
978-1-4799-2079-2/13/$31.00 c©2013 IEEE

Mixed-grained reconfigurable architecture supporting
flexible reliability and C-based design

Hiroaki KONOURA1,6, Dawood ALNAJJAR1,6, Yukio MITSUYAMA2,6, Hiroyuki OCHI3,6,
Takashi IMAGAWA4,6, Shinichi NODA5,6, Kazutoshi WAKABAYASHI5,6,

Masanori HASHIMOTO1,6, and Takao ONOYE1,6

1 Osaka University 2 Kochi University of Technology 3 Ritsumeikan University
4 Kyoto University 5 NEC Corp. 6 JST, CREST

Abstract—This paper proposes a mixed-grained reconfig-
urable architecture consisting of fine-grained and coarse-grained
fabrics, each of which can be configured for different levels
of reliability depending on the reliability requirement of target
applications. Thanks to the fine-grained fabrics, the architecture
can accommodate a state machine, which is indispensable for
exploiting C-based behavioral synthesis to trade latency with
resource usage through multi-step processing using dynamic
reconfiguration. In implementing the architecture, the strategy of
dynamic reconfiguration, the assignment of configuration storage
and the number of implementable states are keys factors that
determine the achievable trade-off between used silicon area and
latency. We thus split the configuration bits into two classes; state-
wise configuration bits and state-invariant configuration bits for
minimizing area overhead of configuration bit storage. In addi-
tion, through a case study of FFT mapping, we experimentally
explore the appropriate number of implementable states.
Keywords—Coarse-grained reconfigurable architecture

(CGRA), flexible reliability, behavioral synthesis, state machine
I. INTRODUCTION

Coarse-grained reconfigurable architectures (CGRA) have
been studied to fill the performance gap between FPGA
and ASIC by reasonably limiting application domains and
programmability. Recently, the reliability of reconfigurable
devices is drawing attentions, since implementing mission-
critical applications with high reliability on reconfigurable
devices is highly demanded for saving NRE costs. Especially,
soft errors are one of serious concerns threatening reliability
of operating mission-critical applications. Soft errors include
single event upset (SEU) where a charge occurring in memory
elements causes a bit-flip and single event transient (SET)
where a charge occurring in a combinational logic propagates
to memory elements and causes a bit-flip. From reliability
point of view, CGRA is inherently superior in soft error
immunity to FPGA, since the amount of configuration bits
is by orders of magnitude smaller than that of FPGA. [1–3]
proposed several CGRAs with reliability consideration. Pre-
viously, we developed a reliability-configurable CGRA where
the reliability level of each processing element (PE) can be
chosen flexibly depending on applications and environments
[4]. In [4], the trade-off between soft error immunity and
area is successfully demonstrated on a 65nm test chip under
irradiation.
Thus far, while many CGRAs have been proposed (e.g.

[5–8]), their adoption for commercial use is limited, especially
when compared to FPGAs despite of their larger power dissi-
pation and area. CGRA is basically composed of an array of
ALUs handling multi-bit operands, and is suitable for data-path
implementation. On the other hand, it is not good at efficiently
implementing one-bit operations that are often found in flag

computation, conditional branching and state machine. Espe-
cially, the incompatibility with state machine implementation
is a significant problem preventing CGRA from being widely
used, since RTL designers and existing behavioral synthesis
tools for ASIC and FPGA synthesize data-path circuits that
are controlled by state machines. Consequently, CGRA is not
taking full benefit of the IP reuse nor the standard ANSI C/C++
source codes available.
To overcome this issue, several CGRA architectures that

are compatible with state machine implementation are pro-
posed. For instance, [9] proposes DRP architecture which
consists of a state transition controller and multiple PEs having
16 contexts and 8-bit/1-bit operators. This architecture enabled
both one-bit operation and state machine implementation.
Another example is XPP device [10], which has a configuration
manager to enable the state transition in each tile. However,
none of architectures have attained the compatibility with
behavioral synthesis and reliability considerations. To expand
the application domains of CGRA, an architecture having high
compatibility with design automation tools and high flexibility
in reliability to cover various applications is highly demanded.
In this paper, we propose a mixed-grain reconfigurable

architecture that supports both behavioral synthesis and flexible
reliability. The proposed architecture follows the concept of
flexible reliability configuration presented in [4], which enables
system designers to systematically trade off area for improving
the soft error immunity without having a deep knowledge of re-
liability enhancement techniques. This work newly introduces
one-bit PEs to implement a state machine that broadcasts the
state signal to the array and dynamically reconfigures instruc-
tions given to CGRA. Consequently, designers can select one
from various application implementations, e.g. a small area
implementation with the large number of states or a low latency
implementation with the small number of states.
We develop the architecture mentioned above which en-

ables state-wise cycle-by-cycle dynamic reconfiguration, in
contrast to multi-cycle reconfiguration [11]. To achieve this,
we need to increase the capacity of local configuration memory
in each PE in proportion to the number of states. In addition,
to attain the immunity to soft errors, we need to introduce
redundancy and error elimination mechanism into the config-
uration memory. For example, if triple modular redundancy
(TMR) is adopted, the three-fold memory capacity becomes
necessary. These two factors could tremendously increase the
memory capacity for configuration bits, which could degrade
area efficiency of the architecture.
To cope with this issue, we first adopt a strategy that the

configuration bits for interconnection are not state-dependent,

and only instructions to PE change according to the state
signal. This strategy contributes to saving the memory capacity
for configuration bits. Another important parameter to decide is
the number of implementable states (#ImplSt). For exploring a
wider trade-off between area and latency, the architecture that
can implement the larger number of states is desirable. When
#ImplSt is small, the obtainable trade-off between area and
latency is limited. Meanwhile, when #ImplSt is excessively
large, the area of configuration memory becomes significantly
large. Especially, when a low latency implementation is se-
lected from the trade-off, the number of used states is usually
small. In this case, only a small portion of configuration
memory is utilized, and consequently the unused memory
results in area overhead. Furthermore, when #ImplSt is large,
the state machine tends to be complex, and hence more one-
bit PEs are necessary. This means that #ImplSt also affects the
ratio of coarse- and fine-grained elements. Thus, #ImplSt must
be carefully determined when implementing the architecture.
To investigate the appropriate #ImplSt, this work quantita-

tively evaluates two relationships between the number of states
and resource usage and between #ImplSt and silicon area of a
PE, respectively. Combining these evaluations, the achievable
trade-offs between used silicon area and latency are illustrated
for various #ImplSt, which suggests an appropriate #ImplSt.
The rest of this paper is organized as follows. Section II

reviews related works, and Section III presents the proposed
architecture. A quantitative evaluation on #ImplSt is shown in
Section IV and a concluding remark is given in Section V.
It should be noted that a preliminary version of the proposed
architecture was implemented in 65nm process and the robust-
ness of the test chip to irradiation is presented in [12].

II. RELATED WORK
This section reviews conventional works of CGRA for

attaining the compatibility with behavioral synthesis. None of
conventional works have supported reliability enhancement for
reliability demanding applications.
DAPDNA architecture [13] contains digital application

processor (DAP) and distributed network architecture (DNA).
DNA is composed of reconfigurable ALU, delay, and RAM
elements having four configuration codes. DAP core triggers
the state transition of DNA, and DAP will receive an interrupt
signal from DNA notifying reconfiguration completion after
several clock cycles. [14] developed DAPDNA-FWII, which
compiles and maps a C source code into DAP and DNA.
XPP architecture [10] has one context in each PE and

reconfigures it by configuration manager (CM). In this archi-
tecture, CM, which consists of a state machine and internal
RAM for configuration caching, reconfigures processing array
elements (PAE) within a few clock cycles through their individ-
ual configuration caches when triggered by event packets from
PAEs. [15] introduced XPP-VC high-level compiler which
maps C programs to XPP.
DRP architecture, which has multiple contexts in each PE

and implementing state machines by context switch, and its
behavior synthesis are presented in [9]. In this architecture, PEs
containing 8-bit/1-bit operators and 16 different configuration
codes, are reconfigured within one clock cycle by the broad-
casted state number from a state transition controller (STC).
KAHRISMA architecture [16] is composed of coarse- and

fine-grained encapsulated data-path elements (CG-EDPEs and

Fig. 1. Examples of implementations with different latency.

FG-EDPEs) which are dynamically reconfigurable. CG-EDPE
includes a context memory, a local sequencer, and a direct
memory access. These components control the local state, i.e.,
dynamically reconfigure the operation of a processing block.
[16] also presents a software framework which enables high-
level compilation and mapping a C source code into CG- and
FG-EDPEs.

III. PROPOSED ARCHITECTURE
This section firstly explains the compatibility with behav-

ioral synthesis, and then describes the proposed architecture.

A. Compatibility with high level synthesis
Compatibility with behavioral synthesis requires architec-

tural supports that help provide a trade-off between latency
and resource usage (area). For this purpose, multi-step pro-
cessing through dynamic reconfiguration should be utilized.
The same blocks have to be used in different time slices to
perform different operations. Fig. 1 shows a simple example
demonstrating how multi-step processing is performed. The
figure demonstrates how a C program can be implemented in
one cycle and in two cycles. In the one cycle implementation
of Fig. 1(a), two PEs are required (adder and subtractor). In
this case, the configuration of the PEs is fixed, and the two
PEs constantly perform the same operations until the device is
reconfigured for another application. This is an ordinary output
of common synthesis tools. Our architecture supports not only
one-cycle implementation of Fig. 1(a) but also multi-cycle
implementation. In the two-cycle implementation of Fig. 1(b),
one PE including two multiplexers and a register, and a state
machine are necessary. Dynamic reconfiguration of the PE is
repeated. The state machine has two states, S0 and S1. During
S0, the addition operation is selected to add a and b, and
during S1, the c is subtracted from the output of the previous
operation. Such a trade-off between latency and area obtained
by various implementations allows attainment of various types
of desirable specifications. In order to achieve this trade-off,
the following elements are required: one-bit PEs to implement
state machines, coarse-grained PEs to perform various types
of data processing with dynamic reconfiguration depending on
the state signal, register files to save temporal data, and large
memories to store large bulk data. Here, although an embedded
CPU might be able to control the state of coarse-grained PEs,
we selected one-bit PEs for pursuing low-latency state control.
With these elements, behavioral synthesis allows designers to
explore the solution space and select an implementation that
satisfies their requirements.

Fig. 2. Cluster and cluster interconnection.

B. Architecture design overview
The proposed architecture is composed of coarse-grained

elements as ALU clusters, fine-grained elements as LUT
clusters, and memory blocks called as MEM clusters. When
an application is mapped the proposed architecture, data-paths
are assigned to ALU clusters. Meanwhile, state machines and
one-bit operations are assigned to LUT clusters. Each ALU
cluster behaves as different functional units depending on the
state. Due to this, on the other hand, ALU clusters themselves
cannot hold register values which will be used after a while.
To store the temporal intermediate data across the different
states, register blocks called as REG clusters are also included
in the proposed architecture.
In the architecture design, we selected the following strat-

egy. ALU functionality and ALU operand selection are dynam-
ically reconfigured according to the broadcasted state signals
as shown in Fig. 2, which will be detailed in the next section,
while the inter-cluster interconnection is unchanged. All the
inter-cluster routings to provide data to clusters are fixed for all
the states, and each ALU cluster selects a few data as operands
depending on the state from all the data delivered to the ALU
cluster. The reason why this strategy was selected is that the
amount of configuration bits for inter-cluster interconnection
is quite large, and it is difficult to multiply it by #ImplSt from
area perspective.
The architecture has two global signals; context signal and

state signal. Both of these global signals are generated by
designated LUT clusters. The purpose of context signal is to
switch the mapped application or algorithm, and then the inter-
cluster interconnection is changed according to the context.
This context signal is not discussed further in this paper.
Before explaining details of ALU, LUT, MEM and REG

clusters, the treatment of the state signal in each cluster is
briefly summarized. ALU cluster changes its functionality
and data-path/flag operands according to the broadcasted state
signal. Also, REG cluster selects input data and changes write
address depending on the state signal, since the store of
intermediate data depends on the state. On the other hand,
the functionalities of LUT and MEM clusters are unchanged.

C. Details of four clusters

Fig. 3. Architecture of cell in ALU cluster.

1) ALU cluster: ALU cluster is derived from the reliability-
flexible architecture proposed in [4]; however, it is highly
improved to support cycle-by-cycle dynamic reconfiguration.
As shown in Fig. 2, an ALU cluster consists of a reconfig-

urable cell unit (RCU) processing various types of operations,
a redundancy control unit (RDU) for flexible reliability, a
comparing and voting unit (CVU), switches and wires. An
RCU is composed of a configuration memory switching matrix
(ConfSM) and three cells, each of which contains an execution
module (EM), register files for storing configuration bits, and
voters. In EM, arithmetic operation including multiplication,
logic operation, and shift operation are performed.
The cluster interconnection has three tracks (Track 0 –

2), and each cell inside a cluster is placed on one of them.
Thus, each cell in a cluster can be connected to the cells
in adjacent clusters on the same track. The interconnection
also has a diagonal track, connecting cells within one cluster.
Switches to control these interconnections are implemented by
multiplexers.
The cell architecture of ALU cluster is illustrated in Fig. 3.

In order to implement dynamic reconfiguration with reduced
area overhead, configuration bits are divided and stored in
three types of register files: instruction register file (InstRF),
interconnection register file (InterRF), and constants register
file (ConstRF). The bit widths of InstRF, InterRF and ConstRF
are 32, 75, and 16 bits, respectively. As mentioned earlier,
instructions for ALU are locally stored in the cluster and the
number of instructions stored is #ImplSt, where an instruction
represents a set of ALU configuration bits for a single state.
On the other hand, the configuration bits for inter-cluster
connection stored in InterRF are fixed for all the states in
each context. In this paper, InterRF is implemented so that
it can store three contexts. ConstRF is used to store up to
four constants that are required in the application, and one of
four constants is selected by the 2-bit signal from InstRF. This
implementation is selected for area reduction because at most
only a few instructions need constants in most applications.
To attain soft error immunity, InterRF and ConstRF are

protected with ECC. The selected code is single error cor-
rection/double error detection (SEC/DED) hamming code. For
every read of InterRF and ConstRF, the error corrected bits
are regularly restored in InterRF and ConstRF to prevent error
accumulation. In addition, three contexts of InterRF and four
constants of ConstRF are restored by re-writing the data itself

TABLE I. REDUNDANCY AND RELIABILITY TO SOFT ERRORS IN THREE OPERATION MODES IN ALU CLUSTER.

Operation Redundancy SEU in SEU SET Utilization
mode InstRF EM InstRF in EM in EM #contexts #cells
TMR 3 3 D & R D & R D & R 3 3
SMS 3 1 D & R D ND 1 1
SMM 1 1 ND D ND 3 1

D & R : Detection and recovery, D : Detection, ND : Does not detect

through an another SEC/DED encoder/decoder in rotation. On
the other hand, InstRF is implemented with bit-wise TMR,
since the path from the state signal to the register file output
includes only a voter and its delay is small. This small delay is
very important, since this delay is necessarily included in the
critical path. This is the reason why ECC, which needs ECC
decoder having large delay, was not selected for InstRF.
ALU cluster supports three operation modes: triple modular

redundancy (TMR), single modular with single context (SMS),
and single modular with multi-context (SMM), as summarized
in Table I. These operation modes offer different capabilities
of dynamic reconfigurability (no. of contexts) and throughput
per cluster. TMR in which both InstRF and data-paths are trip-
licated provides the highest soft error immunity. Meanwhile, in
SMS, only InstRF is triplicated but the data-path is singular. In
both TMR and SMS, an SEU occurring in the InstRF will be
repaired when the next configuration clock is given, since the
voted value is re-written to the register file every configuration
clock cycle. This configuration data is stored with bit-wise
TMR, and therefore, multiple SEUs in different bits will also
be corrected when the next configuration clock is given. On
the other hand, in SMM, the voters are disabled, and three
contexts are stored independently using three InstRFs, each of
which is included in individual cells. With this implementation,
users can flexibly choose the operation modes, depending on
the importance of SEUs in InstRF and SEU/SET in EM.
In this architecture, as pointed out earlier, InstRF consisting

of a larger number of words can accommodate a larger state
machine, which enables area-efficient implementation trading
larger latency. However, as #ImplSt becomes larger, the silicon
area of ALU cluster increases, and the area overhead originat-
ing from the unused words of InstRF tends to be significant.
This trade-off will be discussed in Section IV.
2) LUT cluster: An LUT cluster supports reliable and

regular modes. The LUT cluster architecture is shown in Fig. 4.
The LUT cluster contains three cells and each cell contains
one configuration memory (ConfMem), LUT data registers,
a pipeline register, wires and selectors. In reliable mode, the
three ConfMems, three LUT data registers, and three data-
paths in three cells are redundantly used. By this, SEUs in
ConfMem and the LUT data registers are corrected by re-
writing with the voters in the VC and VL. In regular mode, no
redundancy is applied, and the given data are independently
processed in each cell. Operation modes in LUT cluster are
summarized in Table II. The operation modes of LUT cluster
are controlled through a 1-bit TMRed value stored in the RDC.
LUT cell contains a 4-input LUT that can be cascaded with

other cells to form a larger LUT. It can receive flags such
as zero flag, overflow, underflow, most four least significant
bits of the result, and carry generated in ALU cells, and
can perform conditional operations, flag multiplexing, flag
inversion, pipelining, and fixed outputs. Any single bit of n-
bit ALU output can be provided to LUT cells via multi-cycle
shifting. Thus, the architecture offers a significant amount of
temporal flexibility in providing data to be able to take full

Fig. 4. LUT cluster architecture.

advantage of the fine-grained fabric. With receiving necessary
1-bit data, LUT clusters can perform one-bit operations and
can form a state machine efficiently.
In the array, a set of LUT clusters, whose number depends

on #ImplSt, are designated to output and broadcast the state
signal. Similarly, another set of LUT clusters are responsible to
output the context signal. Besides, LUT clusters are supposed
to be organized in a two dimensional array forming LUT
blocks, which makes the area of LUT block comparable to
those of other clusters. LUT blocks, ALU, register and MEM
clusters are placed in a two-dimensional array, whereas the
interconnection among each cluster is not detailed in this paper.
3) MEM cluster: MEM cluster is composed of one 1,024-

word ×(n + k)-bit two-port SRAM, where n represents the
data-path width and k is the number of redundant bits. Al-
though the SRAM itself is protected using SEC/DED hamming
codes, the words which have not had a write access for a while
are likely to accumulate multiple SEUs within a word, which
results in uncorrectable errors. To avoid it, MEM cluster offers
reliable mode in addition to regular mode. In regular mode, two
ports of SRAM are independently utilized to read/write data.
Meanwhile, in reliable mode, one port is used to read/write
data, and the other port is designated for periodic overwriting
through ECC decoder and encoder. Note that regular mode
could be robust enough for applications that keep data for a
short time, since SEU accumulation less likely happens.
MEM cluster has only one cell due to the size of the

SRAM. However, it is compatible with the three-cell im-
plementation of ALU cluster, the three-track flag and data
interconnection, and the reliability modes of ALU cluster.
MEM cluster also contains three tracks, all connected to the
same cell. Input signals of SRAM such as address and enable
are drawn with three tracks and voted in front of the SRAM
macro. The read data of SRAM is also distributed to the three
tracks. Herewith, single error points except for the inside of
SRAM macro are minimized.
4) REG cluster: Architecture of REG cluster is shown in

Fig. 5. REG cluster has three cells composed of a ConfMem,
a w-word register file, wires and switches.

TABLE II. REDUNDANCY AND RELIABILITY TO SOFT ERRORS IN TWO OPERATION MODES IN LUT AND REG CLUSTERS.

Operation Redundancy SEU SEU in LUT data register SET Utilization
mode ConfMem data-path in ConfMem & register file in data-path #contexts #cells
Reliable 3 3 D & R D & R D & R 1 3
Regular 1 1 ND ND ND 1 1

D & R : Detection and recovery, ND : Does not detect

Fig. 5. REG cluster architecture.

Similarly to LUT cluster, REG cluster supports reliable
and regular modes. In reliable mode, three ConfMems, three
register files, and three data-paths in three cells are redundant.
By this, SEUs in ConfMem and register files are corrected
by re-writing through the voters in the VC and VR. Also,
SETs in data-path can be corrected by the voters in the VD.
In regular mode, no redundancy is applied, and the given data
are independently processed in each cell. The reliability modes
in REG cluster are as same as those in LUT clusters and
summarized in Table II. The REG cluster operation mode is
controlled through a 1-bit TMRed value stored in the RDC.
The REG cluster is responsible for storing and exchanging

temporal data across different states. For this purpose, input
data must be delivered to one of the registers depending on
the state. This data delivery is achieved by w input multiplex-
ers, and controlled by ConfMem, where ConfMem can store
#ImplSt configuration sets. The relationship between #ImplSt
and the area of REG cluster is evaluated in Section IV.

IV. EVALUATION RESULTS
As explained earlier, when implementing the proposed

architecture, #ImplSt is a key parameter that determines the
silicon overhead and the achievable trade-off between latency
and used silicon area. This section experimentally evaluates
the appropriate #ImplSt through a case study. Besides, the
advantage of the flexible reliability is intensively evaluated in
[4] and hence it is not evaluated in this paper.
In this evaluation, a behavioral synthesis tool [17] slightly

customized for the proposed architecture is used to obtain var-
ious implementations with different latencies and ALU usages
from a C source code of 512-point radix-8 FFT. Note that
the bit width of ALU is supposed to be 16, and the operation
frequency is set to 100MHz. Each cluster is implemented with
Verilog HDL and synthesized with a 65nm cell library. The
area of each cluster is estimated from the reports of logic
synthesis tool. Reliability modes of ALU/LUT/REG clusters
are configured with TMR/reliable/reliable, respectively.

A. Number of used clusters vs. number of states
The numbers of used ALU/LUT/REG clusters change de-

pending on the number of states. Fig. 6 shows the relationship

TABLE III. REGISTERS FOR INTER-STATE DATA EXCHANGE.

#states #registers #REG clusters
for buffering w = 4 w = 6 w = 16

13 14 4 2 1
16 17 5 3 2
19 23 6 3 2
25 24 6 3 2
39 28 7 4 2

between the number of states and the number of ALU clusters
in use. We can see that the number of ALU clusters in use
decreases, which is a well-known relationship obtained by
behavioral synthesis. Second, Fig. 7 shows the relationship
between the number of states and the number of LUT clusters
in use. As the number of states increases, the state machine
becomes complex, and the number of LUT clusters increases.
Moreover, Table III lists the required number of 16-bit reg-

isters and w-word REG clusters for inter-state data exchange.
As the number of states increases, the number of registers for
inter-state data exchange increases because the data exchange
across the states happens more often. When the number of
states is 39, the required number of four-word REG clusters
is seven, on the other hand, that of 16-word REG clusters is
two. The area of REG cluster, which depends on the number
of words and #ImplSt, is evaluated in Section IV-C.

B. ALU cluster area vs. number of implementable states
An increase in #ImplSt involves a significant increase in

the area of ALU cluster having TMRed InstRFs. Remind that
#ImplSt is equal to the number of words of InstRF in ALU
clusters. Fig. 8 shows the relationship between #ImplSt and the
area of ALU cluster. As the number of states increases, the area
of InstRFs linearly increases and gradually becomes dominant.
When #ImplSt is 28, the area of ALU cluster reaches twofold
compared with that of ALU cluster whose #ImplSt is 1.

C. Area of REG cluster
As shown in Fig 5, an increase in #ImplSt s enlarges

configuration memories. Also, the number of words w is
directly related to the sizes of register file and configuration
memory. Fig. 9 shows the relationship between #ImplSt and
the area of REG cluster for various numbers of word. There
is a mostly linear relation between #ImplSt and the area of
REG cluster. In a case that 39 states are implementable, the
area of 16-word REG cluster (= 0.137 mm2) is 3.7 times
as large as that of a four-word REG cluster (= 0.038 mm2),
i.e., there is the proportional relation between the number of
words and the area of REG cluster. Here, remind that the
required number of REG clusters for application mapping is
inversely proportional to the number of words in REG cluster
in Table III. These results show the total area of REG clusters
is not sensitive to the number of words, and we can select
a reasonable number of words according to the capacity of
inter-cluster interconnection.

D. Appropriate number of implementable states
We then evaluate the achievable trade-offs between used

silicon area and latency for various #ImplSt. Fig. 10 shows

Fig. 6. Relationship between no. of states and no.
of ALU clusters.

Fig. 7. Relationship between no. of states and no.
of LUT clusters.

Fig. 8. Relationship between #ImplSt and area of
ALU cluster.

Fig. 9. Relationship between #ImplSt and area of REG cluster.

Fig. 10. Relationship between used silicon area and latency.

the results. The used silicon area includes those of used ALU,
LUT, MEM, and REG clusters, and the dependency of ALU
cluster area on #ImplSt (Fig. 8) is taken into consideration.
Here, four MEM clusters, one of which is 0.111mm2, are
included. We assumed to use 16-word REG clusters. As can
be seen from Fig. 10, when #ImplSt is small such as 16,
a small-area implementation can be achieved; however, the
achievable trade-off between used silicon area and latency is
quite limited. On the other hand, when #ImplSt is large such
as 40, a wide range of trade-off between used silicon area
and latency is obtainable, whereas the used silicon area of the
implementation pursuing the minimum latency becomes large.
While the best #ImplSt depends on the requirements of area,
performance and design flexibility, in this test case, the range
from 24 to 32 is a reasonable number to take advantage of
behavioral synthesis with limited overhead. Thus, the proposed
mixed-grained architecture can obtain various implementations
on the same cluster array making use of behavioral synthesis
from a C source code.

V. CONCLUSION
We proposed a mixed-grained reconfigurable architecture

supporting C-based behavioral synthesis and flexible reliabil-
ity. We experimentally evaluated trade-offs between used sili-

con area and latency with various numbers of implementable
states using 512-point radix-8 FFT as an application example.
In this evaluation, the proposed architecture whose number
of implementable states in the range from 24 to 32 can
accommodate various implementations in latency and area
obtained by behavioral synthesis.

REFERENCES
[1] S. M. A. H. Jafri, et al., “Design of a fault-tolerant coarse-grained

reconfigurable architecture: a case study” in Proc. ISQED, pp. 845 –
852, Mar. 2010.

[2] M. M. Azeem, et al., “Error recovery technique for coarse-grained
reconfigurable architectures,” in Proc. DDECS, pp. 441 – 446, Apr.
2011.

[3] T. Schweizer, et al., “Low-cost TMR for fault-tolerance on coarse-
grained reconfigurable architectures,” in Proc. ReConFig, pp. 135 –
140, Nov. – Dec. 2011.

[4] D. Alnajjar, et al., “Implementing flexible reliability in a coarse-grained
reconfigurable architecture,” IEEE Trans. VLSI Systems, in press.
(http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6387625)

[5] S. C. Goldstein, et al., “PipeRench: a reconfigurable architecture and
compiler,” IEEE Trans. Computers, vol. 33, no. 4, pp. 70 – 77, Apr.
2000.

[6] M. Myjak, et al., “A two-level reconfigurable architecture for digital
signal processing,” ScienceDirect Trans. Microelectronic Engineering,
vol. 84, no. 2, pp. 244 – 252, Feb. 2007.

[7] C. Ebeling, et al., “RaPiD - reconfigurable pipelined data-path,” in Proc.
FPL, pp. 126 – 135, Sept. 1996.

[8] Y. Mitsuyama, et al., “Area-efficient reconfigurable architecture for
media processing,” IEICE Trans. Fundamentals, Vol. E91-A, No. 12,
pp. 3651 – 3662, Dec. 2008.

[9] T. Toi, et al., “High-level synthesis challenges and solutions for a
dynamically reconfigurable processor,” in Proc. ICCAD, pp. 702 – 708,
Nov. 2006.

[10] V. Baumgarte, et al., “PACT XPP - A self-reconfigurable data process-
ing architecture,” the Journal of Supercomputing, vol. 26, no. 2, pp. 167
– 184, Sept. 2003.

[11] L. Bauer, et al., “RISPP: rotating instruction set processing platform,”
in Proc. DAC, pp. 791 – 796, June 2007.

[12] D. Alnajjar, et al., “Reliability-configurable mixed-grained reconfig-
urable array supporting C-to-array mapping and its radiation testing,”
in Proc. A-SSCC, Nov. 2013 (to appear).

[13] T. Sugawara, et al., “Dynamically reconfigurable processor implemen-
tation with IPFlex’s DAPDNA technology,” IEICE Trans. Inf. & Syst.,
vol. E87-D, no. 8, pp. 1997 – 2003, Aug. 2004.

[14] T. Sato, et al., “Implementation of dynamically reconfigurable processor
DAPDNA-2,” in Proc. VLSI-TSA-DAT, pp. 323 – 324, Apr. 2005.

[15] J. M. P. Cardoso, et al., “From C programs to the configure-execute
model,” in Proc. DATE, pp. 576 – 581, Mar. 2003.

[16] R. Koenig, et al., “KAHRISMA: a novel hypermorphic reconfigurable-
instruction-set multi-grained-array architecture,” in Proc. DATE, pp. 819
– 824, Mar. 2010.

[17] K. Wakabayashi, “C-based synthesis experiences with a behavior syn-
thesizer, “Cyber”,” in Proc. DATE, pp. 390 – 393, Mar. 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

