Groves, and D.B. Scott, “Reliability
effects on mos transistors due to hot-carrier injection,” IEEE J. Solid-
State Circuits, vol.20, no.1, pp.306–313, 1985.

[16] J. Noguchi, T. Saito, N. Ohashi, H. Ashihara, H. Maruyama,
M. Kubo, H. Yamaguchi, D. Ryuzaki, K.I. Takeda, and K. Hinode,
“Impact of low-k dielectrics and barrier metals on TDDB lifetime of
Cu interconnects,” Proc. IRPS, pp.355–359, 2001.

[17] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM Journal of Research and De-
velopment, vol.6, no.2, pp.200–209, 1962.

[18] T. Inoue, T. Fujii, and H. Ichihara, “A self-test of dynamically re-
configurable processors with test frames,” IEICE Trans. Inf.&Syst.,
vol.E91-D, no.3, pp.756–762, March 2008.

1482
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.7 JULY 2014

[19] T. Kameda, H. Konoura, D. Alnajjar, Y. Mitsuyama, M. Hashimoto,
and T. Onoye, “A predictive delay fault avoidance scheme for
coarse-grained reconfigurable architectures,” Proc. FPL, pp.615–
618, 2012.

[20] D. Alnajjar, Y. Ko, T. Imagawa, H. Konoura, M. Hiromoto,
Y. Mitsuyama, M. Hashimoto, H. Ochi, and T. Onoye, “Coarse-
grained dynamically reconfigurable architecture with flexible reli-
ability,” Proc. FPL, pp.186–192, 2009.

[21] A. Shibayama, H. Igura, M. Mizuno, and M. Yamashina, “An au-
tonomous reconfigurable cell array for fault-tolerant LSIs,” Proc.
ISSCC, pp.230–231, 1997.

[22] F. Hatori, T. Sakurai, K. Nogami, K. Sawada, M. Takahashi,
M. Ichida, M. Uchida, I. Yoshii, Y. Kawahara, T. Hibi, Y. Saeki,
H. Muroga, A. Tanaka, and K. Kanzaki, “Introducing redundancy in
field programmable gate arrays,” Proc. CICC, pp.1–7, 1993.

[23] Z.E. Rakosi, M. Hiromoto, H. Ochi, and Y. Nakamura, “Hot-
swapping architecture extension for mitigation of permanent func-
tional unit faults,” Proc. FPL, pp.578–581, 2009.

[24] F. Hanchek and S. Dutt, “Methodologies for tolerating cell and in-
terconnect faults in FPGAs,” IEEE Trans. Comput., vol.47, no.1,
pp.15–33, 1998.

[25] L. Shang, M. Zhou, Y. Hu, and E. Yang, “A domain partition model
approach to the online fault recovery of FPGA-based reconfigurable
systems,” IEICE Trans. Fundamentals, vol.E94-A, no.1, pp.290–
299, Jan. 2011.

[26] J. Lach and W.H. Mangione-Smith, “Low overhead fault-tolerant
FPGA systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol.6, no.2, pp.212–221, 1998.

[27] N.J. Macias and L.J.K. Durbeck, “Adaptive methods for growing
electronic circuits on an imperfect synthetic matrix,” Biosystems,
vol.73, no.3, pp.173–204, 2004.

[28] R.S. Oreifej, C.A. Sharma, and R.F. DeMara, “Expediting GA-based
evolution using group testing techniques for reconfigurable hard-
ware,” Proc. ReConFig, pp.1–8, 2006.

[29] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic
fault tolerance in FPGAs via partial reconfiguration,” Proc. FPCCM,
pp.165–174, 2000.

[30] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” Proc. FPL, pp.213–222, 1997.

[31] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” Proc. FPGA, pp.111–117,
1995.

[32] J. Lou, S. Thakur, S. Krishnamoorthy, and H.S. Sheng, “Estimat-
ing routing congestion using probabilistic analysis,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.21, no.1, pp.32–41,
2002.

[33] Y.H. Lee, N. Mielke, M. Agostinelli, S. Gupta, R. Lu, and
W. McMahon, “Prediction of logic product failure due to thin-gate
oxide breakdown,” Proc. IRPS, pp.18–28, 2006.

[34] T. Imagawa, M. Hiromoto, H. Ochi, and T. Sato, “Reliability evalu-
ation environment for exploring design space of coarse-grained re-
configurable architectures,” IEICE Trans. Fundamentals, vol.E93-A,
no.12, pp.2524–2532, Dec. 2010.

Hiroaki Konoura received B.E. and M.E.
degrees in Information Systems Engineering
from Osaka University, Japan, in 2009 and
2011, respectively. He is currently a doctoral
student in the Department of Information Sys-
tems Engineering at Osaka University. His re-
search interest is development of high reliable
reconfigurable architecture. He is a student
member of IEEE.

Takashi Imagawa received his B.E. de-
gree in Electrical and Electronic Engineering,
his master degree in Communications and Com-
puter Engineering, from Kyoto University in
2008 and 2010. Presently, he is a doctor course
student at Department of Communications and
Computer Engineering, Kyoto University. He is
a student member of IPSJ, and IEEE.

Yukio Mitsuyama received B.E., M.E.,
and Ph.D. degrees in Information Systems Engi-
neering from Osaka University, Japan, in 1998,
2000, and 2010, respectively. He is currently an
Associate Professor in School of Engineering,
Kochi University of Technology. His research
interests include reconfigurable architecture and
its VLSI design. He is a member of IEEE and
IPSJ.

Masanori Hashimoto received the B.E.,
M.E. and Ph.D. degrees in Communications and
Computer Engineering from Kyoto University,
Kyoto, Japan, in 1997, 1999, and 2001, respec-
tively. Since 2004, he has been an Associate
Professor in Department of Information Sys-
tems Engineering, Graduate School of Informa-
tion Science and Technology, Osaka University.
His research interest includes computer-aided-
design for digital integrated circuits, and high-
speed circuit design. Dr. Hashimoto served on

the technical program committees for international conferences including
DAC, ICCAD, ITC, ASP-DAC, DATE, ISPD, and Symposium on VLSI
Circuits. He is a member of IEEE, ACM, and IPSJ.

Takao Onoye received the B.E. and M.E.
degrees in Electronic Engineering, and Dr.Eng.
degree in Information Systems Engineering all
from Osaka University, Japan, in 1991, 1993,
and 1997, respectively. He is currently a profes-
sor in the Department of Information Systems
Engineering, Osaka University. His research in-
terests include media-centric low-power archi-
tecture and its SoC implementation. He is a
member of IEEE, IPSJ, and ITE-J.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

