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Abstract—The RO(Ring-Oscillator)-based sensor is one of
easily-implementable variation sensors, but for decomposing
the observed variability into multiple unique device-parameter
variations, a large number of ROs with different structures and
sensitivities to device-parameters is required. This paper proposes
a scheme for sensing multiple device-parameter variations with
just a single reconfigurable RO. This sensitivity-configurable RO
has a number of configurations available and this property can
be exploited for reducing sensor area while improving estimation
accuracy through iterative estimation. To minimize the prospec-
tive error, the proposed estimation iterates: (1) selecting the best
configuration that minimizes the prospective estimation error
around the current estimates; and (2) updating the estimates
with the selected configuration. This experiment was carried out
assuming a 32-nm predictive technology model. Experimental
results show that device-parameter extraction with a single RO
is feasible and the error of the extracted parameters is reduced
by 35 to 53% with the improved objective function and iterative
estimation.

I. INTRODUCTION
Manufacturing variability is becoming more harmful on

circuit performance and parametric yield, and is predicted to
get much severer according to device miniaturization [1]. To
improve the circuit performance after fabrication and sustain
parametric yield, several adaptation methods, such as voltage
scaling and adaptive body bias, have been proposed [2], [3].
In order to adapt the performance efficiently, it is required
to estimate for every chip how device-parameters varied from
their typical values during the manufacturing process. In this
paper, die-to-die variations including wafer-to-wafer and lot-
to-lot are to be extracted. For example, when the magnitude of
PMOS threshold voltage is high and NMOS threshold voltage
is typical, forward body bias should be given to PMOSs, not
to NMOSs. Otherwise, a large increase in leakage current
would be introduced. For such a purpose, RO-based sensors
have been intensively studied [4]–[7]. They can be easily
implemented in a chip and can be used to assess variability and
aging information even after the product shipment, because the
oscillating frequencies of ROs can be easily measured with a
simple circuit structure.
Fundamentally, for extracting n device-parameters, n types

of sensors that have different sensitivities to device parameters
are necessary. When implementing RO-based sensors using
ordinary standard cells, the sensitivity vectors of the oscilla-
tion frequency to the device parameters (e.g. channel length
and threshold voltages for NMOS and PMOS) are close to

each other, and it is difficult to robustly estimate the device
parameters from the observed oscillation frequencies, since the
observed frequencies must include uncertainties originating
from, such as, random variation and measurement. On the
other hand, ROs that have high sensitivity to a single device-
parameter have been proposed for decomposing the measured
variations, which are the mixtures of variations contributed by
each device parameter, into individual device-parameter varia-
tions [6], [7]. Using a set of these ROs with different sensitivi-
ties, device-parameters can be estimated. As mentioned above,
supposing that the number of device-parameters to be extracted
is n, at least n types of ROs with different sensitivities must
be implemented. Furthermore, as within-die variations become
significant, implementation of larger-stage ROs or a number of
the same ROs on a chip is required to reasonably mitigate the
uncertainty of the measured frequencies. In this case, larger
area overhead for sensor implementation is inevitable.
We in this paper propose a device-parameter extraction

system with a single type of RO whose sensitivities to the
device parameters are reconfigurable in measurement time. By
changing the configuration, we obtain more than n measured
frequencies with different sensitivities from a single RO. This
reconfiguration capability helps reduce silicon area necessary
for the sensor, since the necessary number of RO types is
reduced from n to 1. Here, to be precise, the structure of
sensitivity-reconfigurable RO itself is presented in [8], [9].
However, it is used as one of ROs that provide a specific sensi-
tivity. It has not been presented that only a single sensitivity-
reconfigurable RO is capable of extracting device-parameter
variation.
Furthermore, this redundant number of reconfiguration can

be exploited for improving accuracy of device-parameter ex-
traction. In general, RO frequency cannot be expressed well as
a linear function of variational device parameters, and a higher-
dimensional function is desirable for expressing the relation.
This suggests that the best combination of sensitivity config-
urations for the accuracy varies in the variational parameter
space. Figure 1 exemplifies how the prospective error varies
in a parameter space. Each of three lines corresponds to a
combination of sensitivity configurations, and x-axis expresses
a representative device-parameter variation normalized by its
standard deviation. We can see above 1 σ, the combination
of (1) attains the minimum prospective error, between −2σ to
σ, (2) does, and below −2σ, (3) becomes the minimum. It is
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Fig. 1. The best combination varies in device-parameter space. Each of three
lines (1) – (3) corresponds to a combination of sensitivity configurations. X-
axis expresses a representative device-parameter variation normalized by its
standard deviation.

not smart to use a single combination to estimate the device-
parameter in the whole parameter space. In other words, by
selecting the combination of sensitivity configuration depend-
ing on the estimates of device parameters, the most accurate
and robust estimation can be expected. This adaptive selection
is highly compatible with the sensitivity-configurable RO since
the measurement with different sensitivity configurations does
not require additional area overhead, and therefore the iterative
estimation using the adaptive selection is promising. In con-
trast, for conventional ROs, this adaptive selection involves an
increase in the number of RO types on a chip, which results
in area overhead.
This paper especially focuses on a metric to derive the

best combination of sensitivity configurations for achieving
this adaptive selection. We devise a metric for robustly and
accurately solving simultaneous non-linear equations taking
into account the uncertainty of measured frequency values,
and adopt it as the objective function for deciding the com-
bination of sensitivity-configurations. The proposed metric,
which represents the prospective estimation error, enhances
the estimation accuracy compared with [9], where [9] uses the
condition number of the sensitivity matrix aiming at solving
simultaneous linear equations robustly a particular point in the
variational parameter space.
The rest of this report is organized as follows. Section

2 explains device-parameter estimation that uses a single
sensitivity-configurable ring oscillator, and formulates a prob-
lem to obtain the best combination of sensitivity configu-
rations. Section 3 discusses the objective function for se-
lecting the best combination of configurations, and Section
4 introduces an iterative estimation method to attain high
estimation accuracy. In Section 5, experimental results are
shown to validate our approach. Finally, Section 6 concludes
the discussion.

II. PARAMETER EXTRACTION USING A
SENSITIVITY-CONFIGURABLE RING OSCILLATOR

This section explains the parameter extraction using
RO-based variation sensor and introduces the sensitivity-
configurable ring oscillator. We then formulate a problem to
obtain a combination of sensitivity-configurations for robustly
and accurately estimating device-parameter variations.

A. Parameter extraction using RO-based variation sensor
We first explain a parameter extraction method using RO-

based variation sensor. Here the RO-based sensor consists
of m types of ROs (for the sensitivity-configurable RO,
m configurations) that have different sensitivities to device-
parameters. ai, which denotes the measured value of the i-
th type of RO (for the sensitivity-configurable RO, the i-th
configuration), is expressed by Eq. (1),

ai = fi(ΔGx), (1)

where ΔGx is a vector representation of ΔGx, and ΔGx

is the global variation component of parameter x. Function
fi is prepared in advance by, for example, circuit simulation,
and its basis function and order are determined according to
the function shape and demanded accuracy. Consequently, the
simultaneous equations to be solved for estimatingΔGx using
m types of ROs are as follow.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 = f1(ΔGx)
a2 = f2(ΔGx)

...
am = fm(ΔGx)

(2)

In Eq. (2), the number of RO types used for estimation, m,
must be larger than the number of parameters to be estimated,
n. Besides, there are various numerical solving methods for
non-linear simultaneous equations, such as Newton-Raphson
method, and ΔGx is derived with one of them.

B. Sensitivity-configurable ring oscillator
Figure 2 shows a single inverting stage composing the

sensitivity-configurable RO. In this structure, voltages given to
four terminals (INVN/P and CAPN/P) change the sensitivity
of oscillation frequency to device-parameter variations. The
voltages for individual terminals can be selected from, for
example, Vdd, Vbn, Vbp, and Vss, where Vbn is the voltage
generated by the bias generator shown in Figure 3 and Vbp is
similarly generated by the complementary circuit, which are
proposed in [7].
Excluding invalid voltage assignments (e.g. stopping oscil-

lation), 144 (= 3242) data can be obtained using only this
RO in this setup. It is possible to increase the number of data
further by increasing the number of assignable voltages, but
in this work 144 combinations are supposed to available. This
means that the sensor area can be roughly reduced to onem-th
compared with obtaining m measurement data from m types
of ROs.
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C. Formulating a problem to obtain the best combination of
sensitivity-configurations

We here discuss how we can improve the estimation accu-
racy when using a single sensitivity-configurable ring oscilla-
tor as a variation sensor. In this estimation, the combination
of m sensitivity-configurations determines the robustness and
accuracy of the estimation, since it corresponds to the simul-
taneous non-linear equations (Eq. (2)) to be solved and the
easiness of the equation solution depends on the characteristics
of individual equations and their mutual relations, for example
orthogonality.
On the other hand, the sensitivities of the ring oscillator

to device-parameters can be varied by changing the supply
voltage in addition to the four terminal voltages in Figure 2.
If we measure the oscillating frequencies at l supply voltages,
we can obtain 144 × l measurement data from a single ring
oscillator. In fact, when using the sensitivity-configurable ring
oscillator, 144× l measurement data can be obtained without
an increase in area. However, the necessary measurement time
increases, and hence still a smaller number of measurements
that can attain high accuracy is desirable.
Based on the discussion above, the optimization problem

solved in this paper is defined as follows.

A combination consisting of m(≥ n) sensitivity-
configurations, which attains the smallest prospective
estimation error of ΔGx , is selected from 144 × l
sensitivity-configurations, where n,m and l are supposed to
be given.

III. OBJECTIVE FUNCTION FOR PURSUING A
COMBINATION OF SENSITIVITY CONFIGURATIONS WITH

MINIMUM PROSPECTIVE ERROR

This section presents the criterion for pursuing a com-
bination of sensitivity-configurations that brings out highly
accurate estimation of parameters, i.e. the objective function
for the optimization problem defined in Section II-C.
In the prior research [8], [9], the condition number of a

matrix is used as the metric. The condition number of a matrix
M , cond(M), is mathematically defined as follows [10], [11],

cond(M) = ||M ||2 · ||M−1||2. (3)

INVN

INVP

CAPP

CAPN

Fig. 2. Single inverting stage for
sensitivity-configurable RO.

VBN

Fig. 3. Vbn bias generator.

||M ||2 is the 2-norm of M . M is a partial differential
coefficient matrix at the origin, i.e. , J(ΔGx) substituted
with ΔGx = 0 1. J(ΔGx) is the Jacobian matrix of the
right side of Eq. (2). Supposing ΔGx = (ΔGx1 · · ·ΔGxn)

T ,
Jacobian matrix J(ΔGx) is expressed as follows.

J(ΔGx) =

⎛
⎜⎜⎜⎜⎜⎝

∂f1

∂(ΔGx1)
· · · ∂f1

∂(ΔGxn)
...

. . .
...

∂fm

∂(ΔGx1)
· · · ∂fm

∂(ΔGxn)

⎞
⎟⎟⎟⎟⎟⎠

. (4)

That is, M consists of the sensitivity vectors which are
determined by the configuration of sensitivity-configurable
RO. It is well known that smaller condition number gives
a better solution in numerical computation [11] and it is
accompanied with the better orthogonality of the vectors.
However, it should be noted that the condition number of

the matrix M is valid as long as the right sides of Eq. (2)
are linear or fi(ΔGx) can be reasonably approximated to
a linear function in the region of interest. As illustrated in
Figure 4, the differential coefficient (gradient) is parameter-
independent in the case that the function is linear, but in the
case of a non-linear function, the differential coefficient is
dependent on parameters ΔGx to be estimated. Even when
the condition number of the sensitivity matrixM is small and
the orthogonarity of sensitivity vectors is high at the origin
in the variation parameter space, we cannot expect accurate
numerical computation results in the whole parameter space.
What we can expect is that the estimation is accurate only in
the case that the true estimates are at and around the origin.
On the other hand, in reality, the response of RO oscillation
frequency to device-parameter variation is not linear, and
hence the condition number of the sensitivity matrix at the
origin of ΔGx = 0, which was used in [9], is not sufficient
as the objective function for selecting the combination of
sensitivity-configurations.
Besides, when solving simultaneous equations H(z) = u,

parameter ẑ instead of z is obtained because of existing mea-
surement error û−u, whereH(ẑ) = û holds. Regarding z as
the true value of the parameter to be estimated, the relationship
between the relative measurement error norm ||û−u||2/||u||2
and the relative estimate error norm ||ẑ − z||2/||z||2 is

�

(a) linear function

�

(b) non-linear function

Fig. 4. Gradient (sensitivity) of linear and non-linear functions.

1Other points instead ofΔGx = 0 are fine as well, but here the occurrence
probability of ΔGx = 0 is usually higher and then is selected.
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expressed by [11]

||ẑ − z||2
||z||2 ≤ κ(z)

||û− u||2
||u||2 . (5)

κ(z) in Eq. (5) is the condition number explained above.
Eq. (5) means that the condition number gives the upper bound
of the relative error norm ratio, which is defined as Eq. (6).

||û− u||2/||u||2
||ẑ − z||2/||z||2 . (6)

In other words, κ(z) is the maximum gain of ||û−u||2/||u||2
to ||ẑ − z||2/||z||2.
Eq. (5) tells us that the following two points are important

to diminish estimation error norm ||ẑ− z||2. First, m config-
urations of sensitivity-configurable RO that can attain small
condition number should be selected and used for estimation.
With this, we can minimize the gain of ||û − u||2/||u||2
to ||ẑ − z||2/||z||2. Note that κ(z) is a function of z.
This corresponds to the fact that the condition number is a
function of ΔGx in our problem. Thus, the condition number
of the combination of sensitivity-configurations varies in the
variation parameter space. This issue will be resolved in the
next section.
The second point is to make the relative measurement error

norm, ||û − u||2/||u||2, smaller. This corresponds to dimin-
ishing the relative error of measured value a in our problem.
If the probability distribution of relative measurement error
is independent of the sensitivity-configuration and constant
in the variation parameter space, we do not have to pay
attention to the measurement error in selecting the combination
of the sensitivity-configurations. However, this is not true
in our problem, since the measurement error here includes
the uncertainty of the measured frequencies due to random
variations, and the susceptibility to the random variations
depends on the configuration.
We therefore adopt the objective function Obj below and

minimize it.

Obj = κ(z)
||û− u||2

||u||2 . (7)

This objective function directly represents the prospective
estimation error, while the conventional condition number used
in [9] represents the robustness of solving the simultaneous
linear equations. The combination of sensitivity-configurations
that minimizes Eq. (7) is expected to attain more accurate
estimation. The remaining issues are the dependency of κ(z)
on the estimates z, which will be discussed in the next
section, and how to efficiently obtain configuration-dependent
||û− u||2/||u||2, since its direct computation is very expen-
sive. The approximate computation is discussed in V-B.

IV. PROPOSED ITERATIVE ESTIMATION METHOD

This section presents the proposed iterative estimation
method for attaining robust and accurate device-parameter
estimation. The procedure for the proposed iterative estimation
method is described below.

Step 1:Regression expressions (fi(ΔGx), in Eq. (2)) are
constructed for each sensitivity-configuration, and
initial values of the estimates, such as ΔGx = 0,
are decided.

Step 2:A combination of sensitivity-configurations that min-
imizes the objective function of Eq. (7), which is the
product of condition number at the current estimates
and the measurement error norm, is derived using the
regression expressions constructed at Step 1.

Step 3:ΔGx is estimated from measured frequencies
corresponding to the combination of sensitivity-
configurations derived at Step 2 and the regression
expressions constructed at Step 1. If the iteration
count is less than a pre-defined value, go back to
Step 2.

As mentioned above, the condition number κ(z) is as a
function of z, which means the condition number depends on
ΔGx in our problem. On the other hand, ΔGx is unknown
because it is the set of parameters to be estimated. Thus, the
initial estimates are temporarily set at Step 1, and the best
combination at the initial estimates is derived at Step 2. ΔGx

is estimated with this combination at Step 3. The true values
are likely to exist around the estimates. For this reason, the best
combination at the current estimates is re-derived at Step 2,
and re-estimation is performed with it at Step 3. By iterating
these steps, robust and accurate estimation is expected.

V. EXPERIMENTAL RESULTS

This section experimentally confirms the accuracy improve-
ment of extracted device-parameter variations with the pro-
posed iterative estimation.

A. Experimental setup

One hundred chips are virtually fabricated on the basis of
Monte Carlo simulation, and their die-to-die variations are
estimated. Here, a 32-nm predictive technology model [12],
[13] with nominal Vt is used for evaluation. The number of
stages of the sensitivity-configurable RO (Figure 2) was set
to seven. Also, three discrete voltages (0.7, 0.9, 1.1[V]) were
given to the sensitivity-configurable RO and bias generators
as the supply voltage, which means l is three. In this setup,
there are 144×3=432 configurations. All the sensor outputs in
each chip are evaluated with circuit simulator [14].
It is assumed that the variational device-parameters to be

extracted are threshold voltages of NMOS and PMOS, Vthn

and Vthp, and channel length, L, which means n is three,
and the variability is composed of two components, that are
global and random variations. Global variation here means die-
to-die variation which causes the same variation-offset to all
transistors in a chip, while random variation corresponds to
within-die variation which is different transistor by transistor.
Then, the offset of a device-parameter x from its nominal value
ΔVx is expressed by Eq. (8),

ΔVx = ΔGx +ΔRx, (8)
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where ΔRx denotes random variability of parameter x, and
x could be Vthn, Vthp or L. In what follows, it is assumed
that σΔGV thn/p

= σΔRV thn/p
= 20[mV] and σΔGL =

σΔRL
= 1[nm]. The random variations are size-dependent

[15], and the standard deviations above are set for L = 32[nm]
and W = 256[nm](NMOS)/328[nm](PMOS). In the Monte
Carlo simulation, the size-dependency is considered by scaling
the deviation.
The oscillating frequency of each sensitivity-configuration

depends on not only parameters to be estimated, ΔGx, but
also to the random component of variation. To suppress
the influence of random component, one hundred sensitivity-
configurable ROs are placed on a chip, and the mean of
oscillating frequencies āi is used as the measurement value.
Investigating the required number of ROs is one of our future
works. Besides, third-order polynomial expressions of ΔGx

are derived assuming that Eq. (1) is approximately expressed
by the following empirical equation of Eq. (10) referring to [9]
because preparing samples for the regression analysis strictly
considering random variation (Eq. (9)) is computationally
expensive.

āi = fi(ΔGx)|σΔRL
=1[nm]

σΔRV thn/p
=20[mV] (9)

≈ fi(ΔGx)|σΔRx=0 (10)

+ fi(ΔGx = 0)|σΔRL
=1[nm]

σΔRV thn/p
=20[mV].

The second term of Eq. (10) corresponds to the shift of
average oscillation frequency caused by random variations.
This frequency shift is significant in some configurations
due to the highly non-linear characteristics of oscillating
frequency to device parameters, which is pointed out in [9].
ΔGx is estimated by solving simultaneous equations like
Eq. (2), where each equation is modeled as Eq. (10), and
m(≥ n = 3) is three considering necessary measurement time.
The number of iterative estimation including the initial value
assignment is two, since further iterations hardly contribute
to accuracy improvement. The combination of sensitivity-
configurations which minimizes the objective function is ex-
haustively searched.

B. Computation of objective function

Section III defined the objective function for selecting
a combination of sensitivity-configurations aiming at high
estimation accuracy. The dependency of the condition number
on the estimates is handled through the iterative estimation
explained in Section IV. The remaining issue is the compu-
tation of ||û − u||2/||u||2 in Eq. (7). Here, let us remind
that the sources of measurement error include the uncertainty
of average oscillating frequency originating from the random
variation, the difference between the regression expression
(Eq. (10)) and actual response, and so on. In the current
problem, the first uncertainty is the major measurement error
source, and hence we estimate the amount of this uncertainty
and use it as ||û− u||2.

We then adopt the standard deviations of the measured
frequency ai due to the random variation as ||û−u||2. Also,
||āi||2 is adopted as ||u||2. Here, āi is derived by substituting
the current estimates in fi(ΔGx). Now, the objective function
becomes as follows.

κ(ΔGx)×

∣∣∣∣
∣∣∣∣σai (ΔGx = 0) |σΔRL

=1[nm]

σΔRV thn/p
=20[mV]

∣∣∣∣
∣∣∣∣
2

||āi||2 . (11)

In Eq. (11), σai is the standard deviation of measured
frequency ai. Note that this standard deviation could be
dependent on ΔGx, but here it is not considered due to
the computational time, since deriving the standard deviation
requires many, such as 100, circuit simulations at each point
of ΔGx.

C. Estimation accuracy evaluation
To evaluate accuracy improvement by iterative estimation,

device-parameter extraction is conducted under following 3
conditions.
C1: Conventionalestimation using the combination of the sensitivity-

configurations that minimizes the condition number
of the sensitivity matrix at ΔGx = 0 [9].

C2: Initialestimation using the combination of sensitivity-
configurations that minimizes the objective function
of Eq. (11) at the point of ΔGx = 0 (the initial
estimation of the proposed method).

C3: Secondsecond estimation with the combination minimizing
the objective function at the point of the initial
estimates obtained from C2.

Table I shows the averages of the absolute estimation errors
of ΔGx from the variations given to each chip. In Table I,
the values in brackets are the errors normalized by respective
standard deviations σΔGx . In addition, the norm of estimation
error is computed from the normalized errors, which expresses
the overall accuracy.
The conventional and initial estimation were carried out

using the combination of sensitivity-configurations that mini-
mized each objective function at the point of ΔGx = 0. Both
C1 and C2 are not expected to give good estimates distant from
ΔGx = 0, which may make the accuracy improvement less
visible. Nevertheless, we can see the normalized error norm,
which represents the overall estimation error to be minimized,
is reduced from 0.227 to 0.185 by 19% comparing C1 to C2
in Table I. This indicates that the objective function of Eq. (7)
is better than the condition number and it better expresses the
overall prospective estimation error.
Table I also shows that the estimation accuracy improved

through iterative estimation. The normalized error norm is
reduced from 0.185 to 0.123 by 34%. 44% reduction of
ΔGVthn

and 55% reduction of ΔGL overwhelms 8% increase
of ΔGVthp

. In addition, the each absolute error normalized
by respective standard deviation is 0.070 (ΔGVthn

), 0.068
(ΔGVthp

) and 0.049 (ΔGL), and thus the estimation errors
of these three device-parameters are well balanced. These
numbers also clarify that the device-parameter estimation
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TABLE I
ESTIMATION RESULTS.

Estimate ΔGVthn
ΔGVthp

ΔGL Normalized
condition [mV] [mV] [nm] error norm

C1: Conventional [9] 2.15 2.91 0.0803 0.227(0.1075) (0.1455) (0.0803)

C2: Initial 2.48 1.26 0.1094 0.185(0.1240) (0.0630) (0.1094)

C3: Second 1.39 1.36 0.0489 0.123(0.0695) (0.0680) (0.0489)
Err. Reduction 44% −8% 55% 34%
from Initial
Err. Reduction 35% 53% 39% 46%

from Conventional [9]
Values in brackets are the errors normalized by respective standard

deviations σΔGx .

using a single type of sensitivity-configurable RO is feasible,
and the reconfiguration capability can be exploited for the
accuracy improvement.
We lastly show the overall accuracy improvement from

[9], which is listed at the bottom row of Table I. Thanks to
the improved objective function representing the prospective
estimation error and the proposed iterative estimation, the
estimation error is reduced by 35 to 53%.

VI. CONCLUSION

This paper proposed a device-parameter extraction method
using the sensitivity-configurable ring oscillator. The pro-
posed method iteratively selects a combination of sensitivity-
configurations that minimizes the prospective estimation error
at the current estimates and estimates the device-parameter
using the combination. The prospective estimation error is
computed by the product of the condition number of sensitivity
matrix and the measurement error, and this is minimized as the
objective function in selecting the combination of sensitivity-
configurations. Experimental results using virtually fabricated
test chips in 32-nm process show that the proposed method
reduces the estimation error by 35 to 53%, and the device-
parameter variation can be estimated only with the sensitivity-
configurable RO.
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