
3204
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.12 DECEMBER 2003

LETTER Special Section on VLSI Design and CAD Algorithms

Experimental Study on Cell-Base High-Performance Datapath
Design

Masanori HASHIMOTO†a), Regular Member, Yoshiteru HAYASHI†, Nonmember,
and Hidetoshi ONODERA†, Regular Member

SUMMARY This paper experimentally investigates the effectiveness of
regularly-placed bit-slice layout and transistor-level optimization to datap-
ath circuit performance. We focus on cell-base design flows with transistor-
level circuit optimization. We examine the effectiveness through design
experiments of 32-bit carry select adder and 16-bit tree-style multiplier
in a 0.35µm technology. From the experimental results, we can scarcely
observe that manual cell placement contributes to improve circuit perfor-
mance. On the other hand, transistor-level circuit optimization is so ef-
fective that circuit delay is reduced by 11–20% and power dissipation
decreases to 42–62%. We can see that, in the case of cell-base design,
transistor-level optimization is also important as well as in the case of cus-
tom design, whereas cell-base bit-slice layout has less importance to circuit
performance.
key words: datapath design, bit-slice layout, transistor sizing, cell-base
design

1. Introduction

In SoC/ASIC design, cell-base design with automatic CAD
tools is widely used. However performance of circuits de-
signed automatically by CAD tools is generally low com-
pared with that of custom-designed circuits. Traditionally
arithmeticexecution units, such as adder and multiplier, are
designed by datapath design method [1]. The regularity of
circuit structure is utilized for efficient layout design, and
both compact and high-performance layouts are realized.
However, extracting circuit regularity and devise an efficient
layout strategy is not suitable for design automation. Then
datapath circuits are, in most cases, designed manually in
full-custom design style. Therefore datapath design usu-
ally requires a long design time. Circuit designers eagerly
demand highly-automated short-time design methodologies
for high-performance circuits whose performance is close to
that of full-custom design.

Recently cell-base design is partially enhanced to re-
alize transistor-level optimization with minimum additional
efforts [2], [3]. These design methodologies exploit well-
established design automation framework for cell base de-
sign, i.e logic synthesizer generates gate-level netlist and
P&R tool places cells and routes interconnects. Transistor-
level optimization is realized by replacing cells. References
[2], [3] generate plenty of varieties in transistor sizes for

Manuscript received March 13, 2003.
Manuscript revised June 9, 2003.
Final manuscript received July 16, 2003.

†The authors are with the Department of Communications and
Computer Engineering, Kyoto University, Kyoto-shi, 606-8501
Japan.

a) E-mail: hasimoto@i.kyoto-u.ac.jp

each logical function according to the optimization results.
In this paper, we experimentally examine design meth-

ods for high-performance datapath circuits exploiting cell-
base design framework. Generally, performance of datapath
circuits is thought to be improved by transistor-level circuit
optimization and regular datapath layout that considers sig-
nal flows [4]. Reference [5] reports that regular bit-slice cell
placement reduces layout area by 64%. However the eval-
uated circuit includes large register file. The effectiveness
for arithmetic execution units is not clear because the lay-
out efficiency of array-style register file is so different from
that of automatically-placed register file. We evaluate the
effectiveness of these two techniques for arithmeticexecu-
tion unit design, that is how much performance of adder and
multiplier is improved by regularly-placed layouts and tran-
sistor sizing.

2. Regularly-Placed Bit-Slice Layout

We here examine the performance improvement gained by
regularly-placed layout that considers signal flows. We take
up a 32-bit adder and a 16-bit multiplier as evaluation tar-
gets. We design two layouts for each circuit: (1) place cells
manually considering signal flows; (2) place cells automat-
ically by CAD tools. We then compare the circuit perfor-
mance of both the layouts.

2.1 Design Circuits

2.1.1 32-Bit Carry Select Adder

We design a 32-bit carry select adder (CSA). Figure 1 shows
the structure of a carry select adder.A, B are two data in-
puts,C is the carry, andS is the sum. RCA is a ripple-carry
adder, and MUX is a multiplexer. In a carry selector adder,
the partitioned block sizes, i.e. the bit sizes of RCA, are im-
portant for reducing propagation delay. The delay of well-

Fig. 1 Carry select adder.



LETTER
3205

Fig. 2 Organization of 16-bit tree-style multiplier using 4-2
compressors.

Fig. 3 4-2 compressor.

designed CSA becomes the sum of the propagation delay
through the first block and the delay times of the multiplex-
ers in the other blocks. In our design, the number of blocks
is 9, and the bit sizes are 2, 2, 2, 3, 4, 4, 4, 5, 6. This con-
figuration is verified to be the best by our simple analysis.
The number of used cells is 62 of FA (full adder) and 38 of
MUX.

2.1.2 16-Bit Tree-Style Multiplier Using 4-2 Compressors

We design a 16-bit tree-style multiplier using 4-2 compres-
sors [6]. This multiplier has both the merits of speed and
regularity of circuit structure. Figure 2 shows the orga-
nization of the designed multiplier with 4-2 compressors.
In this paper, 4-2 compressor is constructed with serially-
connected full adders (Fig. 3). CPA in Fig. 2 represents a
carry propagation adder. We here use the carry select adder
designed in Sect. 2.1.1 as CPA. The number of cells is 256
of 2-input AND, 322 of FA, and 40 of MUX.

2.2 Layout Design

We design a carry select adder and a multiplier with 4-2
compressors in a cell-base design style. In order to evalu-
ate the effectiveness of the bit-slice layout that considers the
flow of data signals and control signals, these circuits are
designed in the following two ways:

• Cells and external IO pins are placed manually con-
sidering signal flows and regularity of circuit structure.
Interconnects are routed automatically by CAD tools.

• Cell placement and routing areexecuted by automatic
CAD tools. External IO pins are placed manually.

Fig. 4 Partially-bent layout of 16-bit multiplier.

Fig. 5 Automatically-placed layout of 16-bit multiplier with 4-2
compressors.

In the automatic cell placement, we do not use a timing-
driven placement option. We experimentally confirmed that
the timing-driven placement scarcely, or rather never con-
tributed to performance improvement in the experimental
circuits. We compare the circuits designed in the above two
ways from the point of circuit delay and wire length. We as-
sume a 0.35µm process technology with three metal layers.

In the case of multiplier, several layout strategies are
proposed [7], [8]. We here adopt a layout strategy shown
in Fig. 4. This layout is partially bent for reducing dead
space. The layout area assigned for manually-placed lay-
out and automatically-placed layout is the same. The layout
area of 32-bit CSA is84.0 µm × 403.2 µm, and that of 16-
bit multiplier is 515.2 µm × 378.0 µm. The designed lay-
outs of 16-bit multiplier are shown in Figs. 5, 6. The signal
flows in the manually-placed layout are systematic, whereas
the interconnects in the automatically-placed layout are dis-
orderly.

2.3 Performance Evaluation

We evaluate the performance of the designed circuits. Ta-
ble 1 shows the total wire length and the longest path delay.
The path delay times are evaluated using a transistor-level



3206
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.12 DECEMBER 2003

Fig. 6 Manually-placed layout of 16-bit multiplier with 4-2
compressors.

Table 1 Performance comparison.

Circuit Wire Length [µm] Delay [ns]

CSA
Auto 9283 4.52

Manual 10422 4.54
Multi- Auto 80395 7.52
plier Manual 71941 7.57

Table 2 Relationship between performance and layout area.

Area Core Wire Length Delay
[µm×µm] Utilization [µm] [ns]

515.2 × 378.0 (1.00) 0.65 80395 7.52
474.6 × 378.0 (0.92) 0.71 74656 7.60
449.4 × 378.0 (0.87) 0.75 71886 7.47
424.2 × 378.0 (0.82) 0.79 71782 7.59
399.0 × 378.0 (0.77) 0.84 68373 7.70

timing analyzer [9]. As you see, the delay times of both the
layout styles are almost the same. The difference of wire
length is only about 10%. We can not find a distinct supe-
riority of manually-placed datapath layout that compensates
a long design time.

When we place cells manually considering signal flows
and circuit regularity, dead space tends to become large. It
is difficult to devise an efficient layout strategy both for reg-
ularity and compact area. In the case of our designed mul-
tiplier, the core utilization ratio, which is defined as (cell
area)/(layout area), is 0.65. 35% of layout area is dead space
even though we adopt the partially-bent layout to decrease
dead space. On the other hand, in the case of automatic P&R
tools, layout area is reduced easily by trial and error. We
evaluate the performance of the automatically-placed lay-
outs in the case that layout area is reduced as far as routing
can be completed. Table 2 shows the performance when lay-
out area decreases. The layout area listed in the bottom line
is the minimum area limited by routing. As you see, P&R
tool realizes more compact and shorter-interconnect layout.
Also circuit delay does not change so much. Without a so-
phisticated layout strategy, automatic P&R tools, in most
cases, provide compact layout.

These results imply that regularity extraction from syn-
thesized netlists hardly helps to increase circuit performance
whereas its problem complexity is very high. We can ob-
tain layouts whose performance is close or rather superior to
regularly-placed bit-slice layout by the following easy way;
generating gate-level netlists by logic synthesizer or module
generator and making layouts by automatic P&R tools.

3. Transistor-Level Optimization

We examine the effectiveness of transistor-level optimiza-
tion to datapath circuit performance. We here assume the
semi-custom design methodology proposed in Ref. [3]. Var-
ious driving-strength cells are generated on the fly accord-
ing to the optimization result, and newly-generated cells
replace pre-optimized cells. Transistor-level optimization
hence can be executed in cell-base design. Reference [3]
can reduce transistor sizes while keeping interconnects un-
changed, thanks to the preserved pin positions inside cells.
We then do not consider interconnect modifications after
transistor-level optimization. Even if other design method-
ologies with ECO (Engineering Change Order) technique
partially modify interconnects, the effectiveness of transis-
tor sizing is not expected to change considerably.

We use a cell library whose cell height is nine inter-
connect pitches, and the transistor sizes inside cells are rela-
tively small. The initial netlists consist of standard-size (1x)
cells. This is because 1) the interconnects are not so long, 2)
there are not high fanout instances, and 3) weak cells such
as 0.5x are not included so commonly in usual standard cell
libraries except buffer and inverter cells. In this paper, we
basically evaluate continuous transistor sizing. The differ-
ence in performance improvement between the continuous
sizing and the discrete sizing with some weak cells is re-
ported in Ref. [12].

3.1 32-Bit Carry Select Adder

We optimize the carry select adder designed in Sect. 2.2.
When all transistors in the circuit are resized independently,
the number of variables is tremendous and a sophisticated
optimizer with high-speed transistor-level timing analysis is
necessary. As a first-step trial, we optimize the circuits in the
following primitive way. We here select all 28 transistors in
a full adder cell as variables. All the full adder cells in the
32-bit carry select adder are the same. In this circuit, there
are two types of multiplexer; a multiplexer in each block of
carry select adder and multiplexers between blocks (Fig. 1).
The multiplexer cells for each type are the same circuit.
Therefore the number of variable is 52(=28+12+12). We
construct a transistor size optimizer with a non-linear opti-
mization package (FSQP) [10] and a transistor-level timing
analyzer [9]. We first minimize the longest path delay. We
then reduce the total transistor width under the condition
that the circuit delay is allowed to increase by 3%.

The optimization results are shown in Table 3. The col-
umn of “Tr. Width” means the sum of all transistor width



LETTER
3207

Table 3 Transistor-level optimization results in 32-bit carry select adder.

Layout
Tr.-level Tr. Width Power Delay

Opt. [µm] [mW] [ns]
Initial 4830 6.07 4.52

Auto Optimized 2268 3.10 3.62
(−53%) (−49%) (−20%)

Initial 4830 6.07 4.54
Manual Optimized 2052 2.54 3.85

(−58%) (−58%) (−15%)

Table 4 Transistor-level optimization results in 16-bit multiplier.

Layout
Tr.-level Tr. Width Power Delay

Opt. [µm] [mW] [ns]
Initial 17964 39.50 7.52

Auto Optimized 12684 24.48 6.44
(−29%) (−38%) (−14%)

Initial 17964 39.60 7.57
Manual Optimized 13023 23.36 6.76

(−28%) (−41%) (−11%)

in the circuit. “Power” is the average power dissipation
evaluated by a transistor-level power simulator [11]. The
input patterns are generated randomly, and the cycle time
is 10 ns. The number of the applied patterns is 100. The
row of “Auto” corresponds to the optimization result of the
automatically-placed layout. “Manual” is the result of the
manually-placed layout. The numbers inside parentheses
represent the reduction from the initial circuits. The cir-
cuit delay and power dissipation are reduced similarly in the
manually-placed layout and the automatically-placed lay-
out. The circuit delay is reduced by 15 to 20%, and the
power dissipation is reduced by 50%. Thus transistor-level
circuit tuning is indispensable for high-performance datap-
ath circuit design.

3.2 16-Bit Tree-Style Multiplier Using 4-2 Compressors

We optimize the multiplier designed in Sect. 2.2. A 1-bit 4-2
compressor consists of two full adder cells, and there are 28
transistors in each full adder cell. We choose 28 transistor
sizes in a full adder as variables. We also add all transis-
tor sizes in a 2-input AND cells that generate partial prod-
ucts. The total number of variables is 34. All the full adders
used inside 4-2 compressors in the multiplier are the same.
The 2-input AND cells are also the same. The 32-bit carry
select adder optimized in Sect. 3.1 is imported as the carry
propagation adder in the final stage. Table 4 shows the op-
timization results. The circuit delay of the manual layout
and of the automatic layout is reduced by 11% and 14% re-
spectively. The power consumption decreases to 59% and
62%. The evaluation in this section is preliminary because
the number of variables are small and hence the true op-
timum solution, we think, is not found. Nevertheless the
effectiveness of transistor sizing considerably. We will en-
hance our transistor sizing framework [12] so that not only
simple leaf cells but also over twenty-transistor cells, such
as carry select adder and 4-2 compressor, can be handled in

order to design high-performance datapath circuits.

4. Conclusion

We study a high-performance datapath design methodology
exploiting well-established cell-base design framework. We
experimentally investigates the effectiveness of bit-slice lay-
out that considers flows of data signal and control signal.
32-bit carry select adder and 16-bit tree-style multiplier us-
ing 4-2 compressors are designed in a 0.35µm process. We
can not find a significant performance difference between
the manually-placed layout and the automatically-placed
layout, as far as arithmetic execution units we investigate.
The performance improvement by manual cell placement is
small although the design time required for manually-placed
layout is much larger. Transistor-level optimization is com-
monly thought to improve circuit performance. We observe
that transistor sizing contributes to reduce both circuit de-
lay and power dissipation considerably. Our future work in-
cludes developing an effective and practical transistor-level
optimization technique.

Acknowledgement

This work is supported in part by the 21st Century COE
Program (Grand No. 14213201).

References

[1] M.J.S. Smith, Application-Specific Integrated Circuits, Addison
Wesley Longman, 1997.

[2] G.A. Northrop and P.-F. Lu, “A semi-custom design flow in
high-performance microprocessor design,” Proc. DAC, pp.426–431,
2001.

[3] H. Onodera, M. Hashimoto, and T. Hashimoto, “ASIC design
methodology with on-demand library generation,” Proc. Symposium
on VLSI Circuits, pp.57–60, 2001.

[4] D.G. Chinnery and K. Keutzer, “Closing the gap between ASIC and
custom: An ASIC perspective,” Proc. DAC, pp.637–642, 2000.

[5] W.J. Dally and A. Chang, “The role of custom design in ASIC
chips,” Proc. DAC, pp.643–647, 2000.

[6] A. Chandrakasan, W.J. Bowhill, and F. Fox, Design of High-
Performance Microprocessor Circuits, IEEE Press, 2001.

[7] N. Itoh, Y. Naemura, N. Makino, Y. Nakase, T. Yoshihara, and
Y. Horiba, “A 600-MHz 54 × 54-bit multiplier with rectangular-
styled Wallace tree,” IEEE J. Solid-State Circuits, vol.36, no.2,
pp.249–257, Feb. 2001.

[8] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu,
K. Sasaki, and Y. Nakagome, “A 4.4 ns CMOS54 × 54-b multi-
plier using pass-transistor multiplexer,” IEEE J. Solid-State Circuits,
vol.30, no.3, pp.251–257, March 1995.

[9] PathMill Reference Manual, Synopsys, CA, 1999.
[10] C. Laurence, J.L. Zhou, and A.L. Tits, “User’s guide for CFSQP

version 2.5: A C code for solving (large scale) constrained nonlinear
(minimax) optimization problems, generating iterates satisfying all
inequality constraints,” April 1997.

[11] PowerMill Reference Manual, Synopsys, CA, 1999.
[12] M. Hashimoto and H. Onodera, “Post-layout transistor sizing for

power reduction in cell-base design,” IEICE Trans. Fundamentals,
vol.E84-A, no.11, pp.2769–2777, Nov. 2001.


