
Stochastic Error Rate Estimation for Adaptive Speed
Control with Field Delay Testing

Shoichi Iizuka Masafumi Mizuno Dan Kuroda Masanori Hashimoto Takao Onoye
Dept. Information Systems Engineering, Osaka University

{iizuka.shoichi, hasimoto}@ist.osaka-u.ac.jp

ABSTRACT
This paper proposes a stochastic framework for error rate esti-
mation that models adaptive speed control as a continuous-time
Markov process and derives its transition rates using developed
similarity database. The proposed framework is implemented for
adaptive speed control systems based on timing error prediction
and scan-test. Experimental results show that the proposed frame-
work enabled 12 orders of magnitude faster MTTF estimation than
ordinary logic simulation. The accuracy of MTTF estimation un-
der random delay fluctuation is clarified through a comparison with
logic simulation. The proposed estimation can contribute to design
and validation of adaptive speed control systems with field delay
testing.

1. INTRODUCTION
Device miniaturization due to technology scaling has made para-

metric performance variation more and more significant. Lower
supply voltage makes circuits sensitive to environmental fluctua-
tion, especially to supply voltage. Furthermore, aging effects, such
as NBTI (negative bias temperature instability), HCI (hot carrier in-
jection) and TDDB (time dependent dielectric breakdown), cause
unexpected timing failures in field. A traditional approach to avoid
timing failures due to above manufacturing variability, environ-
mental fluctuation and aging is giving a timing margin in design
time and production test. Such an overdesign must involve power,
area and cost overhead, and/or performance loss. Nowadays, the
performance loss easily spoils the advantage of technology scaling.

To overcome this problem, adaptive performance control in field
is studied. Dynamic voltage and frequency scaling and body bias-
ing are popular ways to control performance. Traditionally, such
performance control is carried out so that no timing errors would
happen in all the paths in a circuit. For example, performance tun-
ing for aging-induced error mitigation [1] and concurrent timing
testing [2] are presented. On the other hand, voltage over-scaling,
which accepts rare potential timing errors, is actively studied to ex-
ploit the low activation probability of critical paths for aggressive
power reduction [3–6]. The path activation probability heavily de-
pends on the running program, and in some cases a dramatic power
reduction can be achieved.

To implement adaptive performance control, we need to regu-
larly evaluate the performance to check whether the current cir-
cuit performance is necessary and sufficient for given performance
specifications. For most of digital systems, timing specification is
the primary one, and it needs to be verified with online or offline
delay testing. Online testing is concurrently carried out along or-
dinary functional operations using functional input vector patterns
[3–6]. The online testing is classified into two groups; error detec-
tion [3, 5, 6] and error prediction [4, 5]. Error detection is accompa-

nied with error recovery mechanism, whereas error prediction tells
whether timing errors will start to occur soon. On the other hand, in
offline delay testing, which here includes pseudo online testing that
is carried out during idle time, CUT (circuit under test) is discon-
nected with surrounding circuits and functional and/or structural
tests are performed with test patterns prepared beforehand [2].

A fundamental problem of adaptive speed control is that the pos-
sibility of timing error occurrence cannot be completely reduced to
zero, since, for example, a sudden delay increase larger than expec-
tation can induce a timing error without error detection or before
error prediction. Similarly, offline delay testing may miss the er-
ror because delay testing is carried out with a certain time interval.
Researchers working for any types of adaptive speed control claim
that by tuning some design parameters the possibility of timing er-
ror occurrence can be reduced to almost zero and the mean time to
failure (MTTF) over years can be easily attained with some over-
head. For example, delay testing should be more frequently carried
out, or earlier error prediction should be enforced.

However, it is challenging to quantitatively estimate such a long
MTTF and extremely low probability of error occurrence. A naive
simulation is totally impractical since one year operation of a pro-
cessor, for example, includes 3×1016 cycles, and to get 10-k sam-
ples, 3×1020 cycles must be simulated. With a logic simulator pro-
cessing 3×103 cycles per second, it takes 3×109 years, and hence
another approach instead of naive simulation is indispensable.

This paper presents a stochastic estimation framework aiming
at analyzing MTTF of adaptively performance-controlled circuits.
The proposed framework models the adaptive speed control under
dynamic delay variation as a continuous-time Markov process, and
stochastically estimates MTTF. Given a matrix of transition rates
between states, the MTTF can be calculated via matrix computa-
tions and its calculation time is independent of how long MTTFs
are and how rarely the timing error happens, which is an excellent
property for evaluating a long-MTTF circuit operation. To con-
struct the transition rate matrix, we developed a similarity database
and a direct derivation method of the matrix using the database.
Thanks to this development, the proposed framework computes
MTTF 1012 times faster than a logic simulator in a test case.

The rest of this paper is organized as follows. Section 2 models
the adaptive speed control as a continuous-time Markov process,
and derives a closed-form MTTF expression. Section 3 presents a
similarity database for efficiently obtaining the rate of state tran-
sition. Section 4 describes the implementation of the proposed
stochastic framework for two adaptive speed control systems. Ex-
perimental results are shown in Section 5, and conclusions are
given in Section 6.

107978-1-4799-1071-7/13/$31.00 ©2013 IEEE

2. CONTINUOUS-TIME MARKOV
PROCESS MODELING OF ADAPTIVE
SPEED CONTROL

2.1 Overview and State Assignment
We first model adaptive speed control under dynamic delay vari-

ation as a continuous-time Markov process. Markov process is a
stochastic process having a Markov property that the next state is
determined by only the current state and is independent of the pre-
vious states. Especially, continuous-time Markov process is a spe-
cial Markov process whose time parameter is continuous [7][8].

We assign states as follows. The circuit delay temporally fluctu-
ates due to unintentional temperature change, power supply noise
and aging. By sensing such temporal delay fluctuation with on-
line/offline delay testing, the performance of the circuit under adap-
tive speed control is intentionally tuned by supply voltage scaling
and/or body biasing. We define states in Markov process such that
each state is associated with a pair of unintentional delay variation
and levels of intentional speed control. We often prepare several
discrete values for supply voltage scaling and body biasing. On the
other hand, the unintentional delay variation is continuous in na-
ture, but for the model simplicity, we discretize the unintentional
delay variation into several representative values. We call these
states as normal states. On the other hand, we add one more failure
state meaning that a timing error happened in the past.

Figure 1 illustrates an example of state assignment and a series
of state transitions falling into the failure state. In this example, the
circuit starts to operate at speed control level of 0 with 0ps delay
fluctuation. Then, both the speed control level and delay fluctuation
are varying dynamically. At a certain time, a timing error happens
at speed control level of 0 with 30ps delay fluctuation, and the state
falls into the failure state.

In a continuous-time Markov process, transition rate of going
from state i to state j, qi,j , which will be formally defined in the
next section, is the key parameter that characterizes the process be-
havior. Given a matrix of the transition rates, we can obtain closed-
form expressions of state probability as a function of time t. This
means that once the matrix of transition rates is given, the MTTF
computation can be carried out with a constant time, and the com-
putation time is independent of the timing error rate and MTTF of
the circuit under evaluation. Note that the above computation is
applicable to any types of adaptive speed control, since the state
assignment explained above is independent of the implementation
of adaptive speed control.

As a related work, it should be noted that [4, 9] used discrete-
time Markov chain for estimating MTTF. However, this work was
tailored for adaptive speed control with error prediction and other
adaptive speed control systems cannot be analyzed. In addition,
the conventional method aimed to estimate MTTF under a specific
static operating condition and hence dynamic variations cannot be
considered in MTTF estimation. On the other hand, the proposed
framework in this paper estimates MTTF for various types of adap-
tive speed control systems under dynamically fluctuating operating
condition. Due to this difference, each speed level was selected
as a state in [4, 9], which is different from that shown in Fig. 1.
Furthermore, [4, 9] required path delay distributions and their path
activation probabilities, which is a significant bottleneck in terms of
analyzable circuit size, and thereby only adders were analyzed in
[4, 9]. In contrast, in this paper, a processor on which various pro-
grams are running is analyzed by exploiting the similarity database
developed in this work.

�����

����	�

���

��

�

�
����
��������

�� � � �

�� � �

��

�

� �� �� ��

��� �� ��

 		�	!

"
������

#!$�	%

!��
���

#!�
�
�	�!��
��

Figure 1: An Example of State Assignment and Transition.

2.2 Deriving Closed-Form State Probability
Expressions from Transition Rate Matrix

This section derives closed-form state probability expressions.
The state transition probability pi,j(s, t) is defined as a probability
that a system being in state i at time s will stay in state j at time t.

pi,j(s, t) = P (X(t) = j|X(s) = i). (1)

In case of a stationary Markov process, pi,j(s, t) can be simply
expressed as pi,j(t).

The transition rate of leaving state i, qi, is defined as

qi = lim
h→0+

1− pi,i(h)

h
= −dpi,i(0)

dt
, (2)

where as h→ 0+, pi,i(h)→ 1. When the number of state is finite,
qi < ∞ holds. The transition rate of going from state i to state j
(i ̸= j) is defined as

qi,j = lim
h→0+

pi,j(h)

h
=

dpi,j(0)

dt
, (3)

where qi,j < ∞ always holds. Q-matrix, which consists of −qi
and qi,j , is expressed by

Q =


−q1 q1,2 · · · q1,N
q2,1 −q2 · · · q2,N

...
...

. . .
...

qN,1 qN,2 · · · −qN

 , (4)

where N is the number of states and
∑
j ̸=i

qi,j(t) = −qi holds.

Once Q-matrix is given, the state transition probability as a func-
tion of time t can be analytically derived by solving a Kolmogorov
forward differential equation below [7].

dpij(t)

dt
= −qjpij(t) +

∑
ν ̸=j

piνqνj . (5)

Let us introduce a way to solve this differential equation using
matrix computation. Letting λi denote the i-th eigenvector of Q-
matrix and ui denote its corresponding eigenvector, we define the
matrices below.

U = [u1 u2 · · · uN], (6)

Λ(t) =


eλ1t 0 · · · 0

0 eλ2t
. . .

...
...

. . .
. . . 0

0 · · · 0 eλN t

 . (7)

Using U and Λ(t), the matrix of state transition probability is

108

expressed by

P(t) =


p1,1(t) p1,2(t) · · · p1,N (t)
p2,1(t) p2,2(t) · · · p2,N (t)

...
...

. . .
...

pN,1(t) pN,2(t) · · · pN,N (t)

 = UΛ(t)U−1. (8)

By specifying the initial state (init), the state probability being at
state i at time t, pinit,i(t) can be computed using the analytic ex-
pression in Eq. (8).

Once we obtain P(t), MTTF can be calculated.

MTTF =

∫ ∞

0

t · dpinit,fail(t)

dt
dt, (9)

where pinit,fail(t) is the state transition probability from the initial
state to failure state. In addition, since we know the probabilities
of being at each state, other performance metrics, such as power
dissipation, can be computed using information of average power
dissipation at each state.

3. SIMILARITY DATABASE
Section 2 explained that once the transition rate of going from

state i to state j, qi,j , becomes available, we can obtain the exact
closed-form probability expression of timing failure as a function
of time. This section presents a basic idea of similarity database tai-
lored for qi,j extraction, which is applicable to any types of adap-
tive speed control systems. The detailed implementation for a par-
ticular system will be discussed in Section 4.

The basic idea of similarity database is simulating the circuit be-
havior by referring representative similar operations which were
simulated beforehand and of which results are stored in the sim-
ilarity database. The similarity database includes various circuit
operations at available speed levels in the range of possible delay
fluctuation. The similarity of circuit operation could be defined us-
ing various clues, for example, usage of arithmetic units, memory
access patterns, program execution times, program types and so on
in addition to current speed level and delay fluctuation. In embed-
ded systems, the number of programs to be executed is limited and
the program itself is a major factor to define similarity. This simi-
larity database is constructed for each circuit and technology.

In the database design, we need to determine the time unit for
each database record. Now focusing on a long time-term hour-to-
year operation, a clock cycle is obviously too short as the time unit
of the record. The time for one program execution could be a rea-
sonable time unit, since the program is a major factor to define the
similarity. This paper adopts the time for one program execution
as the time unit of the similarity database. Note that the difference
in the execution times for each program is taken into account in
qi,j computation of Section 4.3. Instead, we can choose one func-
tion execution or one instruction execution as the time unit for each
database record if more appropriate. Besides, we need to pay atten-
tion to the possible amount of delay fluctuation within the time unit.
If the delay fluctuation within the time unit would be much larger
than the interval of delay fluctuation in the database records, the dy-
namic delay fluctuation cannot be well reproduced as a stochastic
process. In this case, the time unit needs to be shortened so that the
amount of delay fluctuation within the time unit becomes shorter
than the interval of delay fluctuation in the database.

Then, given a set of keys, for example, the current speed level,
the current delay fluctuation and the program to execute, the simi-
larity database quickly returns some features influential to the be-
havior of the adaptive speed control. The features include such as
occurrence of timing error, error prediction results, results of path

delay tests, and so on, in addition to ordinary performance metrics,
such as power consumption. We need to select features for each
system of adaptive speed control, and will illustrate two examples
in Section 4.2.

Using this similarity database, we know the occurrence of events
that correspond to the transition from state i to state j, such as speed
level transition, during a program execution. If the execution fre-
quency of each program and a model of dynamic delay fluctuation
are given, we can calculate qi,j by referring the similarity database.
This algorithm will be shown in Section 4.3.

4. IMPLEMENTING PROPOSED FRAME-
WORK FOR PARTICULAR ADAPTIVE
SPEED CONTROL SYSTEMS

This section explains two implementations of the proposed
stochastic framework taking on-line testing based adaptation and
off-line testing based adaptation as examples. While the concept
of the stochastic framework is applicable to any designs, adaptive
speed controls and delay variation models, the implementation de-
tails depend on them.

4.1 Assumed Adaptive Speed Control
This subsection explains two adaptive speed control systems that

we use for experiments in Section 5.

4.1.1 On-line Test Based Adaptation using TEP-FF
Figure 2 shows a circuit that adaptively controls the speed and

power dissipation using a warning signal generated by a timing-
error predictive (TEP) FF [4], and the timing error rate of this
run-time adaptive speed control is analyzed in this paper as one
of applications of the proposed estimation framework. The TEP-
FF consists of a normal flip-flop, a delay buffer and a comparator
(XOR gate). When the timing margin is gradually decreasing, a
timing error occurs at the TEP-FF before the main FF captures a
wrong value due to the delay buffer, which enables us to know that
the timing margin of the main FF is not large enough. A warning
signal is generated to predict the timing errors, and it is monitored
during a specified period. Note that timing errors are predicted,
not detected, which is a distinct difference from Razor [3]. Once a
warning signal is observed, the circuit is controlled to speed up, in
other words, the circuit delay is reduced by voltage scaling and/or
body biasing. Note that clock frequency is fixed throughout this
paper. If no warning signals are observed during the monitoring
period, the circuit is slowed down for power reduction. This proac-
tive speed control overcomes the variation of the timing margin
which is different chip by chip and varies depending on operating
condition and aging.

Even when the TEP-FF is well configured to generate the warn-
ing signal, the error occurrence cannot be reduced to zero. This is
because when critical paths are not activated for a long time in the
circuit operation, the circuit might be slowed down excessively. If
a critical path is activated in this condition, a timing error happens.

To reduce the error occurrence, we can tune the following de-
sign parameters; the number of TEP-FFs, locations where TEP-FFs
should be inserted, delay time of the delay buffer in each TEP-FF,
monitoring period and fineness of the speed control [4, 9].

4.1.2 Off-line Test Based Adaptation using Scan-Test
We next explain an adaptive speed control system that repeat-

edly performs scan-based delay test in idle times of the circuit.
While the circuit is idle, test-patterns that were prepared before-
hand and stored in an internal or external memory are loaded and

109

������

Delay buffer

Comparator

Warning signal���������	
�����
	

��������	��
	�����

����	
�������������

�
��
�

����
���

�	
�
�
��
�
�

��	��
	��

Timing error occurs at TEP-FF due to delay
buffer before main FF captures a wrong value.

���	
��

���������	

Figure 2: Run-time Adaptive Speed Control with TEP-FF.

it is checked if the circuit includes timing-violating paths or not.
When a timing-violating path is detected, the minimum speed level
that includes no timing-violating paths is selected for the operation
in the following. Otherwise, the speed level is decremented. This
scan-based test has higher freedom of applicable test-patterns, and
hence accurate error detection, in other words, lower missing rate
of timing-violating paths can be expected.

Here, there are two strategies for scan-test execution. One strat-
egy forces the circuit to be idle with a fixed time interval, which can
guarantee the time interval between the delay tests. This strategy
is helpful to make the timing error rate predictable in addition to
mitigating the error rate. A drawback is the performance degrada-
tion due to the testing, and in some real-time systems, this strategy
could be difficult to adopt. The other strategy is to perform off-
line tests only in true idle time. While the performance degradation
does not arise, the test interval is less predictable and consequently
the error rate tends to be higher. We in this paper assume the first
strategy having the fixed time interval of delay testing.

In this off-line test based adaptation, the test interval is a key pa-
rameter to determine the rate of timing error occurrence. If it is set
to be long, the delay fluctuation in the duration of successive delay
tests is likely to be large enough to cause timing violations. For
mitigating the timing errors, the test interval should be short. On
the other hand, frequent tests induce performance overhead and de-
grade the system throughput. To reduce the error occurrence while
coping with the overhead, we need to carefully tune the test inter-
val.

4.2 Similarity Database Implementation
We first explain what features should be considered for the adap-

tive speed control with error prediction. In this system, the error
prediction result determines the levels of speed control, and hence it
should be included in the similarity database as features. Of course,
it should be included whether a timing error occurred or not. Other
possible features are execution time needed and power dissipation.

Figure 3 exemplifies the database records. The keys include pro-
gram, input data for program, speed level and the amount of delay
fluctuation. The data to output are the existence of timing errors,
the power dissipation, the execution time of the program, and the
time at which a warning signal for timing error arises.

Besides, the adaptive speed control with timing error prediction
has some key design parameters; where TEP-FFs should be in-
serted, how long delay elements in TEP-FFs should be, etc., as
listed in the previous section. The similarity database should cover
those design parameters to make it possible to explore the design
space of the adaptive speed control system. This means that the
database should know which TEP-FF gives a warning signal with
various lengths of delay element. With this information, we do not

Program Data Speed Level Delay
Error
Time

Exec
Time

Power

0 0 10000 1 0 … 0

10 0 10000 1 0 … 100

…

0 0 10000 0.8 0 … 100
10 5000 10000 0.8 2500 … 1000

…

… …

0 6000 12000 1 0 … 5000
10 5000 12000 1 3000 … 1000

…

0 0 12000 0.8 0 … 0
10 0 12000 0.8 0 … 6000

…

Key Data

P1

…

Error Prediction Time
(Each Buffer Delay)

…

L2

L1

D1

D2

L1

L2

…

…

…
…

Figure 3: An illustration of similarity database for adaptive
speed control with TEP-FF.

have to reconstruct the similarity database for different configura-
tions of TEP-FFs. This information can be extracted with a single
run of logic simulation below.

We prepare a gate-level net-list with a SDF (standard delay for-
mat) file that includes gate delay information calculated depending
on the selected speed level and gate delay fluctuation. In this net-
list, all the FFs are accompanied with several TEP-FFs with differ-
ent delay elements. We also prepare input vectors depending on the
program and data to process. In addition, to know whether timing
error occurs or not, RTL description is prepared. The net-list above
and RTL description are simulated simultaneously and the FF val-
ues stored are compared at every cycle. By simulating this with a
logic simulator, features needed for simulating the adaptive speed
control with timing error prediction can be obtained. For construct-
ing the similarity database, we repeatedly execute logic simulations
with each program, input data, speed level and delay, and store each
execution time, error prediction time and other needed information
in the database.

For the similarity database for off-line test based adaptation, we
need to prepare another database which tells us whether the path
delay test detects timing-violating paths at each speed level with
each amount of delay fluctuation. With this test database and the
database similar to that for on-line test based adaptation, we can
immediately reproduce the circuit behavior both for the program
execution and scan-test.

4.3 Computation of State Transition Rate
This subsection explains how to construct Q-matrix using the

similarity database for the adaptive speed control systems ex-
plained in Section 4.1.

State transitions occur in three cases; (1) a timing error arises,
(2) the speed level changes and (3) the amount of delay fluctuation
varies. We thus need to compute the probabilities for these three
cases. The computation of Q-matrix consists of two steps. The first
step computes the preliminary state transition rates for each record
in the database, i.e. for a program executed at a speed level with an
amount of delay fluctuation. On the other hand, the probability of
each record being executed in the actual circuit behavior is different
depending on, for example, the processor usage. The second step
calculates the overall state transition rates taking into account the
processor usage and the dynamic delay fluctuation.

4.3.1 On-line Test Based Adaptation using TEP-FF

110

Algorithm 1 Step 1 of Q-matrix computation for k-th record whose
key is (Programk, Datak, SpeedLevelk, Delayk). (on-line test
based adaptation using TEP-FF).
1: (ErrorTime, ExecTime, Power, ErrorPredictionTime) ←

DB(Programk, Datak, SpeedLevelk, Delayk)
2: if ErrorTime ̸= 0 then
3: q′Statek,fail

[k]← 1/ErrorTime
4: else if ErrorPredictionTime ̸= 0 then
5: q′Statek,dest(SpeedLevelk++,Statek)

[k] ←
1/ErrorPredictionTime

6: else
7: q′Statek,dest(SpeedLevelk−−,Statek)

[k]← 1/MonitorTime
8: end if

���� ���� ���� ���� ����
LL

� � � �

� � � �

Figure 4: A Stochastic Delay Fluctuation Model.

The first step calculates the preliminary rate of state transition for
each similarity database record (q′i,j [k]). Algorithm 1 describes the
computation procedure for the k-th record whose key is (Programk,
Datak, SpeedLevelk, Delayk). The function DB returns the data
consisting of ErrorTime, ExecTime, Power and ErrorPrediction-
Time. Here, these variables in Algorithms 1-4 correspond to key
and data in Fig. 3. MonitorTime denotes the length of the moni-
toring period. The function dest(A, B) returns the state to which
the current state of B moves when an event of A occurs. These
time variables are represented by the numbers of clock cycles. Be-
sides, at line 3, 1/ErrorTime is calculated. Please recall that the
rate of state transition is defined as Eq. (3). Due to line 2, during
the time of ErrorTime(=h), a timing error happens, which means
pi,j(ErrorTime)=1. Thus, 1/ErrorTime is calculated. Similar com-
putations are executed at lines 5 and 7.

The second step computes qi,j in Q-matrix by Algorithm 2. S
represents the universe set of states, and Ei is a subset of E, where
E is the universe set of database records. Ei includes the records
whose key matches with SpeedLeveli and Delayi. In order to
consider the probability of each program execution and the differ-
ence in execution time, weight is computed, where the function
Prob(Program, Data) returns the probability of which Program with
Data is executed. For all the elements of Ei, i.e. for all the sets of
Program and Data, the weighted average of state transition rate is
calculated (line 5 to 11).

The state transition due to dynamic delay fluctuation is consid-
ered at lines 13 and 14. Here, a stochastic fluctuation model ex-
pressed as a Markov chain in Fig. 4, which will be used in exper-
iments later, is assumed. With the probability of p, the amount of
delay fluctuation changes. It should be noted that in Algorithm 2,
the state transitions in terms of speed level and delay fluctuation are
exclusively considered for simplifying the explanation. The state
transitions due to speed level and delay fluctuation rarely arise si-
multaneously, and hence Algorithm 2 works in most cases. On the
other hand, the computation taking into account the simultaneous
transitions is possible without any technical difficulties while its
explanation is omitted in the paper.

4.3.2 Off-line Test Based Adaptation using Scan-Test

Algorithm 2 Step 2 of Q-matrix computation (on-line test based
adaptation using TEP-FF).
1: for i ∈ S do
2: for j ∈ S(i ̸= j) do
3: qa← 0
4: qb← 0
5: for k ∈ Ei do
6: (ErrorTime, ExecTime, Power, ErrorPredictionTime)

← DB(Programk, Datak, SpeedLevelk, Delayk)
7: weight← ExecTime× Prob(Programk, Datak)
8: qa← qa+ weight× q′i,j [k]
9: qb← qb+ weight

10: end for
11: qi,j ← qa/qb
12: end for
13: qi,dest(Delayi++, i)← p/ExecTime
14: qi,dest(Delayi−−, i)← p/ExecTime
15: end for

Algorithm 3 Step 1 of Q-matrix computation for k-th record whose
key is (Programk, Datak, SpeedLevelk, Delayk). (off-line test
based adaptation using scan-test).
1: (ErrorTime, ExecTime, Power) ← DB1(Programk, Datak,

SpeedLevelk, Delayk)
2: if ErrorTime ̸= 0 then
3: q′Statek,fail[k]← 1/ErrorTime
4: end if

The first step for the off-line test based adaptation using scan-test
is described in Algorithm 3. Algorithm 3 is close to Algorithm 1,
and computations related to error prediction are removed.

Algorithm 4 describes the second step. The procedure (line 1 to
14) is the same with that of Algorithm 2. At line 15, the database
which stores scan-test results is referred, where it is assumed that
the same scan-test is performed independent of speed level and de-
lay fluctuation for simplicity in this paper, while various test pat-
terns can be stored in the database. If a timing violation is detected
(line 16), the minimum speed level at which no timing violations
happen is searched by the function FindSpeedLevel (line 17). The
transition rate to the state corresponding to this minimum speed
level is computed at line 18, where TestInterval is the time inter-
val between scan-tests. If no timing violations are detected, the
speed level is decremented and its corresponding computation is
performed at line 20.

5. EXPERIMENTS
This section shows experimental results. We first demonstrate

that the proposed estimation framework can estimate MTTF of the
adaptive speed control with timing error prediction 12 orders of
magnitude faster than the conventional logic simulation. We next
discuss the estimation accuracy. Finally some analysis examples
are presented.

5.1 Experimental Setup

5.1.1 Target Circuit
In this work, the adaptive speed control is applied to MIPS

R3000 microprocessor. R3000 is a 32-bit RISC microprocessor
and implemented with five pipeline stages. The processor was de-
signed such that RTL hardware description was synthesized by a
commercial logic synthesizer with a 65nm industrial standard cell

111

Algorithm 4 Step 2 of Q-matrix computation (off-line test based
adaptation using scan-test).
1: for i ∈ S do
2: for j ∈ S(i ̸= j) do
3: qa← 0
4: qb← 0
5: for k ∈ Ei do
6: (ErrorTime, ExecTime, Power) ← DB1(Programk,

Datak, SpeedLevelk, Delayk)
7: weight← ExecTime× Prob(Programk, Datak)
8: qa← qa+ weight× q′i,j [k]
9: qb← qb+ weight

10: end for
11: qi,j ← qa/qb
12: end for
13: qi,dest(Delayi++, i)← p/ExecTime
14: qi,dest(Delayi−−, i)← p/ExecTime
15: (TimingViolation)← DB2(SpeedLevelk, Delayk)
16: if TimingViolation = yes then
17: vlv ← FindSpeedLevel(Delayi)
18: qi,dest(vlv,i) ← 1/ TestInterval
19: else
20: qi,dest(SpeedLeveli−−,i) ← 1/TestInterval
21: end if
22: end for

library. The number of standard cells is 6,813. The maximum clock
frequency at 1.2V and 25◦C is 147MHz, which corresponds to the
critical path of 6.8ns.

5.1.2 Similarity Database Construction
In constructing similarity database, we attached TEP-FFs hav-

ing six different delays (100ps，300ps，1ns，2ns，3ns，4ns) in
parallel to all the FFs in R3000, and extracted the warning signals
and presence of timing error as features from the logic simulation
results. Here, these seven delay values are just an example, and
the number of delay values can be increased without time overhead
in terms of similarity database construction, as explained in Sec-
tion 4.2. We selected four benchmark programs (CRC32，SHA1,
Dijkstra and Quicksort) from MIBenchmark [11] and 30 sets of in-
put data for each program. The database quality, such as the num-
ber of input data sets, is thought to affect the estimation accuracy,
and the impact of input data will be experimentally evaluated later.
The database for scan-test was constructed using patterns for path
delay tests generated by a commercial ATPG tool [12]. Launch on
capture (LoC) scheme is adopted. Ten speed levels, i.e. ten supply
voltages (1.2V, 1.1V, 1.0V, 0.90V, 0.85V, 0.80V, 0.75V, 0.70V, 0.65
and 0.60V) were prepared. For simplicity, all the cells have the
same delay variation at each supply voltage, while any technical
limitation is not given by the proposed framework. As for dynamic
delay variation per gate due to, such as, environmental fluctuation
and aging, 0 to 260 ps delay increases with 10 ps step were evalu-
ated. With this database setup, the maximum number of states that
can be analyzed with the proposed framework is 10 (speed levels)
× 27 (delay fluctuation) + 1 (failure) = 271, and it was adopted for
the experiments.

In the experiments, the programs to execute on the processor
are limited to four mentioned above. Thus, we select a record in
the similarity database which matches the same program, the same
speed level and the same delay variation and has the processing data
with the minimum hamming distance (CRC32, SHA1), with simi-
lar network depth (Dijkstra), or with the similar initial sort quality

Table 1: Comparison of Simulation Throughput.
Throughput

Simulation methods [cycle/s] Relative

Ordinary logic 1.5× 103 1
Similarity-based 1.9× 108 1.3× 105

(Quicksort) to the data to process now.

5.1.3 Implementation
The proposed estimation framework is implemented with MAT-

LAB, C++ and ruby script language. The matrix computation in
Section 2.2 is carried out by MATLAB. The similarity-based simu-
lator, which will be explained later, is implemented with C++, and
some text processing is executed with ruby.

5.2 CPU Time Evaluation
We here evaluate the speed-up of the proposed similarity-based

computation over ordinary logic simulation. The adaptive speed
control system based on TEP-FF is analyzed in this subsection.

For a comparison, we also implemented a simulator so-called
“similarity-based simulator” in addition to the similarity-based
stochastic computation explained in Section 4.3. The similarity-
based simulator simulates a time series circuit behavior by succes-
sively referring the similarity database. We can obtain a TTF (time
to failure) by simulating the circuit behavior until a timing error
happens, and then we repeat this TTF evaluation in Monte Carlo
manner to obtain the statistics of TTF, such as MTTF. Table 1 lists
the simulation throughputs of ordinary logic and similarity-based
simulations. These simulations were carried out on a computer
with CentOS5, Intel Xeon X5680 processor and 96GB memory.
We can see that the similarity-based simulator achieved 105 times
higher simulation throughput. However, this throughput improve-
ment is not large enough to estimate long MTTFs, which will be
shown in the next experiment. While the similarity-based simula-
tor can reduce estimation time of MTTF from the logic simulation,
the estimation time is still proportional to the MTTF.

We next evaluated the CPU times needed to estimate MTTF by
three methods; ordinary logic simulation, similarity-based simula-
tion, and the proposed stochastic framework. Table 2 lists the CPU
time of the proposed method and the estimated CPU times of or-
dinary logic and similarity-based simulations. As an example, we
evaluated the MTTF in case that p in the delay fluctuation model
of Fig. 4 is set to 2.5×10−7, which corresponds to the average
state occupation time of 1,000 seconds. Delay value of TEP-FF
was set to 1ns, all TEP-FFs were enabled, and the monitoring time
was 100,000 cycles (0.68 ms). Under this setting, the MTTF is es-
timated to be 8.13 ×1012 clock cycles, which corresponds to 75
hours. Besides, such a long MTTF can be evaluated by neither or-
dinary logic simulation nor similarity-based simulation, which is
the motivation of this work. We therefore estimated the necessary
CPU times by MTTF [cycles] × 10,000 [runs] ÷ throughput [cy-
cle/second] in Table 1 for these two simulations.

Table 2 clearly shows that the MTTF estimation by ordinary
logic and similarity-based simulations is absolutely infeasible. On
the other hand, the proposed method estimated MTTF in 37 sec-
onds. The speedups of the proposed method over ordinary logic
simulation and similarity-based simulation only are 12 orders of
magnitude and 7 orders of magnitude, respectively. Remind that
the CPU times of the ordinary logic simulation and the similarity-
based simulation is roughly proportional to TTF, whereas the CPU
time of the proposed stochastic framework is independent of TTF.
Therefore, the speedup becomes more significant as the MTTF of

112

Table 2: Comparison in CPU time for MTTF Evaluation (Only
a single processor was used).

CPU time
Methods Actual Relative

Ordinary logic sim. 1.7× 106 years † 1.4 ×1012

Similarity-based sim. 13 years † 1.1 ×107
Proposed overall 37 seconds 1

(Matrix computation) (32 seconds)
(Transition rate computation) (5 seconds)
†: estimated from the simulation throughputs in Table 1.

the target system becomes longer.
We have to mention the time needed to construct the similarity

database. This similarity database needs to be constructed once
even though design parameters of the adaptive speed control are
varied. We therefore this construction time is not included in Ta-
ble 2. Besides, 2.6 days were necessary for the database construc-
tion using eight processors in this setup.

5.3 Accuracy Evaluation
The MTTF is estimated from Q-matrix, and the Q-matrix comes

from the records of the similarity database. Then, the size of sim-
ilarity database affects the accuracy of MTTF estimation. In addi-
tion, the proposed probability computation explained in Section 4.3
stochastically handles the elapse of the monitoring time in on-line
test based adaptation and that of the test interval in off-line test
based one. This stochastic treatment might cause an estimation er-
ror.

We assessed the estimation error due to these two factors through
a comparison with logic simulation. We used adaptive speed con-
trol with TEP-FFs in which the delay time of the delay buffer was
100ps and the monitor time was 100k cycles. We estimated MTTFs
in two cases; p values in the stochastic delay fluctuation model in
Fig. 4 were 0.5 (Case 1) and 0.2 (Case 2), respectively. The num-
bers of TTF evaluations using logic simulation for Case 1 and Case
2 are 107 and 217. The size of similarity database is the same as
previously explained (4 programs and 30 input data per each pro-
gram). In logic simulation, on the other hand, a number of input
data which are not included in the database are given. The MTTFs
estimated by the proposed method and logic simulation are shown
in Table 3. We can see that the estimated MTTFs are very close
in both Case 1 and Case 2, and the differences are only 1.9% and
2.9%. Due to the extremely long CPU time of logic simulation,

0.001 0.01 0.1 1 10 100 1000

1e+08

1e+09

1e+10

1e+11

1e+12

1e+13

Time Constant [s]

M
T

T
F

 [c
yc

le
s]

Figure 5: MTTF versus Time Constant of Delay Fluctuation.

Table 3: Accuracy comparison.
MTTF [cycles]

Method Case 1 Case 2
Logic sim 2.10× 106 2.40 ×106
Proposed 2.14× 106 2.33 ×106

0 1 2 3 4 5 6

x 10
8

0.2

0.4

0.6

0.8

1

Time [Cycles]

N
or

m
al

iz
ed

 P
ow

er
 D

is
si

pa
tio

n
Figure 6: Temporal Variation of Average Power Dissipation.

only two cases are presented here, but this result could be one of
evidences validating the proposed stochastic approach for MTTF
estimation.

5.4 Analysis Example
Now, we can quickly estimate MTTFs of adaptive speed control

systems of which operation parameters are changed. This subsec-
tion shows some examples illustrating the dependence of MTTF on
the operation parameters.

Figure 5 plots MTTF when p in the delay random fluctuation
model of Fig. 4 is varied from 0.25 to 2.5×10−7, which corre-
sponds to the average state occupation time of 0.001 to 1000 sec-
ond. This average state occupation time is here called as time
constant of delay fluctuation and selected as the horizontal axis
of Fig. 5. We can see that MTTFs vary depending on the time
constant, and slower delay fluctuation makes MTTFs longer. This
is reasonable, since less frequent delay increase makes the error
probability lower.

Figure 6 illustrates the temporal variation of average power dis-
sipation. The time constant of delay fluctuation was 0.01 second.
The initial state was the state at 1.2V with 0ps delay increase, and
then the power dissipation decreased first. Then the voltage was
once over-scaled, and then the power got saturated to be constant.

Figure 7 shows MTTF when the delay time of the delay buffer in
each TEP-FF is varied from 100ps to 4ns. We can see that MTTF
becomes significantly short when the delay is less than 300ps. On
the other hand, when the delay is over 3000ps, MTTF does not
improve. This result suggests that the delay shorter than 300ps
cannot well predict the timing errors and the MTTF of 10 ×109
cycles cannot be obtained only adjusting the delay buffer. Figure 8
plots MTTF when the monitoring period of adaptive speed control
is swept from 100k to 100M cycles. As the monitoring period be-
comes longer, MTTF also gets longer.

It should be noted that these analyses can be executed without
reconstructing the similarity database. By using this property, we
can explore and design an adaptive speed control system satisfying

113

100 300 1000 2000 3000 4000
2

4

6

8

10
x 10

9

Delay [ps]

M
T

T
F

 [c
yc

le
s]

Figure 7: MTTF versus Delay of Delay Buffer in TEP-FF.

100k 1M 10M 100M

7

8

9

10

11

12

x 10
9

Monitor Time [cycles]

M
T

T
F

 [c
yc

le
s]

Figure 8: MTTF versus Monitoring Period.

given specifications.
Finally, we demonstrate MTTF for the adaptive speed control

based on off-line scan-test. Figure 9 plots MTTF when the interval
of scan-test is changed from 1k to 100k cycles. We can see that
more frequent scan-test contributes to longer MTTF and this be-
comes significant in the case that the scan-test interval is over 10k
cycles. The proposed framework quantitatively tells us the MTTF
tendency, which is helpful for system design and validation.

6. CONCLUSION
In this work, we proposed a stochastic MTTF estimation frame-

work for adaptive speed control system. The modeling of adap-
tive speed control as a continuous-time Markov process enabled
MTTF-independent computation time for MTTF estimation. To ac-
quire entries of Q-matrix rapidly, we devised a similarity database
that refers to features of a similar simulation result stored in the
database. Thanks to the stochastic modeling and the similarity
database, it becomes possible to estimate long MTTF in 37 sec-
onds with a single CPU, which is 12 orders of magnitude faster than
ordinary logic simulation. This enablement of long MTTF evalua-
tion contributes to quantitatively designing and validating adaptive
speed control system with field delay testing.

10
3

10
4

10
5

2

4

6

8

10

12
x 10

9

Test Interval [cycles]

M
T

T
F

 [c
yc

le
s]

Figure 9: MTTF versus Scan-test Interval.

Acknowledgements
This work was supported by Semiconductor Technology Academic
Research Center (STARC) and the New Energy and Industrial
Technology Development Organization (NEDO) of Japan.

7. REFERENCES
[1] M. Agarwal, B. C. Paul, Z. Ming, and S. Mitra, “Circuit Failure

Prediction and Its Application to Transistor Aging,” in Proc. VTS,
pp.277–286, 2007.

[2] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent Autonomous
Chip Self-Test Using Stored Test Patterns,” in Proc. DATE,
pp.885–890, 2008.

[3] S. Das, et.al., “A self-tuning DVS processor using delay-error
detection and correction,” IEEE JSSC, vol.41, pp.792–804, Apr.
2006.

[4] H. Fuketa, M. Hashimoto, Y. Mitsuyama, and T. Onoye, “Adaptive
Performance Compensation with In-Situ Timing Error Predictive
Sensors for Subthreshold Circuits,” IEEE TVLSI, vol. 20, no. 2, pp.
333–343, Feb. 2012.

[5] K. A. Bowman, et.al., J. W. Tschanz, S. L. Lu, P. A. Aseron,
M. M. Khellah, A. Raychowdhury, B. M. Geuskens, C. Tokunaga,
C. B. Wilkerson, T. Karnik, and V. K. De, “A 45 nm Resilient
Microprocessor Core for Dynamic Variation Tolerance,” IEEE JSSC,
Vol. 46 , No. 1, pp.194 –208, Jan. 2011.

[6] D. Blaauw, et.al., “Razor II: In Situ Error Detection and Correction
for PVT and SER Tolerance,” in ISSCC Dig., pp.400–401, 2008.

[7] A. Papoulis and S. U. Pillai, “Probability, Random Variables and
Stochastic Process, Fourth Edition,” McGraw-Hill Higher
Education, 2002.

[8] J. R. Norris, “Markov Chains,” Cambridge University Press, 1997.
[9] H. Fuketa, M. Hashimoto, Y. Mitsuyama, and T. Onoye, “Trade-Off

Analysis between Timing Error Rate and Power Dissipation for
Adaptive Speed Control with Timing Error Prediction,” IEICE Trans.
Fundamentals, vol. E92-A, no. 12, pp. 3094–3102, Dec. 2009.

[10] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K.S. Kim., “Robust
system design with built-in soft-error resilience,” Computer, Feb.
2005.

[11] M. R. Guthaus, et.al., “Mibench: A free, commercially
representative embedded benchmark suite,” in Proc. IEEE Workshop
on Workload Characterization, 2001.

[12] Synopsys Inc:, TetraMAX R⃝ ATPG User Guide, September. 2009.

114

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

